CIS 551 / TCOM 401
Computer and Network
Security

Spring 2006
Lecture 9

Announcements

- MIDTERM HAS BEEN POSTPONED:
- Midterm is now next Tuesday (2/14/2006)
- If this causes problems for you, see me after class.

Problems with Shared Key Crypto

- Compromised key means interceptors can decrypt any ciphertext they've acquired.
- Change keys frequently to limit damage
- Distribution of keys is problematic
- Keys must be transmitted securely
- Use couriers?
- Distribute in pieces over separate channels?
- Number of keys is $O\left(n^{2}\right)$ where n is \# of participants
- Potentially easier to break?

Public Key Cryptography

- Sender encrypts using a public key
- Receiver decrypts using a private key
- Only the private key must be kept secret
- Public key can be distributed at will
- Also called asymmetric cryptography
- Can be used for digital signatures
- Examples: RSA, El Gamal, DSA, various algorithms based on elliptic curves
- Used in SSL, ssh, PGP, ...

Public Key Notation

- Encryption algorithm
$\mathrm{E}:$ keyPub x plain \rightarrow cipher
Notation: $\mathrm{K}\{\mathrm{msg}\}=\mathrm{E}(\mathrm{K}, \mathrm{msg})$
- Decryption algorithm

D : keyPriv x cipher \rightarrow plain
Notation: $k\{m s g\}=D(k, m s g)$

- D inverts E

$$
\mathrm{D}(\mathrm{k}, \mathrm{E}(\mathrm{~K}, \mathrm{msg}))=\mathrm{msg}
$$

- Use capital "K" for public keys
- Use lower case "k" for private keys
- Sometimes E is the same algorithm as D

Secure Channel: Private Key

Alice

Trade-offs for Public Key Crypto

- More computationally expensive than shared key crypto
- Algorithms are harder to implement
- Require more complex machinery
- More formal justification of difficulty
- Hardness based on complexity-theoretic results
- A principal needs one private key and one public key
- Number of keys for pair-wise communication is $\mathrm{O}(\mathrm{n})$

RSA Algorithm

- Ron Rivest, Adi Shamir, Leonard Adleman
- Proposed in 1979
- They won the 2002 Turing award for this work
- Has withstood years of cryptanalysis
- Not a guarantee of security!
- But a strong vote of confidence.
- Hardware implementations: 1000 x slower than DES

RSA at a High Level

- Public and private key are derived from secret prime numbers
- Keys are typically ≥ 1024 bits
- Plaintext message (a sequence of bits)
- Treated as a (large!) binary number
- Encryption is modular exponentiation
- To break the encryption, conjectured that one must be able to factor large numbers
- Not known to be in P (polynomial time algorithms)

Number Theory: Modular Arithmetic

- Examples:
$-10 \bmod 12=10$
$-13 \bmod 12=1$
$-(10+13) \bmod 12=23 \bmod 12=11 \bmod 12$
$-23 \equiv 11(\bmod 12)$
- "23 is congruent to $11(\bmod 12) "$
- $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ iff $\mathrm{a}=\mathrm{b}+\mathrm{kn}$ (for some integer k)
- The residue of a number modulo n is a number in the range 0...n-1

Number Theory: Prime Numbers

- A prime number is an integer > 1 whose only factors are 1 and itself.
- Two integers are relatively prime if their only common factor is 1
- gcd = greatest common divisor
$-\operatorname{gcd}(a, b)=1$
$-\operatorname{gcd}(15,12)=3$, so they're not relatively prime
$-\operatorname{gcd}(15,8)=1$, so they are relatively prime

Finite Fields (Galois Fields)

- For a prime p , the set of integers mod p forms a finite field
- Addition + Additive unit 0
- Multiplication * Multiplicative unit 1
- Inverses: $\mathrm{n}^{*} \mathrm{n}^{-1}=1$ for $\mathrm{n} \neq 0$
- Suppose $p=5$, then the finite field is $\{0,1,2,3,4\}$
$-2^{-1}=3$ because $2 * 3 \equiv 1 \bmod 5$
$-4^{-1}=4$ because $4 * 4 \equiv 1 \bmod 5$
- Usual laws of arithmetic hold for modular arithmetic:
- Commutativity, associativity, distributivity of * over +

RSA Key Generation

- Choose large, distinct primes p and q.
- Should be roughly equal length (in bits)
- Let $\mathrm{n}=\mathrm{p}^{*} \mathrm{q}$
- Choose a random encryption exponent e
- With requirement: e and $(p-1)^{*}(q-1)$ are relatively prime.
- Derive the decryption exponent d
$-d=e^{-1} \bmod \left((p-1)^{*}(q-1)\right)$
- d is e's inverse mod $\left((p-1)^{*}(q-1)\right)$
- Public key: $K=(e, n) \quad$ pair of e and n
- Private key: $\mathrm{k}=(\mathrm{d}, \mathrm{n})$
- Discard primes p and q (they're not needed anymore)

RSA Encryption and Decryption

- Message: m
- Assume m < n
- If not, break up message into smaller chunks
- Good choice: largest power of 2 smaller than n
- Encryption: $\quad E((e, n), m)=m^{e} \bmod n$
- Decryption: $D((d, n), c)=c^{d} \bmod n$

Example RSA

- Choose $p=47, q=71$
- $n=p^{*} q=3337$
- $(p-1)^{*}(q-1)=3220$
- Choose e relatively prime with 3220: $\mathrm{e}=79$
- Public key is $(79,3337)$
- Find $d=79^{-1} \bmod 3220=1019$
- Private key is $(1019,3337)$
- To encrypt $m=68823268796668$
- Break into chunks < 3337
- 688232687966683
- Encrypt: E((79, 3337), 688) = 68879 $\bmod 3337=1570$
- Decrypt: $\mathrm{D}((1019,3337), 1570)=1570^{1019} \bmod 3337=688$

Euler's totient function: $\phi(\mathrm{n})$

- $\phi(\mathrm{n})$ is the number of positive integers less than n that are relatively prime to n
- $\phi(12)=4$
- Relative primes of 12 (less than 12): \{1, 5, 7, 11\}
- For p a prime, $\phi(p)=p-1$. Why?
- For p, q two distinct primes, $\phi\left(\mathrm{p}^{*} \mathrm{q}\right)=(\mathrm{p}-1)^{*}(\mathrm{q}-1)$

Fermat's Little Theorem

- Generalized by Euler.
- Theorem: If p is a prime then $a^{p} \equiv a \bmod p$.
- Corollary: If $\operatorname{gcd}(a, n)=1$ then $a^{\phi(n)} \equiv 1 \bmod n$.
- Easy to compute $\mathrm{a}^{-1} \bmod n$
$-a^{-1} \bmod n=a^{\phi(n)-1} \bmod n$
- Why? $a^{*} a^{\phi(n)-1} \bmod n$
$=a^{\phi(n)-1+1} \bmod n$
$=a^{\phi(n)} \bmod n$
= 1

Example of Fermat's Little Theorem

- What is the inverse of 5 , modulo 7 ?
- 7 is prime, so $\phi(7)=6$
- $\quad 5^{-1} \bmod 7$
$=5^{6-1} \bmod 7$
$=5^{5} \bmod 7$
$=\left(\left(25 \bmod 7{ }^{*} 5^{3} \bmod 7\right) \bmod 7\right.$
$=\left(4 \bmod 7{ }^{*} 5^{3} \bmod 7\right) \bmod 7$
$=((4 \bmod 7 * 4 \bmod 7) \bmod 7 * 5 \bmod 7) \bmod 7$
$=(16 \bmod 7 * 5 \bmod 7) \bmod 7$
$=(2$ * 5$) \bmod 7$
$=10 \bmod 7$
$=3$

Chinese Remainder Theorem

- (Or, enough of it for our purposes...)
- Suppose:
- p and q are relatively prime
$-a \equiv b(\bmod p)$
$-a \equiv b(\bmod q)$
- Then: $\mathrm{a} \equiv \mathrm{b}\left(\bmod \mathrm{p}^{*} \mathrm{q}\right)$
- Proof:
$-p$ divides $(a-b)(b e c a u s e ~ a \bmod p=b \bmod p)$
- q divides (a-b)
- Since p, q are relatively prime, $p^{*} q$ divides (a-b)
- But that is the same as: $a \equiv b\left(\bmod p^{*} q\right)$

Proof that D inverts E

$c^{d} \bmod n$

$$
\begin{aligned}
& =\left(m^{e}\right)^{d} \bmod n \\
& =m^{e d} \bmod n \\
& =m^{k^{*}(p-1)^{*}(q-1)+1} \bmod n \\
& =m^{*} m^{k^{*}(p-1)^{*}(q-1)} \bmod n \\
& =m \bmod n \\
& =m
\end{aligned}
$$

(arithmetic)
(d inverts e)
(arithmetic)
(C. R. theorem)
($\mathrm{m}<\mathrm{n}$)

Finished Proof

- Note: $\mathrm{m}^{\mathrm{p}-1} \equiv 1 \bmod \mathrm{p} \quad$ (if p doesn't divide m)
- Why? Fermat's little theorem.
- Same argument yields: $\mathrm{m}^{\mathrm{q}-1} \equiv 1 \bmod \mathrm{q}$
- Implies: $\mathrm{m}^{\mathrm{k}^{*} \phi(\mathrm{n})+1} \equiv \mathrm{~m} \bmod \mathrm{p}$
- And $\mathrm{m}^{\mathrm{k}^{*} \phi(\mathrm{n})+1} \equiv \mathrm{~m} \bmod \mathrm{q}$
- Chinese Remainder Theorem implies:

$$
m^{k^{\star} \phi(n)+1} \equiv m \bmod n
$$

How to Generate Prime Numbers

- Many strategies, but Rabin-Miller primality test is often used in practice.
$-\quad a^{p-1} \equiv 1 \bmod p$
- Efficiently checkable test that, with probability $3 / 4$, verifies that a number p is prime.
- Iterate the Rabin-Miller primality test t times.
- Probability that a composite number will slip through the test is $(1 / 4)^{t}$
- These are worst-case assumptions.
- In practice (takes several seconds to find a 512 bit prime):

1. Generate a random n-bit number, p
2. Set the high and low bits to 1 (to ensure it is the right number of bits and odd)
3. Check that p isn't divisible by any "small" primes $3,5,7, \ldots,<2000$
4. Perform the Rabin-Miller test at least 5 times.
