
Space-Efficient Online Computation of Quantile
Summaries

Michael Greenwald
�

Computer & Information Science Department
University of Pennsylvania

200 South 33rd Street
Philadelphia, PA 19104

greenwald@cis.upenn.edu

Sanjeev Khanna
y

Computer & Information Science Department
University of Pennsylvania

200 South 33rd Street
Philadelphia, PA 19104

sanjeev@cis.upenn.edu

ABSTRACTAn �-approximate quantile summary of a sequene of N el-ements is a data struture that an answer quantile queriesabout the sequene to within a preision of �N .We present a new online algorithm for omputing �-approxi-mate quantile summaries of very large data sequenes. Thealgorithm has a worst-ase spae requirement of O(1� log(�N)).This improves upon the previous best result of O(1� log2(�N)).Moreover, in ontrast to earlier deterministi algorithms, ouralgorithm does not require a priori knowledge of the lengthof the input sequene.Finally, the atual spae bounds obtained on experimentaldata are signi�antly better than the worst ase guaranteesof our algorithm as well as the observed spae requirementsof earlier algorithms.
1. INTRODUCTIONWe study the problem of spae-eÆient omputation of quan-tile summaries of very large data sets in a single pass. Aquantile summary onsists of a small number of points fromthe input data sequene, and uses those quantile estimates togive approximate responses to any arbitrary quantile query.Summaries of large data sets have long been used by pro-grammers motivated by limited memory resoures. Elemen-tary summaries, suh as running averages or standard de-viation, are typially suÆient only for simple appliations.The mean and variane are often either insuÆiently de-sriptive, or are too sensitive to outliers and other anoma-�Supported in part by DARPA under Contrat #F39502-99-1-0512, and by the National Siene Foundation underGrant ANI-00-81901.ySupported in part by an Alfred P. Sloan Researh Fellow-ship.

lous data. For suh ases, online algorithms are neessary togenerate quantile summaries that use little spae and pro-vide reasonably aurate approximations to the distributionfuntion indued by the input data sequene [6, 1, 5, 13, 2℄.
1.1 Quantile Estimation for Database Appli-

cationsReent work (e.g. [8, 9, 12℄) has highlighted the importaneof quantile estimators for database users and implementors.Quantile estimates are used to estimate the size of interme-diate results, to allow query optimizers to estimate the ostof ompeting plans to resolve database queries. Paralleldatabases attempt to partition the data into value rangessuh that the size of all partitions are roughly equal. Quan-tile estimates an be used to hoose the ranges without in-speting the atual data. Quantile estimates have severalother uses in databases as well. User-interfaes may esti-mate result sizes of queries, and provide feedbak to users.This feedbak may prevent expensive and inorret queriesfrom being issued, and may ag disrepanies between theuser's model of the database and its atual ontent. Quan-tile estimates are also used by database users to haraterizethe distribution of real world data sets.The existing body of work has also identi�ed partiularproperties that quantile estimators require in order to beuseful for these database appliations | properties that maynot be stritly neessary when estimating quantiles in otherdomains. Some of the desirable properties are as follows.(1) The algorithm should provide tunable and expliit a pri-ori guarantees on the preision of the approximation. Wesay that a quantile summary is �-approximate if it an beused to answer any quantile query to within a preision of�N . In other words, for any given rank r, an �-approximatequantile summary returns a value whose rank r0 is guaran-teed to be within the interval [r � �N; r + �N ℄. (2) Thealgorithm should be data independent. Neither its guaran-tees should be a�eted by the arrival order or distributionof values, nor should it require a priori knowledge of thesize of the dataset. (3) The algorithm should exeute in asingle pass over the data. (4) The algorithm should have assmall a memory footprint as possible. We note here that thememory footprint applies to temporary storage during theomputation. We an always onstrut an �-approximatesummary of size O(1=�) as follows. We �rst onstrut an�=2-approximate summary. For i from 0 to 2� , query this

summary for eah i �2 quantile. It is easy to see that the setof responses onstitutes an �-approximate summary.
1.2 Previous WorkSeveral earlier works have made progress towards meetingthe above-mentioned requirements. Manku, Rajagopalan,and Lindsay [8℄ present a single-pass algorithm that on-struts an �-approximate quantile summary. The algorithmstritly guarantees a preision of �N , but it requires an ad-vane knowledge of N , the size of the data set. It requiresO(1� log2(�N)) spae. In [8℄ the same authors present analgorithm that does not require an advane knowledge ofN . However, they must give up the deterministi guaran-tee on auray. Instead, they provide only a probabilistiguarantee that the quantile estimates are within the desiredpreision.Gibbons, Matias, and Poosala [4℄ estimate quantiles undera di�erent error metri, but their algorithm requires mul-tiple passes over the data. Similarly, Chaudhuri, Motwani,and Narsayya [3℄ require multiple passes and only provideprobabilisti guarantees.Munro and Paterson [10℄, building on the earlier work ofPohl [7℄, showed that any algorithm that exatly omputesthe �-quantile of a sequene of N data elements in only ppasses, requires a spae of
(N1=p). Thus the notion ofapproximate quantiles is inherently neessary for obtainedsub-linear spae algorithms.Many researhers have also addressed the problem of deter-mining the smallest number of omparisons that are nees-sary for omputing a �-quantile. We refer the reader to anie survey artile by Paterson [11℄ for an overview of resultsin this area.
1.3 Our ResultsWe design and analyze a new online algorithm for omput-ing an �-approximate quantile summary of large data se-quenes. The algorithm has a worst-ase spae requirementof O(1� log(�N)), thus improving upon the previous best re-sult of O(1� log2(�N)). Moreover, in ontrast to earlier deter-ministi algorithms, our algorithm does not require a prioriknowledge of the length of the input sequene.Our approah is based on a novel data struture that e�e-tively maintains the range of possible ranks for eah quantilethat we store. This di�ers from previous approahes thatimpliitly assumed that the error in stored quantiles wasdistributed roughly uniformly throughout the distributionof observed values. By expliitly maintaining the possiblerange of rank values for eah quantile, our algorithm is ableto adaptively handle new observations: values observed neartightly onstrained quantiles are more likely to be droppedand new values observed near loosely onstrained quantilesare more likely to be stored. Intuitively speaking, the im-proved behavior of our algorithm is based on the fat (whihwe prove) that no input sequene an be \bad" aross the en-tire distribution at one. In other words, an input sequeneannot persistently present new observations that must bestored without allowing us to safely delete old stored obser-vations.

We also note here that our algorithm an be parallelized ina straightforward manner to deal with the senario wherea system of P independent proessors analyzes P disjointstreams derived from a parent sequene. Due to spae on-siderations, we will omit the details of this implementationin this version.Finally, we study the performane of our algorithm from anempirial perspetive. The atual spae bounds obtainedon experimental data are signi�antly better than both theworst ase guarantees of our algorithm as well as the ob-served spae requirements of earlier algorithms. For exam-ple, when summarizing uniformly random data with � =0:001 and N = 107, our algorithm used an order of magni-tude less memory than the best previously known algorithm.
2. THE NEW ALGORITHMWe will assume without any loss of generality that a newobservation arrives after eah unit of time and thus we willuse n to denote both the number of observations (elementsof the data sequene) that have been seen so far as well asthe urrent time. Our algorithm maintains a summary datastruture S = S(n) at all times, and we denote by s = s(n),the total spae used by it. Finally, we denote the givenpreision requirement by �.
2.1 The Summary Data StructureAt any point in time n, the data struture S(n) onsists ofan ordered sequene of tuples whih orrespond to a sub-set of the observations seen thus far. For eah observationv in S, we maintain impliit bounds on the minimum andthe maximum possible rank of the observation v among the�rst n observations. Let rmin(v) and rmax(v) denote respe-tively the lower and upper bounds on the rank of v amongthe observations seen so far. Spei�ally, S onsists of tu-ples t0; t1; :::; ts�1 where eah tuple ti = (vi; gi;�i) onsistsof three omponents: (i) a value vi that orresponds to oneof the elements in the data sequene seen thus far, (ii) thevalue gi equals rmin(vi) � rmin(vi�1), and (iii) �i equalsrmax(vi)� rmin(vi). We ensure that, at all times, the max-imum and the minimum values are part of the summary.In other words, v0 and vs�1 always orrespond to the min-imum and the maximum elements seen so far. It is easy tosee that rmin(vi) = Pj�i gj and rmax(vi) =Pj�i gj +�i.Thus gi + �i � 1 is an upper bound on the total numberof observations that may have fallen between vi�1 and vi.Finally, observe that Pi gi equals n, the total number ofobservations seen so far.Answering Quantile Queries: A summary of the aboveform an be used in a straightforward manner to provide�-approximate answers to quantile queries. The propositionbelow forms the basis of our approah.Proposition 1. Given a quantile summary S in the aboveform, a �-quantile an always be identi�ed to within an errorof maxi(gi +�i)=2.Proof. Let r = d�ne and let e = maxi(gi + �i)=2. Wewill searh for an index i suh that r � e � rmin(vi) andrmax(vi) � r+ e. Clearly, suh a value vi approximates the

�-quantile to within the laimed error bounds. We now ar-gue that suh an index i must always exist. First, onsiderthe ase r > n� e. We have rmin(vs�1) = rmax(vs�1) = n,and therefore i = s� 1 has the desired property. Otherwise,when r � n � e, we hoose the smallest index j suh thatrmax(vj) > r + e. It follows that r � e � rmin(vj�1). Ifr� e > rmin(vj�1) then rmax(vj) = rmin(vj�1)+ gj +�j >rmin(vj�1) + 2e; a ontradition to our assumption thate = maxi(gi + �i)=2. By assumption, rmax(vj�1) � r + e,therefore j � 1 is an example of an index i with the abovedesribed property.The following is an immediate orollary.Corollary 1. If at any time n, the summary S(n) sat-is�es the property that maxi(gi + �i) � 2�n, then we ananswer any �-quantile query to within an �n preision.At a high level, our algorithm for maintaining the quantilesummary proeeds as follows. Whenever the algorithm seesa new observation, it inserts in the summary a tuple or-responding to this observation. Periodially, the algorithmperforms a sweep over the summary to \merge" some of thetuples into their neighbors so as to free up spae. The heartof the algorithm is in the merge phase where we maintainseveral onditions that allow us to bound the spae used byS at any time. By Corollary 1, it suÆes to ensure that at alltimesmaxi(gi+�i) � 2�n. Motivated by this onsideration,we will say that an individual tuple is full if gi+�i = b2�n.The apaity of an individual tuple is the maximum numberof observations that an be ounted by gi before the tuplebeomes full.Bands: In order to minimize the number of tuples in oursummary, our general strategy will be to delete tuples withsmall apaity and preserve tuples with large apaity. Themerge phase will free up spae by merging tuples with smallapaities into tuples with \similar" or larger apaities. Wesay that two tuples, ti and tj , have similar apaities, iflog apaity(ti) � log apaity(tj).This notion of similarity partitions the possible values of� into bands. Roughly speaking, we try to divide the �sinto bands that lie between elements of (0; 122�n; 342�n; : : :2i�12i 2�n; : : : 2�n�1; 2�n). (These boundaries orrespond toapaities of 2�n; �n; 12 �n; : : : 12i �n; : : :, 8; 4; 2; 1.) As we willsee shortly, it is useful to de�ne bands in a way that ensuresthe property that if two �s are ever in the same band, theynever appear in di�erent bands as n inreases. Therefore,for � from 1 to dlog 2�ne, we let p = b2�n and we de�neband� to be the set of all � suh that p�2��(p mod 2�) <� � p� 2��1 � (p mod 2��1). The (p mod 2�) term holdsthe borders between bands stati as n inreases. We de�neband0 to simply be p. As a speial ase, we onsider the�rst 1=2� observations, with � = 0, to be in a band of theirown. Figure 1 shows the band boundaries as 2�n goes from24 to 34. We will denote by band(ti; n) the band of �i attime n, and by band�(n) all tuples (or equivalently, the �values assoiated with these tuples) that have a band valueof �.

11111111112222222222333332�n 012345678901234567890123456789012342425262728293031323334Figure 1: Band boundaries as 2�n progresses from24 to 34. The rightmost band in eah row is band 0.Proposition 2. At any point in time n and for any � �1, band�(n) ontains either 2� or 2��1 distint values of �.Proof. The band�(n) is bounded below by 2�n � 2� �(2�n mod 2�) and above by 2�n � 2��1 � (2�n mod 2��1).If 2�n mod 2� < 2��1, then 2�n mod 2� = 2�n mod 2��1,and band�(n) ontains 2� � 2��1 = 2��1 distint valuesof �. If 2�n mod 2� � 2��1, then 2�n mod 2� = 2��1 +(2�n mod 2��1), and band�(n) ontains 2��1 + 2��1 = 2�distint values of �.A Tree Representation: We will �nd it useful to imposea tree struture over the tuples. Given a summary S =ht0; t1; :::; ts�1i, the tree T assoiated with S ontains a nodeVi for eah ti and a speial root node R. The parent of anode Vi is the node Vj suh that j is the least index greaterthan i with band(tj) > band(ti). If no suh index exists,then the node R is set to be the parent. All hildren (andall desendants) of a given node Vi have � values larger than�i. The following two properties of T an be easily veri�ed.Proposition 3. The hildren of any node in T are al-ways arranged in non-inreasing order of band in S.Proposition 4. For any node V , the set of all its de-sendants in T forms a ontiguous segment in S.
2.2 OperationsWe now desribe the various operations that we perform onour summary data struture. We start with a desription ofexternal operations:
2.2.1 External OperationsQUANTILE(�) To ompute an �-approximate �-quantilefrom the summary S(n) after n observations, om-pute the rank, r = d�ne. Find i suh that bothr�rmin(vi) � �n and rmax(vi)�r � �n and return vi.

INSERT(v) Find the smallest i, suh that vi�1 � v < vi,and insert the tuple (v; 1; b2�n), between ti�1 and ti.Inrement s. As a speial ase, if v is the new minimumor the maximum observation seen, then insert (v; 1; 0).INSERT(v) maintains orret relationships between gi, �i,rmin(vi) and rmax(vi). Consider that if v is inserted beforevi, the value of rmin(v) may be as small as rmin(vi�1) + 1,and hene gi = 1. Similarly, rmax(v) may be as large as theurrent rmax(vi), whih in turn is bounded by b2�n. Notethat rmin(vi) and rmax(vi) get inreased by 1 after insertion.COMPRESS()for i from s� 2 to 0 doif ((BAND(�i; 2�n) � BAND(�i+1; 2�n)) &&(g�i + gi+1 +�i+1 < 2�n)) thenDELETE all desendants of ti and the tuple ti itself;end ifend forend COMPRESSFigure 2: Pseudo-ode for COMPRESS
2.2.2 Internal OperationsDELETE(vi) To delete the tuple (vi; gi;�i) from S, re-plae (vi; gi;�i) and (vi+1; gi+1;�i+1) by the new tu-ple (vi+1; gi + gi+1;�i+1), and derement s.DELETE() orretly maintains the relationships be-tween gi, �i, rmin(vi) and rmax(vi). Deleting vi has noe�et on rmin(vi+1) and rmax(vi+1), so DELETE(vi)should simply preserve rmin(vi+1) and rmax(vi+1). Therelationship between rmin(vi+1) and rmax(vi+1) is pre-served as long as �i+1 is unhanged. Sine rmin(vi+1) =Pj�i+1 gj , and we delete gi, we must inrease gi+1 bygi to keep rmin(vi+1). All other entries are unalteredby this operation.COMPRESS() The operation COMPRESS tries to mergetogether a node and all its desendants into either itsparent node or into its right sibling. The property thatwe must ensure is that the tuple that results after thismerging is not full. By Proposition 4, we know thata node and its hildren always form a ontiguous se-quene of tuples in S(n). Let g�i denote the sum ofg-values of the tuple ti and all its deendants in T. Itis easy to see that merging ti and its desendants (byDELETEing them) into ti+1 would result in ti+1 be-ing updated to (vi+1; g�i + gi+1;�i+1). We would liketo ensure that this resulting tuple is not full. We saythat a pair of adjaent tuples ti; ti+1 2 S(n) is merge-able if (g�i + gi+1 + �i+1 < 2�n) and band(ti; n) �band(ti+1; n). At a high level, the COMPRESS op-eration iterates over the tuples in S(n) from right toleft, and whenever it �nds a mergeable pair ti; ti+1, itmerges ti as well as all tuples that are desendants ofti in T(n) into ti+1. Note that pairs of tuples that arenot mergeable at some point in time may beome soat a later point in time as the term b2�n inreasesover time. Figure 2 gives pseudo-ode desribing thisoperation.

Note that sine DELETE() and COMPRESS() never alterthe � of surviving tuples, it follows that �i of any quantileentry remains unhanged one it has been inserted.COMPRESS() inspets tuples from right (highest index) toleft. Therefore, it �rst ombines hildren (and their entiresubtree of desendants) into parents. It ombines siblingsonly when no more hildren an be ombined into the parent.Initial StateS ;; s = 0; n = 0.AlgorithmTo add the n+ 1st observation, v, to summary S(n):if (n � 0 mod 12�) thenCOMPRESS();end ifINSERT(v);n = n+ 1;Figure 3: Pseudo-ode for the algorithm
2.3 AnalysisIt is easy to see that the data struture above maintainsan �-approximate quantile summary at eah point in time.The INSERT as well as COMPRESS operations always en-sure that gi + �i � 2�n at any point in time. We willnow establish that the total number of tuples in the sum-mary S after n observations have been seen is bounded by(11=2�) log(2�n).We start by de�ning a notion of overage. We say that atuple t in the quantile summary S overs an observation v atany time n if either the tuple for v has been diretly mergedinto ti or a tuple t that overed v has been merged into ti.Moreover, a tuple always overs itself. It is easy to see thatthe total number of observations overed by ti is exatlygiven by gi = gi(n). The lemmas below give some simpleproperties onerning overage of observations by varioustuples.Lemma 1. At no point in time, a tuple from band � ov-ers an observation from a band > �.Proof. Suppose at some time n, the event desribedin the lemma ours. The COMPRESS subroutine nevermerges a tuple ti into an adjaent tuple ti+1 if the band ofti is greater than the band of ti+1. Thus the only way inwhih this event an our is if it at some point in time, saym, we have band(ti;m) � band(ti+1;m) and at the urrenttime n, we have band(ti; n) > band(ti+1; n). We now ar-gue that this annot our sine if at any point in time `,band(ti; `) = band(ti+1; `), then for all n � `, we must haveband(ti; n) = band(ti+1; n). The borders between bands arestati, exept when two bands ombine (forever). Band 0 isalways new. If 2�n � 2��1 mod 2�, then � and �+ 1 om-bine into the �+1 band (� is a unique band for given n). Allbands > � + 1 remain the same. Beause band 0 is alwaysnew, all bands � < � beome �+1. In other words, bordersare always removed, never added.

Lemma 2. At any point in time n, and for any integer �,the total number of observations overed umulatively by alltuples with band values in [0::�℄ is bounded by 2�=�.Proof. By Proposition 2, eah band�(n) ontains at most2� distint values of �. There are no more than 1=2� ob-servations with any given �, so at most 2�=2� observationswere inserted with � 2 band� . By Lemma 1, no obser-vations from bands > � will be overed by a node from �.Therefore the nodes in question an over, at most, the totalnumber of observations from all bands � �. Summing overall � � � yields an upper bound of 2�+1=2� = 2�=�.The next lemma shows that for any given band value �, onlya small number of nodes an have a hild with that bandvalue.Lemma 3. At any time n and for any given �, there areat most 3=2� nodes in T(n) that have a hild with band valueof �. In other words, there are at most 3=2� parents of nodesfrom band�(n).Proof. Let mmin and mmax, respetively denote the ear-liest and the latest times at whih an observation in band�(n)ould be seen. It is easy to verify that mmin = (2�n �2�� (2�n mod 2�))=2� and mmax = (2�n�2��1 � (2�n mod2��1))=2�. Thus, any parent of a node in band�(n) musthave �i < 2�mmin.Fix a parent node Vi with at least one hild in band�(n) andlet Vj be the rightmost suh hild. Denote by mj the timeat whih the observation orresponding to Vj was seen.We will show that at least a (2�=3)-fration of all observa-tions that arrived after time mmin an be uniquely mappedto the pair(Vi; Vj). This in turn implies that no more than3=2� suh Vi's an exist, thus establishing the lemma. Themain idea underlying our proof is that the fat that COM-PRESS() did not merge Vj into Vi implies there must bea large number of observations that an be assoiated withthe parent-hild pair (Vi; Vj).We �rst argue that g�j (n) +Pi�1k=j+1 gk(n) � g�i�1(n). Ifj = i � 1, it is trivially true. Otherwise, observe that anytuple tk that lies between tj and ti must belong to a bandless than or equal to � | else Vk, and not Vi, would be theparent of Vj . Therefore, Pi�1k=j+1 gk(n) � g�i�1(n) and thelaim follows.Now sine COMPRESS() did not merge Vj into Vi, it mustbe the ase that g�i�1(n)+gi(n)+�i > 2�n. Using the laimabove, we an onlude that g�j (n)+Pi�1k=j+1 gk(n)+gi(n)+�i > 2�n. Also, at time mj , we had gi(mj) + �i < 2�mj .Sine mj is at most mmax, it must be thatg�j (n) + i�1Xk=j+1 gk(n) + (gi(n)� gi(mj)) > 2�(n�mmax):Finally observe that for any other suh parent-hild pairVi0 and Vj0 , the observations ounted above by (Vj ; Vi) and

(Vj0 ; Vi0) are distint. Sine there are at most n�mmin totalobservations that arrived aftermmin, we an bound the totalnumber of suh pairs by (n�mmin)=(2�(n �mmax)) whihis easily veri�ed to be at most 3=2�.Given a full pair of tuples (ti�1; ti), we say that the tupleti�1 is a left partner and ti is a right partner in this full pair.Lemma 4. At any time n and for any given �, there areat most 4=� tuples from band�(n) that are right partners ina full tuple pair.Proof. Let X be the set of tuples in band�(n) that par-tiipate as a right partner in some full pair. We �rst onsiderthe ase when tuples in X form a single ontiguous segmentin S(n). Let ti; :::; ti+p�1 be a maximal ontiguous segmentof band�(n) tuples in S(n). Sine these tuples are alive inS(n), it must be the ase thatg�j�1 + gj +�j > 2�n i � j < i+ p:Adding over all j, we geti+p�1Xj=i g�j�1 + i+p�1Xj=i gj + i+p�1Xj=i �j > 2p�n:In partiular, we an onlude that2 i+p�1Xj=i�1 g�j + i+p�1Xj=i �j > 2p�n:The �rst term in the LHS of the above inequality ountstwie the number of observations overed by nodes in band�(n)or by one of its desendants in the tree T(n). Using Lemma 2,this sum an be bounded by 2(2�=�). The seond term anbe bounded by p(2�n � 2��1) sine the largest possible �value for a tuple with a band value of � or less is (2�n�2��1).Substituting these bounds, we get2�+1� + p(2�n� 2��1) > 2p�nSimplifying above, we get p < 4=� as laimed by the lemma.Finally, the same argument applies when nodes in X induemultiple segments in S(n); we simply onsider the abovesummation over all suh segments.Lemma 5. At any time n and for any given �, the maxi-mum number of tuples possible from eah band�(n) is 11=2�.Proof. By Lemma 4 we know that the number of band�(n)nodes that are right partners in some full pair an be bounded

N # Our Algorithm (tuple ount) Our Algorithm (spae requirement) MLR Algorithm�! .1 .05 .01 .005 .001 .1 .05 .01 .005 .001 .1 .05 .01 .005 .001105: 61 120 496 902 3290 183 360 1488 2706 9870 275 468 1519 2859 8334106: 76 156 664 1230 4983 228 468 1992 3690 14949 378 702 2748 4664 15155107: 94 185 835 1578 6662 282 555 2505 4734 19986 600 1032 3708 7000 27475108: 110 224 1067 2063 9148 330 672 3201 6189 27444 765 1477 5960 10320 37026109: 124 266 1249 2407 11074 372 798 3747 7221 33222 924 1880 7650 14742 59540Table 1: Number of tuples stored and spae requirements for \hard input" sequenes. For MRL algorithm,we assume that eah quantile stored takes only one unit of spae.by 4=�. Any other band�(n) node either does not partii-pate in any full pair or ours only as a left partner. We �rstlaim that eah parent of a band�(n) node an have at mostone suh node in band�(n). To see this, observe that if a pairof non-full adjaent tuples ti; ti+1, where ti+1 2 band�(n),is not merged then it must be beause band(ti; n) is greaterthan �. But Proposition 3 tells us that this event an ouronly one for any �, and therefore, Vi+1 must be the uniqueband�(n) hild of its parent that does not partiipate in afull pair. It is also easy to verify that for eah parent node,at most one band�(n) an partiipate only as a left partnerin a full pair. Finally, observe that only one of the above twoevents an our for eah parent node. By Lemma 3, thereare at most 3=2� parents of suh nodes, and thus the totalnumber of band�(n) nodes an be bounded by 11=2�.Theorem 1. At any time n, the total number of tuplesstored in S(n) is at most (11=2�) log(2�n).Proof. There are at most 1 + blog 2�n bands at timen. There an be at most 3=2� total tuples in S(n) frombands 0 and 1. For the remaining bands, Lemma 5 boundsthe maximum number of tuples in eah band. The resultfollows.
3. EMPIRICAL MEASUREMENTSWe now desribe some empirial results onerning the per-formane of our algorithm in pratie. We experimentedwith three di�erent lasses of input data: (1) A \hard ase"for our algorithm, (2) \sorted" input data, and (3) \random"input data. The \sorted" and \random" input sequeneswere hosen for two reasons. First, \random" should yieldsome insight into the behavior of this algorithm on \aver-age" inputs, or after some randomization. Seond, thesetwo senarios were used to produe the experimental resultsin [8℄. The MRL algorithm [8℄ is the best previously knownalgorithm.We observed during these runs that, in pratie, the algo-rithm used substantially less spae than indiated by ouranalysis from the previous setion. The observed spae re-quirements also turn out to be better than those requiredby the MRL algorithm. Moreover, when we run our algo-rithm with the same spae as used by the MRL algorithm,the observed error is signi�antly better than that of theMRL algorithm. We will refer to this later variant as thepre-alloated variant of our algorithm. In ontrast, we willrefer to the basi version of the algorithm where we alloatea new quantile entry only when the observed error is aboutto exeed the desired �, as the adaptive variant.

Our implementation of the algorithm di�ered slightly fromthat desribed in Setion 2 in two ways. First, new observa-tions were inserted as a tuple (v; 1; gi +�i � 1) rather thanas (v; 1; b2�n). The latter approah is used in the previoussetion stritly to simplify theoretial analysis of the spaeomplexity. Seond, rather than running COMPRESS afterevery 1=2� observations, instead, for eah observation in-serted into S, one tuple was deleted, when possible. Whenno tuple ould be deleted without ausing its suessor tobeome overfull, the size of S grew by 1. Note that byprealloating a large enough number of stored quantiles, noinrease in spae need ever take plae, assuming you knowN in advane.For eah experiment we measured both the maximum spaeused to produe the summary, and the observed preisionof the results. We measured spae onsumption by ount-ing the number of stored tuples. When omparing our spaeonsumption to the MRL algorithm, we pessimistially mul-tiplied the number of stored tuples by 3 to aount for ourreording the value and both the min and max rank of eahstored element.
3.1 Hard InputWe onstrut here data sequenes in adversarial manner forour algorithm. At eah time step, we generate the nextobservation so that it falls in the largest urrent \gap" inour quantile summary.We suessively fed observations to our summary, with noadvane hint about the total number of observations to beseen. We measured the maximum amount of spae requiredas the size of the input sequene inreased to 109. Table 1reports the results of this experiment for N ranging overpowers of 10 from 105 to 109.Note that the required number of quantiles stored is approx-imately a fator of 11 lower than the worst-ase bound weomputed in the previous setion of this paper. Also notethat the number of quantiles we store is signi�antly lowerthan the number used by the MRL algorithm. Even aftermultiplying our tuple ount by a fator of 3, we almost al-ways require less spae than MRL. The only exeption is in� = :001 and N = 105, where the spae ost of our algorithmexeeds that of the MRL algorithm.
3.2 Sorted InputThe seond senario, \sorted", measures the behavior of thesummary when the data arrives in sorted order. We �xed� = :001 and onstruted summaries of sorted sequenes ofsizes 105; 106, and 107. We omputed the atual maximum

Observed �qi # MRL Our algorithm, Prealloated Our algorithm,AdaptiveN ! 105 106 107 105 106 107 105 106 107jSj 8334 15155 27475 2778 5052 9158 756 756 756Max � 0.00035 0.000194 0.000167 0.00027 0.000128 0.000090 0.00095 0.000899 0.0008191 0.00015 0.000199 0.000091 0.00021 0.000020 0.000077 0.00074 0.000057 0.0006182 0.00006 0.000050 0.000120 0.00024 0.000056 0.000009 0.00039 0.000259 0.0002033 0.00006 0.000210 0.000062 0.00010 0.000052 0.000031 0.00010 0.000744 0.0006654 0.00024 0.000161 0.000001 0.00001 0.000016 0.000005 0.00040 0.000860 0.0000025 0.00002 0.000033 0.000070 0.00002 0.000092 0.000050 0.00016 0.000494 0.0002306 0.00022 0.000166 0.000053 0.00012 0.000048 0.000014 0.00027 0.000716 0.0006327 0.00000 0.000037 0.000085 0.00024 0.000060 0.000066 0.00007 0.000388 0.0004888 0.00010 0.000084 0.000043 0.00012 0.000096 0.000035 0.00021 0.000829 0.0000909 0.00019 0.000207 0.000095 0.00006 0.000124 0.000014 0.00033 0.000000 0.00003810 0.00013 0.000060 0.000100 0.00012 0.000088 0.000050 0.00055 0.000036 0.00035411 0.00005 0.000098 0.000013 0.00002 0.000000 0.000014 0.00005 0.000542 0.00018512 0.00004 0.000096 0.000001 0.00008 0.000004 0.000022 0.00017 0.000093 0.00001013 0.00006 0.000107 0.000045 0.00014 0.000008 0.000044 0.00039 0.000263 0.00022014 0.00002 0.000116 0.000038 0.00020 0.000008 0.000056 0.00022 0.000732 0.00066515 0.00003 0.000098 0.000049 0.00023 0.000028 0.000041 0.00008 0.000316 0.000425Table 2: Spae and preision measurements for \sorted" ase.error over all possible quantile queries, and hose to query 15quantiles at rank qi16N , for qi = [1::15℄, to study the behaviorat spei� quantiles.We ompared three algorithms for onstruting the sum-mary. First, we used the MRL algorithm to ompute a sum-mary where we prealloated the storage required by MRLas a funtion of N and �. Seond, we pre-alloated the sameamount of storage required by MRL (1/3 as many storedquantiles as MRL, though), and ran our algorithm withoutalloating any more quantiles. Finally, we ran our algorithmin the adaptive mode; we started with 12� stored quantilesand only alloated extra storage if it was impossible to deleteexisting quantiles without exeeding a preision of :001n.Table 2 reports the results of this experiment. jSj reportsthe number of stored quantiles needed to ahieve the desiredpreision. The row labeled \max" reports the maximum er-ror of all possible quantile queries on the summary. In orderto give an indiation of the behavior of this algorithm forspei� quantiles, the remaining rows list the approximationerror of the response to the query for the qi=16th quantile.To interpret the entries in Table 2, onsider the .5 quan-tile (50th ptile, or 8/16). For a sequene of 105 elements,the adaptive algorithm uses only 756 tuples, but returns avalue with an approximation error of .00021. MRL storesover eight times as many quantiles, and returns a value witherror .00010, almost twie as aurate. Our prealloatedalgorithm stores only one third as many tuples as MRL,but returns a value with an approximation error of .00012 {omparable auray but using only one third the numberof tuples.In fat, however, the error on any individual quantile is notrepresentative of the error as a whole | had we hosen toinspet the 1/4 quantile instead of 1/2, then our algorithmwould have been 24 times as aurate as MRL! Had we ho-sen 3/4, then MRL would have been twie as aurate asours. Of the 15 quantiles we sampled, we outperformedMRL on 6 out of 15 for a sequene of size 105, 10 out of 15

for size 106, and 11 out of 15 for 107. Individual queries arehighly sensitive to how lose the quantile query happens tobe to some single stored quantile. On average, in ompari-son to MRL using the same storage, our algorithm reportedbetter worst-ase observed error, and omparable observederror (we perform slightly worse for N = 105, but slightlybetter for N = 106 and 107). Both algorithms ahievedhigher preision than demanded by the a priori spei�a-tion.The most interesting result is that our adaptive algorithmseems to require only 756 stored quantiles, regardless of thesize of the input sequene. Closer experimentation revealedthat the algorithm only needs all 756 stored quantiles at afairly early stage in the omputation | the exess storageredues the observed error, slightly. One an see this byobserving the maximum error in Table 2. For a desired� = :001, one would expet that the maximum observederror would be approximately equal to .001, too. However,for 105 the maximum error is only :000955 and as N getslarger the maximum error gets smaller.The maximum error o�ers another interesting insight intothe behavior of our algorithm. Note that the optimal valuefor maximum error in all ases is 1=(2jSj) (this ours only ifthe stored quantiles are distributed evenly among all values,and we know their rank preisely). For example, for 756quantiles, the optimal max error is .00066. For 2778 quan-tiles, the ideal maximum error is .00018. Our algorithmdelivers a maximum error within a fator of 2 of optimal. Inontrast, the optimal max error of 8334 stored quantiles is5:99 � 10�5, yet the MRL algorithm delivers a max error 6times as large. In fat, for MRL, the disrepany betweenthe ideal max error and observed max error seems to growas N (and jSj) gets larger; for N = 107, the observed maxerror is more than 9 times the optimal value.
3.3 Random InputThe third senario, \random", selets eah datum by se-leting an element (without replaement) from a uniformdistribution of all the remaining elements in the data set.

That is, the values in the data set an have an arbitrarilyskewed distribution, but the order in whih the values areobserved by the summary is hosen by the uniform randomproess.As in the sorted ase, we �xed � = :001 and summarized se-quenes of lengths 105; 106, and 107. We again omputed themaximum error, the quantiles at rank qi16N , for qi = [1::15℄,and measured the atual maximum storage requirement toompute the summary. In ontrast to the sorted input asewhere a single experiment was suÆient to determine theexpeted behavior, random input requires running severaltrials to illuminate expeted behavior. We ran eah experi-ment 50 times and report the min, max, mean and standarddeviation for every measurement. Tables 3 through 5 reportthese results.The observed � of our prealloated algorithm is roughly twieas aurate as MRL, although our advantage seems to in-rease steadily as N gets larger. Not surprisingly, the ob-served � of our adaptive algorithm stays lose to 0.001 re-gardless of how large N gets. The observed storage require-ments, however, may be surprising. These are one againthe most interesting results of our \random" senario. Itappears that for uniformly random input the required spaeis independent of N , the size of the dataset, and dependentonly upon �. In all our experiments, a :001-approximatesummary of a random input was ahieved with roughly 920tuples.
4. CONCLUDING REMARKSWe presented a new online algorithm for omputing quantilesummaries of very large sequenes of data in a spae-eÆientmanner. Our algorithm improves upon the earlier results intwo signi�ant ways. First, it improves the spae omplexityby a fator of
(log(�N)). Seond, it does not require apriori knowledge of the parameter N | that is, it alloatesmore spae dynamially as the data sequene grows in size.An obvious question is whether or not the spae omplexityahieved by our algorithm is asymptotially optimal. Webelieve that the answer is in the aÆrmative indeed.Our empirial study of the new algorithm provides evidenethat our algorithm ompares favorably with the previousalgorithms in pratie as well. A urious trend observed inour experiments is that on random inputs, the spae require-ments of the algorithm seem only to depend on the error pa-rameter � and beome independent of the sequene lengthN . It will be interesting to analytially verify this behaviorand to understand the minimal harateristis of the datasequenes that lead to suh improved spae requirements.
5. REFERENCES[1℄ Rakesh Agrawal and Arun Swami. A one-passspae-eÆient algorithm for �nding quantiles. Pro.7th Int. Conf. Management of Data, COMAD,28{30 Deember 1995.[2℄ Khaled Alsabti, Sanjay Ranka, and Vineet Singh. Aone-pass algorithm for aurately estimating quantilesfor disk-resident data. Proeedings of the 23rd Intl.Conferene on Very Large Data Bases, Athens,

Greee, 26{29 August 1997, pages 346{355, Los Altos,CA 94022, USA, 1997. Morgan Kaufmann Publishers.[3℄ Surajit Chaudhuri, Rajeev Motwani, and VivekNarasayya. Random sampling for histogramonstrution: how muh is enough? In ACM SIGMOD'98, volume 28, pages 436{447, Seattle, WA, June 1{4,1998.[4℄ Phillip B. Gibbons, Yossi Matias, and ViswanathPoosala. Fast inremental maintenane of approximatehistograms. In Proeedings of the 23rd Intl. Conf. VeryLarge Data Bases, VLDB, pages 466{475. MorganKaufmann, 25{27 August 1997.[5℄ Mihael B. Greenwald. Pratial algorithms for selfsaling histograms or better than average dataolletion. Performane Evaluation, 27&28:19{40,Otober 1996.[6℄ R. Jain and I. Chlamta. The P 2 algorithm fordynami alulation of quantile and histogramswithout storing observations. Communiations of theACM, 28(10):1076{1085, Otober 1986.[7℄ I. Pohl. A minimum storage algorithm for omputingthe median. IBM Researh Report RC 2701, November1969.[8℄ Gurmeet Singh Manku, Sridhar Rajagopalan, andBrue G. Lindsay. Approximate medians and otherquantiles in one pass and with limited memory. ACMSIGMOD '98, volume 28, pages 426{435, Seattle, WA,June 1998.[9℄ Gurmeet Singh Manku, Sridhar Rajagopalan, andBrue G. Lindsay. Random sampling tehniques forspae eÆient online omputation of order statistis oflarge datasets. In ACM SIGMOD '99, volume 29,pages 251{262. Philadelphia, PA, June 1999.[10℄ J. I. Munro and M.S. Paterson. Seletion and sortingwith limited storage. Theoretial Computer Siene,vol. 12: 315{323; 1980.[11℄ M.S. Paterson. Progress in seletion. Tehnial Report,University of Warwik, Coventry, UK, 1997.[12℄ Viswanath Poosala, Venkatesh Ganti, and Yannis E.Ioannidis. Approximate query answering usinghistograms. Bulletin of the IEEE Tehnial Committeeon Data Engineering, 22(4):6{15, Deember 1999.[13℄ Viswanath Poosala, Peter J. Haas, Yannis E.Ioannidis, and Eugene J. Shekita. Improvedhistograms for seletivity estimation of rangeprediates. In ACM SIGMOD 96, volume 26, pages294{305, Montreal, Quebe, Canada, June 4{6, 1996.

qi # MRL Our Algorithm, Prealloated Our Algorithm, AdaptivejSj ! 8334 2778 [898-939℄, 919.18�8.63[range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdevMax � [4.3-5.2℄ 0.0004698�2.02e-05 [2.9-2.95℄ 0.0002920�0.24e-05 [8.25-8.70℄ 0.0008487�0.91e-051 [0.0-3.2℄ 0.0000928�7.38e-05 [0.1-2.5℄ 0.0001074�7.19e-05 [0.1-7.8℄ 0.0003222�1.88e-042 [0.0-3.0℄ 0.0001130�7.58e-05 [0.2-2.5℄ 0.0001216�6.42e-05 [0.1-7.0℄ 0.0003216�1.88e-043 [0.0-3.5℄ 0.0001104�8.86e-05 [0.0-2.7℄ 0.0001220�7.36e-05 [0.2-7.7℄ 0.0003406�2.07e-044 [0.0-2.8℄ 0.0001040�6.93e-05 [0.0-2.7℄ 0.0001236�7.44e-05 [0.1-7.6℄ 0.0002952�1.98e-045 [0.0-3.7℄ 0.0001172�8.81e-05 [0.0-2.6℄ 0.0000844�6.07e-05 [0.1-6.6℄ 0.0003102�1.88e-046 [0.1-3.0℄ 0.0001046�7.69e-05 [0.0-3.3℄ 0.0000912�7.41e-05 [0.2-6.7℄ 0.0002986�1.64e-047 [0.2-3.6℄ 0.0001346�7.97e-05 [0.0-2.5℄ 0.0001078�6.45e-05 [0.0-6.9℄ 0.0003090�1.89e-048 [0.1-3.8℄ 0.0000982�8.86e-05 [0.0-3.1℄ 0.0001134�7.08e-05 [0.0-7.7℄ 0.0002910�1.94e-049 [0.0-2.7℄ 0.0001222�7.37e-05 [0.0-2.5℄ 0.0001074�7.62e-05 [0.0-6.6℄ 0.0002910�1.75e-0410 [0.0-3.4℄ 0.0001278�7.68e-05 [0.0-2.3℄ 0.0000912�6.01e-05 [0.0-7.0℄ 0.0002740�1.69e-0411 [0.1-3.1℄ 0.0001204�7.87e-05 [0.0-2.8℄ 0.0000954�7.31e-05 [0.1-6.9℄ 0.0002790�1.84e-0412 [0.1-2.4℄ 0.0001040�6.83e-05 [0.0-2.4℄ 0.0000940�6.71e-05 [0.2-8.2℄ 0.0003566�2.32e-0413 [0.0-3.0℄ 0.0000878�6.83e-05 [0.0-2.3℄ 0.0001114�6.49e-05 [0.2-7.6℄ 0.0003446�2.01e-0414 [0.0-3.1℄ 0.0000982�8.05e-05 [0.0-2.5℄ 0.0001196�6.80e-05 [0.4-8.2℄ 0.0003424�1.99e-0415 [0.0-2.8℄ 0.0001000�7.12e-05 [0.0-2.8℄ 0.0001330�8.24e-05 [0.1-6.2℄ 0.0002952�1.86e-04Table 3: N = 100; 000; Samples = 50; random order.qi # MRL Our Algorithm, Prealloated Our Algorithm, AdaptivejSj ! 15155 5052 [900-939℄ 919.38�8.92[range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdevMax � [3.02-3.63℄ 0.0003275�1.44e-05 [1.495-1.520℄ 15.04e-05�0.06e-05 [7.835-8.215℄ 0.0008004�0.82e-051 [0.02-3.00℄ 0.0001194�7.88e-05 [0.05-1.41℄ 5.41e-05�3.37e-05 [0.00-7.78℄ 0.0003173�2.12e-042 [0.09-3.19℄ 0.0001248�7.69e-05 [0.04-1.41℄ 5.79e-05�3.65e-05 [0.06-6.94℄ 0.0003259�1.80e-043 [0.01-2.90℄ 0.0001253�7.27e-05 [0.01-1.28℄ 5.73e-05�3.71e-05 [0.15-7.11℄ 0.0003172�1.87e-044 [0.01-2.71℄ 0.0001092�7.47e-05 [0.02-1.43℄ 5.57e-05�3.46e-05 [0.07-7.04℄ 0.0003546�1.97e-045 [0.12-2.84℄ 0.0001260�7.44e-05 [0.03-1.36℄ 5.45e-05�3.59e-05 [0.02-7.06℄ 0.0002907�1.78e-046 [0.01-3.20℄ 0.0000984�7.68e-05 [0.01-1.22℄ 5.89e-05�3.26e-05 [0.29-6.57℄ 0.0002972�1.76e-047 [0.01-2.79℄ 0.0001256�7.52e-05 [0.01-1.38℄ 5.03e-05�3.58e-05 [0.09-6.30℄ 0.0002951�1.60e-048 [0.05-3.27℄ 0.0001299�6.03e-05 [0.01-1.21℄ 4.55e-05�3.37e-05 [0.11-7.10℄ 0.0002892�1.73e-049 [0.22-3.27℄ 0.0001268�7.75e-05 [0.05-1.24℄ 5.88e-05�3.57e-05 [0.04-7.15℄ 0.0003015�2.04e-0410 [0.13-3.74℄ 0.0001389�8.64e-05 [0.03-1.61℄ 7.14e-05�3.88e-05 [0.02-7.07℄ 0.0002924�2.04e-0411 [0.09-3.01℄ 0.0001431�7.67e-05 [0.00-1.38℄ 5.81e-05�3.58e-05 [0.11-6.43℄ 0.0002989�2.01e-0412 [0.03-3.32℄ 0.0001446�8.64e-05 [0.00-1.46℄ 4.86e-05�3.33e-05 [0.20-6.71℄ 0.0003378�1.66e-0413 [0.04-2.84℄ 0.0001339�7.25e-05 [0.00-1.34℄ 5.30e-05�3.42e-05 [0.04-6.69℄ 0.0003128�1.70e-0414 [0.04-2.74℄ 0.0001288�8.91e-05 [0.03-1.43℄ 5.65e-05�3.60e-05 [0.02-7.03℄ 0.0003146�1.86e-0415 [0.02-2.92℄ 0.0001284�8.82e-05 [0.02-1.67℄ 5.45e-05�3.86e-05 [0.05-6.46℄ 0.0002797�1.72e-04Table 4: N = 1; 000; 000; Samples = 50; random order.qi # MRL Our Algorithm, Prealloated Our Algorithm, AdaptivejSj ! 27475 9158 [899-939℄ 918.42�8.71[range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdev [range (�10�4)℄ avg�stdevMax � [2.032-2.641℄ 2.35e-04�1.18e-05 [0.799-0.806℄ 8.01e-05�1.8e-07 [7.628-8.016℄ 7.82e-04�9.75e-061 [0.026-1.466℄ 4.98e-05�3.29e-05 [0.002-0.712℄ 2.74e-05�1.96e-05 [0.187-6.123℄ 2.87e-04�1.65e-042 [0.022-1.922℄ 6.32e-05�4.98e-05 [0.001-0.764℄ 2.94e-05�2.22e-05 [0.166-6.814℄ 3.04e-04�1.80e-043 [0.019-1.750℄ 5.90e-05�4.62e-05 [0.002-0.656℄ 2.93e-05�1.80e-05 [0.008-7.040℄ 3.68e-04�1.91e-044 [0.024-1.953℄ 6.19e-05�4.37e-05 [0.003-0.615℄ 2.98e-05�1.65e-05 [0.096-7.149℄ 2.98e-04�1.81e-045 [0.022-1.892℄ 7.02e-05�5.03e-05 [0.011-0.722℄ 2.99e-05�1.63e-05 [0.111-7.297℄ 2.56e-04�1.80e-046 [0.026-1.766℄ 6.61e-05�4.65e-05 [0.008-0.655℄ 2.60e-05�1.86e-05 [0.021-6.618℄ 3.27e-04�1.72e-047 [0.038-1.987℄ 5.75e-05�4.33e-05 [0.025-0.688℄ 3.30e-05�1.63e-05 [0.009-5.620℄ 2.14e-04�1.47e-048 [0.004-1.801℄ 5.69e-05�4.29e-05 [0.006-0.712℄ 2.69e-05�2.01e-05 [0.043-7.718℄ 3.17e-04�1.96e-049 [0.012-2.252℄ 6.47e-05�4.19e-05 [0.003-0.675℄ 2.90e-05�1.83e-05 [0.116-7.167℄ 2.83e-04�1.93e-0410 [0.011-1.840℄ 6.11e-05�4.28e-05 [0.006-0.649℄ 2.64e-05�1.67e-05 [0.050-7.225℄ 3.09e-04�1.83e-0411 [0.010-1.640℄ 6.67e-05�4.41e-05 [0.005-0.727℄ 2.99e-05�1.78e-05 [0.231-6.606℄ 2.60e-04�1.66e-0412 [0.013-1.847℄ 6.09e-05�4.69e-05 [0.013-0.686℄ 2.68e-05�1.71e-05 [0.018-6.639℄ 2.95e-04�1.51e-0413 [0.005-1.747℄ 5.80e-05�3.87e-05 [0.015-0.680℄ 2.82e-05�1.93e-05 [0.014-6.518℄ 3.06e-04�1.90e-0414 [0.026-1.853℄ 7.12e-05�5.07e-05 [0.000-0.671℄ 3.43e-05�1.84e-05 [0.051-7.385℄ 2.69e-04�1.99e-0415 [0.022-1.510℄ 5.57e-05�3.56e-05 [0.019-0.775℄ 2.91e-05�1.83e-05 [0.029-6.415℄ 2.74e-04�1.80e-04Table 5: N = 10; 000; 000; Samples = 50; random order.

