CIS 551 / TCOM 401
Computer and Network
Security

Spring 2006
Lecture 8

Announcements

- MIDTERM HAS BEEN POSTPONED:
- Midterm is now one week from today. (2/14/2006)
- If this causes problems for you, see me after class.

Kриケтоүра甲ía (Cryptography)

- From the Greek "kryptos" and "graphia" for "secret writing"
- Confidentiality
- Obscure a message from eaves-droppers
- Integrity
- Assure recipient that the message was not altered
- Authentication
- Verify the identity of the source of a message
- Non-repudiation
- Convince a $3^{\text {rd }}$ party that what was said is accurate

Terminology

- Cryptographer
- Invents cryptosystems
- Cryptanalyst
- Breaks cryptosystems
- Cryptology
- Study of crypto systems
- Cipher
- Mechanical way of encrypting text
- Code
- Semantic translation: "eat breakfast tomorrow" = "attack on Thursday" (or use Navajo!)

Kinds of Cryptographic Analysis

- Goal is to recover the key (\& algorithm)
- Ciphertext only attacks
- No information about content or algorithm
- Very hard
- Known Plaintext attacks
- Full or partial plaintext available in addition to ciphertext
- Chosen Plaintext attacks
- Know which plaintext has been encrypted
- Algorithm \& Ciphertext attacks
- Known algorithm, known ciphertext, recover key

The Caesar Cipher

- Purportedly used by Julius Caesar (c. 75 B.C.)
- Add 3 mod 26
- Advantages
- Simple

- Intended to be performed in the field
- Most people couldn't read anyway
- Disadvantages
- Violates "no security through obscurity"
- Easy to break (why?)

Monoalphabetic Ciphers

- Also called substitution ciphers
- Separate algorithm from the key
- Add N mod 26
- rot13 = Add $13 \bmod 26$
- General monoalphabetic cipher
- Arbitrary permutation π of the alphabet
- Key is the permutation

Example Cipher

Plaintext: he lied
Ciphertext: ic hbcn

Cryptanalysis of Monoalphabetic Ciphers

- Brute force attack: try every key
- N! Possible keys for N-letter alphabet
- 26! $\approx 4 \times 10^{26}$ possible keys
- Try 1 key per $\mu \mathrm{sec} . . .10$ trillion years
- ...but (!) monoalphabetic ciphers are easy to solve
- One-to-one mapping of letters is bad
- Frequency distributions of common letters

Order \& Frequency of Single Letters

E	12.31\%	L	4.03\%	B	1.62\%
T	9.59	D	3.65	G	1.61
A	8.05	C	3.20	V	0.93
0	7.94	U	3.10	K	0.52
N	7.19	P	2.29	Q	0.20
I	7.18	F	2.28	X	0.20
S	6.59	M	2.25	J	0.10
R	6.03	W	2.03	z	0.09
H	5.14	Y	1.88		

Monoalphabetic Cryptanalysis

- Count the occurrences of each letter in the cipher text
- Match against the statistics of English
- Most frequent letter likely to be "e"
- $2^{\text {nd }}$ most frequent likely to be " t "
- etc.
- Longer ciphertext makes statistical analysis more likely to work...

Desired Statistics

- Problems with monoalphabetic ciphers
- Frequency of letters in ciphertext reflects frequency of plaintext
- Want a single plaintext letter to map to multiple ciphertext letters
- "e" "x", "c", "w"
- Ideally, ©iphertext frequencies should be flat

Variance: Measure of "roughness"

Polyalphabetic Substitutions

- Pick k substitution ciphers
$-\pi_{1} \pi_{2} \pi_{3} \ldots \pi_{\mathrm{k}}$
- Encrypt the message by rotating through the k substitutions

m	e	s	s	a	g	e
$\pi_{1}(m)$	$\pi_{2}(e)$	$\pi_{3}(s)$	$\pi_{4}(s)$	$\pi_{1}(a)$	$\pi_{2}(g)$	$\pi_{3}(e)$
q	a	x	0	a	u	v

- Same letter can be mapped to multiple different ciphertexts
- Helps smooth out the frequency distributions
- Diffusion

Perfect Substitution Ciphers

$$
\begin{array}{r}
p_{1} p_{2} p_{3} \ldots p_{n} \\
\oplus \oplus \\
b_{1} b_{2} b_{3} \ldots b_{n} \\
\hline c_{1} c_{2} c_{3} \ldots c_{n}
\end{array}
$$

- Choose a string of random bits the same length as the plaintext, XOR them to obtain the ciphertext.
- Perfect Secrecy
- Probability that a given message is encoded in the ciphertext is unaltered by knowledge of the ciphertext
- Proof: Give me any plaintext message and any ciphertext and I can construct a key that will produce the ciphertext from the plaintext.

One-time Pads

- Another name for Perfect Substitution
- Actually used by US agents in Russia
- Physical pad of paper
- List of random numbers
- Pages were torn out and destroyed after use
- Vernam Cipher
- Used by AT\&T
- Random sequence stored on punch tape
- Not practical for computer security...

Problems with "Perfect" Substitution

- Key is the same length as the plaintext
- Sender and receiver must agree on the same random sequence
- Not any easier to transmit key securely than to transmit plaintext securely
- Need to be able to generate many truly random bits
- Pseudorandom numbers generated by an algorithm aren't good enough for long messages
- Can't reuse the key

Computational Security

- Perfect Ciphers are unconditionally secure
- No amount of computation will help crack the cipher (i.e. the only strategy is brute force)
- In practice, strive for computationally security
- Given enough power, the attacker could crack the cipher (example: brute force attack)
- But, an attacker with only bounded resources is extremely unlikely to crack it
- Example: Assume attacker has only polynomial time, then encryption algorithm that can't be inverted in less than exponential time is secure.

Kinds of Industrial Strength Crypto

- Shared Key Cryptography
- Public Key Cryptography
- Cryptographic Hashes
- All of these aim for computational security
- Not all methods have been proved to be intractable to crack.

Shared Key Cryptography

- Sender \& receiver use the same key
- Key must remain private
- Also called symmetric or secret key cryptography
- Often are block-ciphers
- Process plaintext data in blocks
- Examples: DES, Triple-DES, Blowfish, Twofish, AES, Rijndael, ...

Shared Key Notation

- Encryption algorithm

E : key x plain \rightarrow cipher
Notation: $\mathrm{K}\{\mathrm{msg}\}=\mathrm{E}(\mathrm{K}, \mathrm{msg})$

- Decryption algorithm
$D:$ key x cipher \rightarrow plain
- D inverts E

$$
D(K, E(K, m s g))=m s g
$$

- Use capital "K" for shared (secret) keys
- Sometimes E is the same algorithm as D

Secure Channel: Shared Keys

Alice

Data Encryption Standard (DES)

- Adopted as a standard in 1976
- Security analyzed by the National Security Agency (NSA)
- http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
- Key length is 56 bits
- padded to 64 bits by using 8 parity bits
- Uses simple operators on (up to) 64 bit values
- Simple to implement in software or hardware
- Input is processed in 64 bit blocks
- Based on a series of 16 rounds
- Each cycle uses permutation \& substitution to combine plaintext with the key

DES Encryption

One Round of DES (f of previous slide)

Types of Permutations in DES

Permutation

Permuted
Choice

Expansion
Permutation

DES S-Boxes

- Substitution table
- 6 bits of input replaced by 4 bits of output
- Which substitution is applied depends on the input bits
- Implemented as a lookup table
- 8 S-Boxes
- Each S-Box has a table of 64 entries
- Each entry specifies a 4-bit output

DES Decryption

- Use the same algorithm as encryption, but use $\mathrm{k}_{16} \ldots \mathrm{k}_{1}$ instead of $\mathrm{k}_{1} \ldots \mathrm{k}_{16}$
- Proof that this works:
- To obtain round j from $\mathrm{j}-1$:
(1) $L_{j}=R_{j-1}$
(2) $R_{j}=L_{j-1} \oplus f\left(R_{j-1}, k_{j}\right)$
- Rewrite in terms of round $\mathrm{j}-1$:
(1) $R_{j-1}=L_{j}$
(2) $L_{j-1} \oplus f\left(R_{j-1}, k_{j}\right)=R_{j}$
$L_{j-1} \oplus f\left(R_{j-1}, k_{j}\right) \oplus f\left(R_{j-1}, k_{j}\right)=R_{j} \oplus f\left(R_{j-1}, k_{j}\right)$
$L_{j-1}=R_{j} \oplus f\left(R_{j-1}, k_{j}\right)$
$L_{j-1}=R_{j} \oplus f\left(L_{j}, k_{j}\right)$

Problems with DES

- Key length too short: 56 bits
- www.distributed.net broke a DES challenge in 1999 in under 24 hours (parallel attack)
- Other problems
- Bit-wise complementation of key produces bit-wise complemented ciphertext
- Not all keys are good (half 0's half 1's)
- Differential cryptanalysis: Carefully choose pairs of plaintext that differ in particular known ways (e.g. they are complements)

Block Cipher Performance

Algorithm	Key Length	Block Size	Rounds	Clks/Byte
Twofish	variable	128	16	18.1
Blowfish	variable	64	16	19.8
Square	128	128	8	20.3
RC5-32/16	variable	64	32	24.8
CAST-128	128	64	16	29.5
DES	56	64	16	43
Serpent	$128,192,256$	128	32	45
SAFER (S)K-128	128	64	8	52
FEAL-32	64,128	64	32	65
IDEA	128	64	8	74
Triple-DES	112	64	48	116

Advanced Encryption Standard (AES)

- National Institute of Standards \& Technology NIST
- Computer Security Research Center (CSRC)
- http://csrc.nist.gov/
- http://www.esat.kuleuven.ac.be/~rijmen/rijndael/
- Uses the Rijndael algorithm
- Invented by Belgium researchers Dr. Joan Daemen \& Dr. Vincent Rijmen
- Adopted May 26, 2002
- Key length: 128, 192, or 256 bits
- Block size: 128, 192, or 256 bits

Problems with Shared Key Crypto

- Compromised key means interceptors can decrypt any ciphertext they've acquired.
- Change keys frequently to limit damage
- Distribution of keys is problematic
- Keys must be transmitted securely
- Use couriers?
- Distribute in pieces over separate channels?
- Number of keys is $O\left(n^{2}\right)$ where n is \# of participants
- Potentially easier to break?

