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CHAPTER 7

Graphical Games

Michael Kearns

Abstract

In this chapter we examine the representational and algorithmic aspects of a class of graph-theoretic
models for multiplayer games. Known broadly as graphical games, these models specify restric-
tions on the direct payoff influences among the player population. In addition to a number of nice
computational properties, these models have close connections to well-studied graphical models for
probabilistic inference in machine learning and statistics.

7.1 Introduction

Representing multiplayer games with large player populations in the normal form
is undesirable for both practical and conceptual reasons. On the practical side, the
number of parameters that must be specified grows exponentially with the size of the
population. On the conceptual side, the normal form may fail to capture structure that
is present in the strategic interaction, and which can aid understanding of the game
and computation of its equilibria. For this reason, there have been many proposals for
parametric multiplayer game representations that are more succinct than the normal
form, and attempt to model naturally arising structural properties. Examples include
congestion and potential games and related models (Monderer and Shapley, 1996;
Rosenthal, 1973).

Graphical games are a representation of multiplayer games meant to capture and
exploit locality or sparsity of direct influences. They are most appropriate for large
population games in which the payoffs of each player are determined by the actions
of only a small subpopulation. As such, they form a natural counterpart to earlier
parametric models. Whereas congestion games and related models implicitly assume
a large number of weak influences on each player, graphical games are suitable when
there is a small number of strong influences.

Graphical games adopt a simple graph-theoretic model. A graphical game is de-
scribed at the first level by an undirected graph G in which players are identified with
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vertices. The semantics of the graph are that a player or vertex i has payoffs that are
entirely specified by the actions of i and those of its neighbor set in G. Thus G alone
may already specify strong qualitative constraints or structure over the direct strategic
influences in the game. To fully describe a graphical game, we must additionally spec-
ify the numerical payoff functions to each player – but now the payoff to player i is a
function only of the actions of i and its neighbors, rather than the actions of the entire
population. In the many natural settings where such local neighborhoods are much
smaller than the overall population size, the benefits of this parametric specification
over the normal form are already considerable.

But several years of research on graphical games has demonstrated that the advan-
tages of this model extend well beyond simple parsimony – rather, they are compu-
tational, structural, and interdisciplinary as well. We now overview each of these in
turn.

Computational. Theoretical computer science has repeatedly established that strong
but naturally occurring constraints on optimization and other problems can be exploited
algorithmically, and game theory is no exception. Graphical games provide a rich
language in which to state and explore the computational benefits of various restrictions
on the interactions in a large-population game. As we shall see, one fruitful line of
research has investigated topological restrictions on the underlying graph G that yield
efficient algorithms for various equilibrium computations.

Structural. In addition to algorithmic insights, graphical games also provide a pow-
erful framework in which to examine the relationships between the network structure
and strategic outcomes. Of particular interest is whether and when the local interactions
specified by the graph G alone (i.e., the topology of G, regardless of the numerical
specifications of the payoffs) imply nontrivial structural properties of equilibria. We
will examine an instance of this phenomenon in some detail.

Interdisciplinary. Part of the original motivation for graphical games came from
earlier models familiar to the machine learning, AI and statistics communities – collec-
tively known as graphical models for probabilistic inference, which include Bayesian
networks, Markov networks, and their variants. Broadly speaking, both graphical mod-
els for inference and graphical games represent complex interactions between a large
number of variables (random variables in one case, the actions of players in a game in
the other) by a graph combined with numerical specification of the interaction details.
In probabilistic inference the interactions are stochastic, whereas in graphical games
they are strategic (best response). As we shall discuss, the connections to probabilis-
tic inference have led to a number of algorithmic and representational benefits for
graphical games.

In this chapter we will overview graphical games and the research on them to
date. We will center our discussion around two main technical results that will be
examined in some detail, and are chosen to illustrate the computational, structural, and
interdisciplinary benefits discussed above. These two case studies will also serve as
natural vehicles to survey the broader body of literature on graphical games.

The first problem we shall examine is the computation of Nash equilibria in graphical
games in which the underlying graph G is a tree (or certain generalizations of trees).
Here we will discuss a natural two-pass algorithm for computing Nash equilibria
requiring only the local exchange of “conditional equilibrium” information over the
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edges of G. This algorithm comes in two variations – one that runs in time polynomial
in the representation size of the graphical game and computes (a compact representation
of) approximations of all Nash equilibria, and another that runs in exponential time but
computes (a compact representation of) all Nash equilibria exactly. We will discuss
a number of generalizations of this algorithm, including one known as NashProp,
which has close ties to the well-known belief propagation algorithm in probabilistic
inference. Together these algorithms provide examples of the algorithmic exploitation
of structural restrictions on the graph.

The second problem we shall examine is the representation and computation of the
correlated equilibria of a graphical game. Here we will see that there is a satisfying
and natural connection between graphical games and the probabilistic models known
as Markov networks, which can succinctly represent high-dimensional multivariate
probability distributions. More specifically, we shall show that any graphical game with
graph G can have all of its correlated equilibria (up to payoff equivalence) represented
by a Markov network with the same network structure. If we adopt the common view of
correlated equilibria as permitting “shared” or “public” randomization (the source of the
correlations) – whereas Nash equilibria permit only “private” randomization or mixed
strategies – this result implies that the shared randomization can actually be distributed
locally throughout the graph, and that distant parties need not be (directly) correlated.
From the rich tools developed for independence analysis in Markov networks, it also
provides a compact representation of a large number of independence relationships
between player actions that may be assumed at (correlated) equilibrium. The result
thus provides a good example of a direct connection between graph structure and
equilibrium properties, as well as establishing further ties to probabilistic inference.
We shall also discuss the algorithmic benefits of this result.

After studying these two problems in some detail, we will briefly overview recent
research incorporating network structure into other game-theoretic and economic set-
tings, such as exchange economies (Arrow-Debreu, Fischer and related models). Again
the emphasis will be on computational aspects of these models, and on the relationship
between graph structure and equilibrium properties.

7.2 Preliminaries

In this section we shall provide formal definitions for graphical games, along with
other needed definitions, terminology, and notation. We begin with notions standard to
classical multiplayer game theory.

A multiplayer game consists of n players, each with a finite set of pure strategies
or actions available to them, along with a specification of the payoffs to each player.
Throughout the chapter, we use ai to denote the action chosen by player i. For simplicity
we will assume a binary action space, so ai ∈ {0, 1}. (The generalization of the results
examined here to the multiaction setting is straightforward.) The payoffs to player i

are given by a table or matrix Mi , indexed by the joint action �a ∈ {0, 1}n. The value
Mi(�a), which we assume without loss of generality to lie in the interval [0, 1], is the
payoff to player i resulting from the joint action �a. Multiplayer games described in this
way are referred to as normal form games.
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The actions 0 and 1 are the pure strategies of each player, while a mixed strategy
for player i is given by the probability pi ∈ [0, 1] that the player will play 0. For
any joint mixed strategy, given by a product distribution �p, we define the expected
payoff to player i as Mi(�p) = E�a∼�p[Mi(�a)], where �a ∼ �p indicates that each aj is 0
with probability pj and 1 with probability 1 − pj independently. When we introduce
correlated equilibria below, we shall allow the possibility that the distribution over �a is
not a product distribution, but has correlations between the ai .

We use �p[i : p′
i] to denote the vector (product distribution) which is the same as

�p except in the ith component, where the value has been changed to p′
i . A Nash

equilibrium (NE) for the game is a mixed strategy �p such that for any player i, and for
any value p′

i ∈ [0, 1], Mi(�p) ≥ Mi(�p[i : p′
i]). (We say that pi is a best response to the

rest of �p.) In other words, no player can improve their expected payoff by deviating
unilaterally from an NE. The classic theorem of Nash (1951) states that for any game,
there exists an NE in the space of joint mixed strategies.

We will also use a straightforward (additive) definition for approximate Nash equi-
libria. An ε-Nash equilibrium is a mixed strategy �p such that for any player i, and for
any value p′

i ∈ [0, 1], Mi(�p) + ε ≥ Mi(�p[i : p′
i]). (We say that pi is an ε-best response

to the rest of �p.) Thus, no player can improve their expected payoff by more than ε by
deviating unilaterally from an approximate NE.

We are now ready to introduce the graphical game model. In a graphical game, each
player i is represented by a vertex in an undirected graph G. We use N(i) ⊆ {1, . . . , n}
to denote the neighborhood of player i in G – that is, those vertices j such that the
edge (i, j ) appears in G. By convention N(i) always includes i itself as well. If �a is a
joint action, we use �a i to denote the projection of �a onto just the players in N(i).

Definition 7.1 A graphical game is a pair (G,M), where G is an undirected
graph over the vertices {1, . . . , n}, and M is a set of n local game matrices. For
any joint action �a, the local game matrix Mi ∈ M specifies the payoff Mi(�ai) for
player i, which depends only on the actions taken by the players in N(i).

Remarks. Graphical games are a (potentially) more compact way of representing
games than standard normal form. In particular, rather than requiring a number of
parameters that is exponential in the number of players n, a graphical game requires
a number of parameters that is exponential only in the size d of the largest local
neighborhood. Thus if d � n – that is, the number of direct influences on any player
is much smaller than the overall population size – the graphical game representation is
dramatically smaller than the normal form. Note that we can represent any normal form
game as a graphical game by letting G be the complete graph, but the representation
is only useful when a considerably sparser graph can be found. It is also worth noting
that although the payoffs to player i are determined only by the actions of the players
in N(i), equilibrium still requires global coordination across the player population – if
player i is connected to player j who is in turn connected to player k, then i and
k indirectly influence each other via their mutual influence on the payoff of j . How
local influences propagate to determine global equilibrium outcomes is one of the
computational challenges posed by graphical games.

In addition to Nash equilibrium, we will also examine graphical games in the context
of correlated equilibria (CE). CE (Aumann, 1974) generalize NE, and can be viewed as
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(possibly arbitrary) distributions P (�a) over joint actions satisfying a certain conditional
expectation property.

The intuition behind CE can be described as follows. Imagine that there is a trusted
party that faithfully draws a joint action �a according to distribution P , and distributes
to each player i only their private component ai . If P is a product distribution, as in
the NE case, then due to the independence between all players the revelation of ai does
not condition player i’s beliefs over the play of others. For general P , however, this is
not true. The CE condition asks that the expected payoff to i if he is “obedient” and
plays ai be at least as great the amount i could earn by “cheating” and deviating to
play a different action. In other words, in Bayesian terms, despite the observation of ai

updating the posterior distribution over the other player actions from i’s perspective,
it is still payoff-optimal for i to play ai . This leads to the formal definition below, in
which for any given joint distribution P (�a) over player actions and b ∈ {0, 1}, we let
Pai=b denote the distribution on �a conditioned on the event that ai = b.

Definition 7.2 A correlated equilibrium (CE) for a two-action normal form
game is a distribution P (�a) over actions satisfying

∀i ∈ {1, ..., n}, ∀b ∈ {0, 1} : E�a∼Pai=b
[Mi(�a)] ≥ E�a∼Pai=b

[Mi(�a[i : ¬b])]

The expectation E�a∼Pai=b
[Mi(�a)] is over those cases in which the value ai = b is

revealed to player i, who proceeds to “honestly” play ai = b. The expectation
E�a∼Pai=b

[Mi(�a[i : ¬b])] is over the same cases, but now player i unilaterally devi-
ates to play ai = ¬b, whereas the other players faithfully play from the conditional
distribution Pai=b. It is straightforward to generalize this definition to the multiaction
case – again, we demand that it be optimal for each player to take the action provided
by the trusted party, despite the conditioning information revealed by this action.

Remarks. CE offers a number of conceptual and computational advantages over
NE, including the facts that new and sometimes more “fair” payoffs can be achieved,
that CE can be computed efficiently for games in standard normal form (though recall
that “efficiently” here means exponential in the number of players, an issue we shall
address), and that CE are the convergence notion for several natural “no-regret” learning
algorithms (Foster and Vohra, 1999). Furthermore, it has been argued that CE is the
natural equilibrium concept consistent with the Bayesian perspective (Aumann, 1987;
Foster and Vohra, 1997). One of the most interesting aspects of CE is that they broaden
the set of “rational” solutions for normal form games without the need to address often
difficult issues such as stability of coalitions and payoff imputations (Aumann, 1987).
The traffic signal is often cited as an informal everyday example of CE, in which a
single bit of shared information allows a fair split of waiting times (Owen, 1995). In
this example, no player stands to gain greater payoff by unilaterally deviating from
the correlated play, for instance by “running a light.” This example also illustrates a
common alternative view of CE, in which correlations arise as a result of “public” or
“shared” random bits (in addition to the “private” random bits allowed in the standard
mixed strategies or product distributions of NE). Here the state of the traffic light itself
(which can be viewed as a binary random variable, alternately displayed as red and
green to orthogonal streets) provides the shared randomization.
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7.3 Computing Nash Equilibria in Tree Graphical Games

In this section, we describe the first and perhaps most basic algorithm exploiting the ad-
vantages of graphical game representation for the purposes of equilibrium computation.
The case considered is that in which the underlying graph G is a tree. While obviously a
strong restriction on the topology, we shall see that this case already presents nontrivial
computational challenges, which in turn force the development of algorithmic tools
that can be generalized beyond trees to obtain a more general heuristic known as.

NashProp. We first describe the algorithm TreeNash at a high level, leaving certain
important implementation details unspecified, because it is conceptually advantageous
to do so. We then describe two instantiations of the missing details – yielding one
algorithm that runs in polynomial time and provably computes approximations of all
equilibria, and another algorithm that runs in exponential time and provably computes
all exact equilibria.

We begin with some notation and concepts needed for the description of TreeNash.
In order to distinguish parents from children in the tree, it will be convenient to treat
players/vertices symbolically (such as U, V , and W ) rather than by integer indices, so
we use MV to denote the local game matrix for the player identified with player/vertex
V . We use capital letters to denote vertex/players to distinguish them from their chosen
actions, for which we shall use lower case. If G is a tree, we choose an arbitrary vertex
as the root (which we visualize as being at the bottom, with the leaves at the top). Any
vertex on the path from a vertex V to the root will be called downstream from V , and
any vertex on a path from V to any leaf will be called upstream from V . Thus, each
vertex other than the root has exactly one downstream neighbor (or child), and perhaps
many upstream neighbors (or parents). We use UPG(V ) to denote the set of all vertices
in G that are upstream from V , including V by definition.

Suppose that V is the child of U in G. We let GU denote the subgraph induced by
the vertices in UPG(U ) – that is, the subtree of G rooted at U . If v ∈ [0, 1] is a mixed
strategy for player (vertex) V , MU

V =v will denote the subset of payoff matrices in M
corresponding to the vertices in UPG(U ), with the modification that the game matrix
MU is collapsed by one index by fixing V = v. We can think of an NE for the graphical
game (GU,MU

V =v) as a conditional equilibrium “upstream” from U (inclusive) – that
is, an equilibrium for GU given that V plays v. Here we are simply exploiting the fact
that since G is a tree, fixing a mixed strategy v for the play of V isolates GU from the
rest of G.

Now suppose that vertex V has k parents U1, . . . , Uk , and the single child W . We now
describe the data structures sent from each Ui to V , and in turn from V to W , on the downstream
pass of TreeNash. Each parent Ui will send to V a binary-valued “table” T (v, ui). The table
is indexed by the continuum of possible values for the mixed strategies v ∈ [0, 1] of V and
ui ∈ [0, 1] of Ui , i = 1, . . . , k. The semantics of this table will be as follows: for any pair
(v, ui), T (v, ui) will be 1 if and only if there exists an NE for (GUi ,MUi

V =v) in which Ui = ui .
Note that we will slightly abuse notation by letting T (v, ui) refer to both the entire table sent
from Ui to V , and the particular value associated with the pair (v, ui), but the meaning will be
clear from the context.

Since v and ui are continuous variables, it is not obvious that the table T (v, ui) can be
represented compactly, or even finitely, for arbitrary vertices in a tree. For now we will simply
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Algorithm TreeNash
Inputs: Graphical game (G,M) in which G is a tree.
Output: A Nash equilibrium for (G,M).

(i) Compute a depth-first ordering of the vertices of G.
(ii) (Downstream Pass) For each vertex V in depth-first order:

(a) Let vertex W be the child of V (or nil if V is the root).
(b) For all w, v ∈ [0, 1], initialize T (w, v) to be 0 and the witness list for

T (w, v) to be empty.
(c) If V is a leaf (base case):

1. For all w, v ∈ [0, 1], set T (w, v) to be 1 if and only if V = v is a best
response to W = w (as determined by the local game matrix MV ).

(d) Else (inductive case, V is an internal vertex):

1. Let �U = (U1, . . . , Uk) be the parents of V ; let T (v, ui) be the table
passed from Ui to V on the downstream pass.

2. For all w, v ∈ [0, 1] and for all joint mixed strategies �u = (u1, . . . , uk)
for �U : If V = v is a best response to W = w, �U = �u (as determined
by the local game matrix MV ), and T (v, ui) = 1 for i = 1, · · · , k, set
T (w, v) to be 1 and add �u to the witness list for T (w, v).

(e) Pass the table T (w, v) from V to W .

(iii) (Upstream Pass) For each vertex V in reverse depth-first ordering (starting at
the root):

(a) Let �U = (U1, . . . , Uk) be the parents of V (or the empty list if V is a leaf);
let W be the child of V (or nil if V is the root), and (w, v) the values passed
from W to V on the upstream pass.

(b) Label V with the value v.
(c) (Non-deterministically) Choose any witness �u to T (w, v) = 1.
(d) For i = 1, . . . , k, pass (v, ui) from V to Ui .

Figure 7.1. Algorithm TreeNash for computing NE of tree graphical games.

assume a finite representation, and shortly discuss how this assumption can be met in two
different ways.

The initialization of the downstream pass of the algorithm begins at the leaves of the tree,
where the computation of the tables is straightforward. If U is a leaf and V its only child, then
T (v, u) = 1 if and only if U = u is a best response to V = v (Step (ii) (c) of Figure 7.1).

Assuming for induction that each Ui sends the table T (v, ui) to V , we now describe how
V can compute the table T (w, v) to pass to its child W (Step (ii) (d)2 of Figure 7.1). For
each pair (w, v), T (w, v) is set to 1 if and only if there exists a vector of mixed strategies
�u = (u1, . . . , uk) (called a witness) for the parents �U = (U1, . . . , Uk) of V such that

(i) T (v, ui) = 1 for all 1 ≤ i ≤ k; and

(ii) V = v is a best response to �U = �u,W = w.
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Note that there may be more than one witness for T (w, v) = 1. In addition to computing the
value T (w, v) on the downstream pass of the algorithm, V will also keep a list of the witnesses
�u for each pair (w, v) for which T (w, v) = 1 (Step ii(d)2 of Figure 7.1). These witness lists
will be used on the upstream pass.

To see that the semantics of the tables are preserved by the computation just described,
suppose that this computation yields T (w, v) = 1 for some pair (w, v), and let �u be a witness for
T (w, v) = 1. The fact that T (v, ui) = 1 for all i (condition (7.3) above) ensures by induction
that if V plays v, there are upstream NE in which each Ui = ui . Furthermore, v is a best response
to the local settings U1 = u1, . . . , Uk = uk,W = w′ (condition (7.3) above). Therefore, we are
in equilibrium upstream from V . On the other hand, if T (w, v) = 0, it is easy to see there can
be no equilibrium in which W = w,V = v. Note that the existence of an NE guarantees that
T (w, v) = 1 for at least one (w, v) pair.

The downstream pass of the algorithm terminates at the root Z, which receives tables T (z, yi)
from each parent Yi . Z simply computes a one-dimensional table T (z) such that T (z) = 1 if and
only if for some witness �y, T (z, yi) = 1 for all i, and z is a best response to �y.

The upstream pass begins by Z choosing any z for which T (z) = 1, choosing any witness
(y1, . . . , yk) to T (z) = 1, and then passing both z and yi to each parent Yi . The interpretation is
that Z will play z, and is “instructing” Yi to play yi . Inductively, if a vertex V receives a value
v to play from its downstream neighbor W , and the value w that W will play, then it must be
that T (w, v) = 1. So V chooses a witness �u to T (w, v) = 1, and passes each parent Ui their
value ui as well as v (Step (iii) of Figure 7.1). Note that the semantics of T (w, v) = 1 ensure
that V = v is a best response to �U = �u,W = w.

We have left the choices of each witness in the upstream pass unspecified or nondeterministic
to emphasize that the tables and witness lists computed represent all the NE. The upstream pass
can be specialized to find a number of specific NE of interest, including player optimum (NE
maximizing expected reward to a chosen player), social optimum (NE maximizing total expected
reward, summed over all players), and welfare optimum (NE maximizing expected reward to
the player whose expected reward is smallest).

Modulo the important details regarding the representation of the tables T (w, v), which we
discuss next, the arguments provided above establish the following formal result.

Theorem 7.3 Let (G,M) be any graphical game in which G is a tree. Algorithm
TreeNash computes a Nash equilibrium for (G,M). Furthermore, the tables and witness
lists computed by the algorithm represent all Nash equilibria of (G,M).

7.3.1 An Approximation Algorithm

In this section, we sketch one instantiation of the missing details of algorithm TreeNash
that yields a polynomial-time algorithm for computing approximate NE for the tree game
(G,M). The approximation can be made arbitrarily precise with greater computational
effort.

Rather than playing an arbitrary mixed strategy in [0, 1], each player will be constrained
to play a discretized mixed strategy that is a multiple of τ , for some τ to be determined by
the analysis. Thus, player i plays qi ∈ {0, τ, 2τ, . . . , 1}, and the joint strategy �q falls on the
discretized τ -grid {0, τ, 2τ, . . . , 1}n. In algorithm TreeNash, this will allow each table T (v, u)
(passed from vertex U to child V ) to be represented in discretized form as well: only the 1/τ 2

entries corresponding to the possible τ -grid choices for U and V are stored, and all computations
of best responses in the algorithm are modified to be approximate best responses.

To quantify how the choice of τ will influence the quality of the approximate equilibria found
(which in turn will determine the computational efficiency of the approximation algorithm), we



P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 May 22, 2007 16:24

computing nash equilibria in tree graphical games 167

appeal to the following lemma. We note that this result holds for arbitrary graphical games, not
only trees.

Lemma 7.4 Let G be a graph of maximum degree d , and let (G,M) be a graphical
game. Let �p be a Nash equilibrium for (G,M), and let �q be the nearest (in L1 metric)
mixed strategy on the τ -grid. Then �q is a dτ -NE for (G,M).

The proof of Lemma 7.4, which we omit, follows from a bound on the L1 distance for product
distributions along with an argument that the strategic properties of the NE are preserved by the
approximation. We note that the original paper (Kearns et al., 2001) used a considerably worse
L1 bound that was exponential in d . However, the algorithm remains exponential in d simply
due to the representational complexity of the local product distributions. The important point is
that τ needs to depend only on the local neighborhood size d , not the total number of players n.

It is now straightforward to describe ApproximateTreeNash. This algorithm is identical to
algorithm TreeNash with the following exceptions:

� The algorithm now takes an additional input ε.
� For any vertex U with child V , the table T (u, v) will contain only entries for u and v

multiples of τ .
� All computations of best responses in algorithm TreeNash become computations of

ε-best responses in algorithm ApproximateTreeNash.

For the running time analysis, we simply note that each table has (1/τ )2 entries, and that the
computation is dominated by the downstream calculation of the tables (Step (ii)(d) of algorithm
TreeNash). This requires ranging over all table entries for all k parents, a computation of
order ((1/τ )2)k . By appropriately choosing the value of τ in order to obtain the required ε-
approximations, we obtain the following theorem.

Theorem 7.5 Let (G,M) be a graphical game in which G is a tree with n vertices,
and in which every vertex has at most d parents. For any ε > 0, let τ = O(ε/d). Then
ApproximateTreeNash computes an ε-Nash equilibrium for (G,M). Furthermore, for
every exact Nash equilibrium, the tables and witness lists computed by the algorithm
contain an ε-Nash equilibrium that is within τ of this exact equilibrium (in L1 norm). The
running time of the algorithm is polynomial in 1/ε, n and 2d , which is polynomial in the
size of the representation (G,M).

7.3.2 An Exact Algorithm

By approximating the continuously indexed tables T (u, v) in discretized form, the algorithm
developed in Section 7.3.1 side-stepped not only the exact computation but also a fundamental
question about the T (u, v) – namely, do the regions {(u, v) ∈ [0, 1]2 : T (u, v) = 1} have any
interesting geometric structure? It turns out the answer in the case of trees is affirmative, and
can be used in developing an alternate instantiation of the general TreeNash algorithm of
Section 7.3 – one that yields an algorithm for computing (all) exact equilibria, but in time that
is exponential in the number of players n rather than only the degree d .

Although the details are beyond our scope, it is possible to show via an inductive argument
(where again the leaves of G serve as the base cases) that in any tree graphical game, for
any of the tables T (u, v) defined by TreeNash, the region {(u, v) ∈ [0, 1]2 : T (u, v) = 1} can
be represented by a finite union of (axis-aligned) rectangular regions in [0, 1]2 (i.e., regions
that are defined as products of closed intervals [a, a′] × [b, b′] for some 0 ≤ a ≤ a′ ≤ 1,
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0 ≤ b ≤ b′ ≤ 1). The induction shows that the number of such regions multiplies at each level
as we progress downstream toward the root, yielding a worst-case bound on the number of
rectangular regions that is exponential in n.

This simple (if exponential in n) geometric representation of the tables T (u, v) permits
the development of an alternative algorithm ExactTreeNash, which is simply the abstract
algorithm TreeNash with the tables represented by unions of rectangles (and with associated
implementations of the necessary upstream and downstream computations).

Theorem 7.6 There is an algorithm ExactTreeNash that computes an exact Nash
equilibrium for any tree graphical game (G,M). Furthermore, the tables computed by the
algorithm represent all Nash equilibria of (G,M). The algorithm runs in time exponential
in the number of vertices of G.

7.3.3 Extensions: NashProp and Beyond

At this point it is of course natural to ask what can be done when the underlying graph of a
graphical game is not a tree. Remaining close to the development so far, it is possible to give an
heuristic generalization of algorithm ApproximateTreeNash to the setting in which the graph
G is arbitrary. This algorithm is known as NashProp, which we will now briefly sketch. By
heuristic we mean that the algorithm is well-defined and will terminate on any graphical game;
but unlike ApproximateTreeNash, the running time is not guaranteed to be polynomial in the
size of the input graphical game. (In general, we should expect provably efficient algorithms
for equilibrium computation to require some topological restriction, since allowing G to be the
complete graph reduces to the classical normal form representation.)

Recall that the main computation at vertex V in ApproximateTreeNash was the compu-
tation of the downstream table T (w, v) from the upstream tables T (v, ui). This assumed an
underlying orientation to the tree that allowed V to know which of its neighbors were in the
direction of the leaves (identified as the Ui) and which single neighbor was in the direction
of the root (identified as W ). The easiest way to describe NashProp informally is to say that
each V does this computation once for each of its neighbors, each time “pretending” that
this neighbor plays the role of the downstream neighbor W in ApproximateTreeNash, and
the remaining neighbors play the roles of the upstream Ui . If all discretized table entries are
initialized to the value of 1,1 it easy to show that the only possible effect of these local compu-
tations is to change table values from 1 to 0, which in effect refutes conditional NE assertions
when they violate best-response conditions. In other words, the tables will all converge (and
in fact, in time polynomial in the size of the graphical game) – however, unlike in Approxi-
mateTreeNash, the tables do not represent the set of all approximate NE, but a superset. This
necessitates a second phase to the algorithm that employs more traditional search heuristics
in order to find a true equilibrium, and it is this second phase that may be computationally
expensive.

One of the merits of NashProp is that the first (table computation) phase can be viewed
as an instance of constraint satisfaction programming (CSP), which in turn plays an important
role in many algorithms for probabilistic inference in Bayesian networks, Markov networks,
and related models. The NashProp algorithm was also inspired by, and bears a fair similarity
to, the well-known belief propagation algorithm for Bayesian network inference. We shall see
other connections to these models arise in our examination of correlated equilibria in graphical
games, which we turn to now.

1 Note that in the description of TreeNash in Figure 7.1 it was more convenient to initialize the table values to 0,
but the change is cosmetic.
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7.4 Graphical Games and Correlated Equilibria

Our second case study is an examination of graphical games and correlated equilibrium. As has
already been noted, if we are fortunate enough to be able to accurately represent a multiplayer
game we are interested in as a graphical game with small degree, the representational benefits
purely in terms of parameter reduction may be significant. But this is still a rather cosmetic kind
of parsimony. We shall see a much deeper variety in the context of correlated equilibrium.

The first issue that arises in this investigation is the problem of representing correlated
equilibria. Recall that NE may be viewed as a special case of CE in which the distribution
P (�a) is a product distribution. Thus, however computationally difficult it may be to find an NE,
at least the object itself can be succinctly represented – it is simply a mixed strategy profile
�p, whose length equals the number of players n. Despite their aforementioned advantages, in
moving to CE we open a representational Pandora’s Box, since even in very simple graphical
games there may be correlated equilibria of essentially arbitrary complexity. For example, the
CE of a game always include all mixture distributions of NE, so any game with an exponential
number of NE can yield extremely complex CE. Such games can be easily constructed with
very simple graphs. More generally, whereas by definition in an NE all players are independent,
in a CE there may be arbitrary high-order correlations.

In order to maintain the succinctness of graphical games, some way of addressing this
distributional complexity is required. For this we turn to another, older graph-theoretic formal-
ism – namely, undirected graphical models for probabilistic inference, also known as Markov
networks (Lauritzen, 1996). We will establish a natural and powerful relationship between a
graphical game and a certain associated Markov network. Like the graphical game, the asso-
ciated Markov network is a graph over the players. While the interactions between vertices in
the graphical game are entirely strategic and given by local payoff matrices, the interactions in
the associated Markov network are entirely probabilistic and given by local potential functions.
The graph of the associated Markov network retains the parsimony of the graphical game.

We will show that the associated Markov network is sufficient for representing any correlated
equilibria of the graphical game (up to expected payoff equivalence). In other words, the fact that
a multiplayer game can be succinctly represented by a graph implies that its entire space of CE
outcomes can be represented graphically with comparable succinctness. This result establishes
a natural relationship between graphical games and modern probabilistic modeling. We will also
briefly discuss the computational benefits of this relationship.

7.4.1 Expected Payoff and Local Neighborhood Equivalence

Our effort to succinctly model the CE of a graphical game consists of two steps. In the first
step, we argue that it is not necessary to model all the correlations that might arise in a CE,
but only those required to represent all of the possible (expected payoff) outcomes for the
players. In the second step, we show that the remaining correlations can be represented by
a Markov network. For these two steps we respectively require two equivalence notions for
distributions – expected payoff equivalence and local neighborhood equivalence. We shall show
that there is a natural subclass of the set of all CE of a graphical game, based on expected
payoff equivalence, whose representation size is linearly related to the representation size of the
graphical game.

Definition 7.7 Two distributions P and Q over joint actions �a are expected payoff
equivalent, denoted P ≡EP Q, if P and Q yield the same expected payoff vector: for each
i, E�a∼P [Mi(�a)] = E�a∼Q[Mi(�a)].
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Note that merely finding distributions giving the same payoffs as the CE is not especially
interesting unless those distributions are themselves CE – we want to preserve the strategic
properties of the CE, not only its payoffs. Our primary tool for accomplishing this goal will be
the notion of local neighborhood equivalence, or the preservation of local marginal distributions.
Below we establish that local neighborhood equivalence both implies payoff equivalence and
preserves the CE property. In the following subsection, we describe how to represent this natural
subclass in a certain Markov network whose structure is closely related to the structure of the
graphical game.

Expected payoff equivalence of two distributions is, in general, dependent upon the reward
matrices of a graphical game. Let us consider the following (more stringent) equivalence notion,
which is based only on the graph G of a game.

Definition 7.8 For a graph G, two distributions P and Q over joint actions �a are local
neighborhood equivalent with respect to G, denoted P ≡LN Q, if for all players i, and for
all settings �a i of N (i), P (�a i) = Q(�a i).

In other words, the marginal distributions over all local neighborhoods defined by G are identical.
Since the graph is always clear from context, we shall just write P ≡LN Q. The following lemma
establishes that local neighborhood equivalence is indeed a stronger notion of equivalence than
expected payoff.

Lemma 7.9 For all graphs G, for all joint distributions P and Q on actions, and for all
graphical games with graph G, if P ≡LN Q then P ≡EP Q. Furthermore, for any graph G

and joint distributions P and Q, there exist payoff matrices M such that for the graphical
game (G,M), if P �≡LN Q then P �≡EP Q.

proof The first statement follows from the observation that the expected payoff to
player i depends only on the marginal distribution of actions in N (i). To prove the
second statement, if P �≡LN Q, then there must exist a player i and a joint action �a i

for its local neighborhood which has a different probability under P and Q. Simply set
Mi(�a i) = 1 and Mi = 0 elsewhere. Then i has a different payoff under P and Q, and so
P �≡EP Q.

Thus local neighborhood equivalence implies payoff equivalence, but the converse is not true
in general (although there exists some payoff matrices where the converse is correct). We now
establish that local neighborhood equivalence also preserves CE. It is important to note that this
result does not hold for expected payoff equivalence.

Lemma 7.10 For any graphical game (G,M), if P is a CE for (G,M) and P ≡LN Q

then Q is a CE for (G,M).

proof The lemma follows by noting that the CE expectation equations are depen-
dent only upon the marginal distributions of local neighborhoods, which are preserved
in Q.

While explicitly representing all CE is infeasible even in simple graphical games, we next
show that we can concisely represent, in a single model, all CE up to local neighborhood (and
therefore payoff) equivalence. The amount of space required is comparable to that required to
represent the graphical game itself, and allows us to explore or enumerate the different outcomes
achievable in the space of CE.



P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 May 22, 2007 16:24

graphical games and correlated equilibria 171

7.4.2 Correlated Equilibria and Markov Nets

In the same way that graphical games provide a concise language for expressing local interaction
in game theory, Markov networks exploit undirected graphs for expressing local interaction in
probability distributions. It turns out that (a special case of) Markov networks are a natural
and powerful language for expressing the CE of a graphical game, and that there is a close
relationship between the graph of the game and its associated Markov network graph. We begin
with the necessary definitions.

Definition 7.11 A local Markov network is a pair M ≡ (G,�), where
� G is an undirected graph on vertices {1, . . . , n};
� � is a set of potential functions, one for each local neighborhood N (i), mapping

binary assignments of values of N (i) to the range [0,∞) :

� ≡ {ψi : i = 1, . . . , n; ψi : {�a i} → [0,∞)},

where {�a i} is the set of all 2|N(i)| settings to N (i).

A local Markov network M defines a probability distribution PM as follows. For any binary
assignment �a to the vertices, we define

PM (�a) ≡ 1

Z

(
n∏

i=1

ψi(�a i)

)
,

where Z = ∑
�a
∏n

i=1 ψi(�a i) > 0 is the normalization factor.
Note that any joint distribution can be represented as a local Markov network on a sufficiently

dense graph: if we let G be the complete graph then we simply have a single potential function
over the entire joint action space �a. However, if d is the size of the maximal neighborhood in G,
then the representation size of a distribution in this network is O(n2d ), a considerable savings
over a tabular representation if d � n.

Local Markov networks are a special case of Markov networks, a well-studied probabilistic
model in AI and statistics (Lauritzen, 1996; Pearl, 1988). A Markov network is typically defined
with potential functions ranging over settings of maximal cliques in the graph, rather than local
neighborhoods. Another approach we could have taken is to transform the graph G to a graph G′,
which forms cliques of the local neighborhoods N (i), and then used standard Markov networks
over G′ as opposed to local Markov networks over G. However, this can sometimes result in an
unnecessary exponential blow-up of the size of the model when the resulting maximal cliques
are much larger than the original neighborhoods. For our purposes, it is sufficient to define
the potential functions over just local neighborhoods (as in our definition) rather than maximal
cliques in G′, which avoids this potential blow-up.

The following technical lemma establishes that a local Markov network always suffices to
represent a distribution up to local neighborhood equivalence.

Lemma 7.12 For all graphs G, and for all joint distributions P over joint actions, there
exists a distribution Q that is representable as a local Markov network with graph G such
that Q ≡LN P with respect to G.

proof The objective is to find a single distribution Q that is consistent with the
players’ local neighborhood marginals under P and is also a Markov network with graph
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G. For this we shall sketch the application of methods from probabilistic inference and
maximum entropy models to show that the maximum entropy distribution Q∗, subject to
P ≡LN Q∗, is a local Markov network. The sketch below follows the classical treatment
of this topic (Berger et al., 1996; Lauritzen and Spiegelhalter, 1998; Dawid and Lauritzen,
1993) and is included for completeness.

Formally, we wish to show that the solution to the following constrained maximum
entropy problem is representable in G:

Q∗ = argmaxQH (Q) ≡ argmaxQ

∑
�a

Q(�a) log(1/Q(�a))

subject to

(i) Q(�a i) = P (�a i), for all i, �a i .

(ii) Q is a proper probability distribution.

Note first that this problem always has a unique answer since H (Q) is strictly concave and
all constraints are linear. In addition, the feasible set is nonempty, as it contains P itself.

To get the form of Q∗, we solve the optimization problem by introducing Lagrange
multipliers λi,�a i (for all i and �a i) for the neighborhood marginal constraints (Condi-
tion 7.4.2 above); let us call �λ the resulting vector of multipliers. We also introduce a
single Lagrange multiplier β for the normalization constraint (Condition (ii) above). The
optimization then becomes

Q∗ = argmaxQ,�λ,β{L(Q, �λ, β)}

≡ argmaxQ,�λ,β

⎧⎨
⎩H (Q) +

∑
i∈[n]

∑
�a i

λi,�a i (Q(�a i) − P (�a i))

+ β

(∑
�a

Q(�a) − 1

)}
,

where Q(�a) is constrained to be positive. Here, L is the Lagrangian function.
A necessary condition for Q∗ is that ∂L/∂Q(�a)|Q=Q∗ = 0, for all �a such that P (�a) > 0.

After taking derivatives and some algebra, this condition implies, for all �a,

Q∗
�λ(�a) = (1/Z�λ)

n∏
v=1

I [P (�a i) �= 0] exp(λi,�a i ),

where I [P (�a i) �= 0] is an indicator function that evaluates to 1 iff P (�a i) �= 0. We use the
subscript �λ on Q∗

�λ and Z�λ to explicitly denote that they are parameterized by the Lagrange
multipliers.

It is important to note at this point that regardless of the value of the Lagrange multipli-
ers, each λi,�a i is only a function of the �a i . Let the dual function F (�λ) ≡ L(Q∗

�λ(�a), �λ, 0), and

let �λ∗ maximize this function. Note that those λi,�a i that correspond to P (�a i) = 0 are irrele-
vant parameters since F (�λ) is independent of them. So for all i and �a i such that P (�a i) = 0,
we set λ∗

i,�a i = 0. For all i, �a i , we define the functions ψ∗
i (�a i) ≡ I [P (�a i) �= 0] exp(λ∗

i,�a i ).
Hence, we can express the maximum entropy distribution Q∗ as, for all �a,

Q∗
�λ∗ (�a) = (1/Z�λ∗ )

n∏
i=1

ψ∗
i (�a i),

which completes the proof.
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The main result of this section follows, and shows that we can represent any correlated
equilibria of a graphical game (G,M), up to payoff equivalence, with a local Markov network
(G,�). The proof follows from Lemmas 7.9, 7.10, and 7.12.

Theorem 7.13 For all graphical games (G,M), and for any correlated equilibrium P

of (G,M), there exists a distribution Q such that

(i) Q is also correlated equilibrium for (G,M);

(ii) Q gives all players the same expected payoffs as P : Q ≡EP P ; and

(iii) Q can be represented as a local Markov network with graph G.

Note that the representation size for any local Markov network with graph G is linear in
the representation size of the graphical game, and thus we can represent the CE of the game
parsimoniously.

Remarks. Aside from simple parsimony, Theorem 7.13 allows us to import a rich set of
tools from the probabilistic inference literature (Pearl, 1988; Lauritzen, 1996). For example, it
is well known that for any vertices i and j and vertex set S in a (local) Markov network, i and
j are conditionally independent given values for the variables in S if and only if S separates
i and j – that is, the removal of S from G leaves i and j in disconnected components. This,
together with Theorem 7.13, immediately implies a large number of conditional independences
that must hold in any CE outcome. Also, as mentioned in the Introduction, Theorem 7.13 can be
interpreted as strongly limiting the nature of the public randomization needed to implement any
given CE outcome – namely, only “local” sources of random bits (as defined by G) are required.

7.4.3 Algorithms for Correlated Equilibria in Graphical Games

Having established in Theorem 7.13 that a concise graphical game yields an equally concise
representation of its CE up to payoff equivalence, we now turn our attention to algorithms for
computing CE. In the spirit of our results thus far, we are interested in algorithms that can
efficiently exploit the compactness of graphical games.

It is well known that it is possible to compute CE via linear programming in time polynomial
in the standard noncompact normal form. In this approach, one variable is introduced for every
possible joint action probability P (�a), and the constraints enforce both the CE condition and
the fact that the variables must define a probability distribution. It is not hard to verify that
the constraints are all linear and there are O(2n) variables and constraints in the binary action
case. By introducing any linear optimization function, one can get an algorithm based on linear
programming for computing a single exact CE that runs in time polynomial in the size of the
normal-form representation of the game (i.e., polynomial in 2n).

For graphical games this solution is clearly unsatisfying, since it may require time exponential
in the size of the graphical game. What is needed is a more concise way to express the CE and
distributional constraints – ideally, linearly in the size of the graphical game representation. As
we shall now sketch, this is indeed possible for tree graphical games. The basic idea is to express
both the CE and distributional constraints entirely in terms of the local marginals, rather than
the global probabilities of joint actions.

For the case in which the game graph is a tree, it suffices to introduce linear distributional
constraints over only the local marginals, along with consistency constraints on the intersections
of local marginals. We thus define the following three categories of local constraints defining a
linear program:

Variables: For every player i and assignment �a i , there is a variable P (�a i).
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LP Constraints:

(i) CE Constraints: For all players i and actions a, a′,∑
�a i :ai

i =a

P (�a i)Mi(�a i) ≥
∑

�a i :ai
i =a

P (�a i)Mi([�a i[i : a′]).

(ii) Neighborhood Marginal Constraints: For all players i,

∀�a i : P (�a i) ≥ 0;
∑
�a i

P (�a i) = 1.

(iii) Intersection Consistency Constraints: For all players i and j , and for any assignment
�y ij to the intersection neighborhood N (i) ∩ N (j ),

P (�a ij ) ≡
∑

�a i :�a ij =�y ij

P (�a i)

=
∑

�a j :�a ij =�y ij

Pj (�a j )

≡ Pj (�a ij ).

Note that if d is the size of the largest neighborhood, this system involves O(n2d ) variables
and O(n2d ) linear inequalities, which is linear in the representation size of the original graphical
game, as desired. This leads to the following algorithmic result.

Theorem 7.14 For all tree graphical games (G,M), any solution to the linear con-
straints given above is a correlated equilibrium for (G,M).

Thus, for instance, we may choose any linear objective function F ({P (�a i)}) and apply
standard efficient linear programming algorithms in order to find a CE maximizing F in time
polynomial in the size of the graphical game. One natural choice for F is the social welfare, or
the total expected payoff over all players:

F ({Pi(�a i)}) =
∑

i

∑
�a i

Pi(�a i)Mi(�a i).

7.5 Graphical Exchange Economies

In the same way that the graph of a graphical game represents restrictions on which pairs
of players directly influence each other’s payoffs, it is natural to examine similar restrictions
in classical exchange economies and other market models. In such models, there is typically
some number k of goods available for trade, and n players or consumers in the economy. Each
consumer has a utility function mapping bundles or amounts of the k goods to a subjective
utility. (Settings in which the utility functions obey certain constraints, such as concavity or
linearity, are often assumed.) Each consumer also has an endowment – a particular bundle of
goods that they are free to trade. It is assumed that if prices �p ∈ (�+)k are posted for the k

goods, each consumer will attempt to sell their initial endowment at the posted prices, and
then attempt to buy from other consumers that bundle of goods which maximizes their utility,
subject to the amount of cash received in the sale of their endowment. A celebrated result of
Arrow and Debreu (1954) established very general conditions under which an equilibrium price
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vector exists – prices at which all consumers are able to sell all of their intial endowments (no
excess supply) and simultaneously able to purchase their utility-maximizing bundles (no excess
demand). The result depends crucially on the fact that the model permits exchange of goods
between any pair of consumers in the economy.

A natural graph- or network-based variant of such models again introduces an undirected
graph G over the n consumers, with the interpretation that trade is permitted between consumers
i and j if and only if the edge (i, j ) is present in G.2 The classical equilibrium existence result
can be recovered – but only if we now allow for the possibility of local prices, that is, prices for
each good–consumer pair. In other words, at equilibrium in such a graphical economy, the price
per unit of wheat may differ when purchased from different consumers, due to the effects of
network topology. In this model, rationality means that consumers must always purchase goods
from the neighboring consumers offering the lowest prices.

As with graphical games, there are at least two compelling lines of research to pursue in
such models. The first is computational: What graph topologies permit efficient algorithms for
computing price equilibria? The second is structural: What can we say about how network
structure influences properties of the price equilibria, such as the amount of price variation?
Here we briefly summarize results in these two directions.

On the computational side, as with the TreeNash algorithm for computing NE in graphi-
cal games, it is possible to develop a provably correct and efficient algorithm for computing
approximate price equilibria in tree graphical economies with fairly general utility functions.
Like ApproxTreeNash, this algorithm is a two-pass algorithm in which information regarding
conditional price equilibria is exchanged between neighboring nodes, and a discrete approxima-
tion scheme is introduced. It is complementary to other recent algorithms for computing price
equilibria in the classical non-graphical (fully connected) setting under linearity restrictions on
the utility functions (discussed in detail in Chapter 5.

On the structural side, it can be shown that different stochastic models of network formation
can result in radically different price equilibrium properties. For example, consider the simplified
setting in which the graph G is a bipartite graph between two types of parties, buyers and sellers.
Buyers have an endowment of 1 unit of an abstract good called cash, but have utility only for
wheat; sellers have an endowment of 1 unit of wheat but utility only for cash. Thus the only
source of asymmetry in the economy is the structure of G. If G is a random bipartite graph
(i.e., generated via a bipartite generalization of the classical Erdos–Renyi model), then as n

becomes large there will be essentially no price variation at equilibrium (as measured, for
instance, by the ratio of the highest to lowest prices for wheat over the entire graph). Thus
random graphs behave “almost” like the fully connected case. In contrast, if G is generated
according to a stochastic process such as preferential attachment (Barabasi and Albert, 1999),
the price variation at equilibrium is unbounded, growing as a root of the economy size n.

7.6 Open Problems and Future Research

There are a number of intriguing open areas for further research in the broad topics discussed
in this chapter, including the following.

� Efficient Algorithms for Exact Nash Computation in Trees. Perhaps the most notable
technical problem left unresolved by the developments described here is that of efficiently
(i.e., in time polynomial in the graphical game description) computing exact Nash

2 In the models considered to date, resale of purchased goods is not permitted – rather, we have “one-shot”
economies.
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equilibria for trees. This class falls between the positive results of Elkind et al. (2006)
for unions of paths and cycles, and the recent PPAD-completeness results for bounded
treewidth graphs (see Chapter 2).

� Strategy-Proof Algorithms for Distributed Nash Computation. The NashProp al-
gorithm described here and its variants are clearly not strategy-proof, in the sense that
players may have incentive to deviate from the algorithm if they are to actually realize
the Nash equilibrium they collectively compute. It would be interesting to explore the
possibilities for strategy-proof algorithms for graphical games.

� Cooperative, Behavioral, and Other Equilibrium Notions. Here we have described al-
gorithms and structural results for graphical games under noncooperative equilibrium no-
tions. It would be interesting to develop analogous theory for cooperative equilibria, such
as how the coalitions that might form depend on graph topology. The recent explosion of
work in behavioral game theory and economics (Camerer, 2003) is also ripe for integra-
tion with graphical games (and many other aspects of algorithmic game theory as well).
For instance, one could investigate how the behavioral phenomenon of inequality aver-
sion might alter the relationship between network structure and equilibrium outcomes.

7.7 Bibliographic Notes

Graphical games were introduced by Kearns et al. (2001) (abbreviated KLS henceforth). Related
models were introduced at approximately the same time by Koller and Milch (2003) and La
Mura (2000). Graph-theoretic or network models of interaction have a long history in economics
and game theory, as surveyed by Jackson (2005); these models tend to be less general than
graphical games, and there is naturally less explicit emphasis on computational issues.

The original KLS paper contained the algorithm and analyses of the tree-based algorithms
examined in Section 7.1. The NashProp generalization of these algorithms is due to Ortiz
and Kearns (2003). A follow-up to the KLS paper by the same authors (Littman et al., 2002)
erroneously claimed an efficient algorithm for computing an exact NE in tree graphical games
(recall that the KLS paper gave an efficient algorithm only for approximate NE in trees). The
error was recently discovered and discussed by Elkind et al. (2006), who proved that in fact no
two-pass algorithm can compute an exact equilibrium. The problem of efficiently computing an
exact equilibrium in time polynomial in the size of a tree graphical game remains open.

The study of correlated equilibria in graphical games given in Section 7.4 is adapted from
Kakade et al. (2003). Roughgarden and Papadimitriou (2005) and Papadimitriou (2005) gave
more general algorithms for computing correlated equilibria in graphical games and other
compact representations. It is interesting to note that while the Kakade et al. results show how
all correlated equilibria (up to payoff equivalance) can be succinctly represented as a Markov
networks, Papadimitriou’s algorithm (2005) computes correlated equilibria that are mixtures of
Nash equilibria and thus can be efficiently sampled. Intractability results for certain correlated
equilibrium computations are given by Gilboa and Zemel (1989), as well as by Roughgarden
and Papadimitriou (2005).

Other papers providing algorithms for equilibrium computation in graphical games include
those of Vickrey and Koller (2002), who examine hill-climbing algorithms for approximate NE,
as well as constraint satisfaction generalizations of NashProp; and Daskalakis and Papadim-
itriou (2006), who show close connections between the computation of pure NE and probabilistic
inference on the Markov network models discussed in the context of correlated equilibria in
Section 7.4.
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Graphical games have also played a central role in striking recent developments establish-
ing the intractability of NE computations in general multiplayer games, including the work
by Daskalakis et al. (2006) and Goldberg and Papadimitriou (2006); these developments are
discussed in detail in Chapter 29. Daskalakis and Papadimitriou also proved intractability results
for computing NE in graphical games on highly regular graphs (Daskalakis and Papadimitriou,
2005), while Schoenebeck and Vadhan (2006) systematically characterize the complexity of a
variety of equilibrium-related computations, including NE verification and existence of pure
equilibria.

The formulation of the graphical exchange economy model summarized in Section 7.5, as
well as the price equilibrium proof and algorithms mentioned, is due to Kakade et al. (2004).
The result on price variation in different stochastic graph generation models is due to Kakade
et al. (2005).

Recently a graph-theoretic generalization of classical evolutionary game theory has been
introduced, and it has been shown that random graphs generally preserve the classical evolu-
tionary stable strategies (Kearns and Suri, 2006); these results are discussed in some detail in
Chapter 29.
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