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Abstract— Micro Aerial Vehicles have the potential to assist
humans in real life tasks involving applications such as smart
homes, search and rescue, and architecture construction. To
enhance autonomous navigation capabilities these vehicles need
to be able to create dense 3D maps of the environment, while
concurrently estimating their own motion. In this paper, we
are particularly interested in small vehicles that can navigate
cluttered indoor environments. We address the problem of
visual inertial state estimation, control and 3D mapping on
platforms with Size, Weight, And Power (SWAP) constraints.
The proposed approach is validated through experimental
results on a 250 g, 22 cm diameter quadrotor equipped only
with a stereo camera and an IMU with a computationally-
limited CPU showing the ability to autonomously navigate,
while concurrently creating a 3D map of the environment.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) equipped with onboard

sensors are ideal platforms to navigate in complex and con-

fined environments for solving tasks such as exploration [1],

inspection [2], mapping [3], interaction with the environ-

ment [4], [5], and search and rescue [6]. To guarantee fully

autonomous navigation, these vehicles need to be able to

navigate in 3D environment using onboard sensors such as

cameras and IMUs (Inertial Measurement Units consisting

of gyroscope and accelerometer) concurrently creating maps

of the environment.

Recent research on MAVs has yielded a number of sig-

nificant results in Simultaneous Localization and Mapping

(SLAM) enabling navigation for MAVs. Results have been

obtained using monocular cameras and IMUs [7]–[9], and

stereo camera configurations [1], [10]. The combination of

camera and IMU for localization purposes gained research

interest due to their low cost and small form factor. More-

over, they represent two complementary sensors. Cameras are

generally slow compared to the IMU, but image processing

techniques are able to provide more accurate information.

The IMU is fast (100 to 500 Hz), but due to noise and

unbounded accumulation of integration errors, the vehicle’s

pose can be only estimated satisfactorily for no more than a

few seconds. However the combination of camera and IMU

can give odometry that is both accurate and fast enough for

control.
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Fig. 1. A 22 cm, 250 g quadrotor with a forward-facing stereo camera pair.

Approaches for visual odometry are usually categorized

into (a) feature-based or indirect methods [11], [12] and

(b) photometric or direct methods [13]–[16]. Feature based

methods extract corners and track them over multiple frames

whereas, photometric methods directly use the intensity

values of the image pixels. There are also methods that

combine direct and indirect methods [17], [18], which make

use of both the reprojection and intensity errors. Feature-

based approaches for visual odometry have proved to work

robustly in well textured areas, but direct methods are more

robust in sparsely textured conditions [14].

To achieve fully autonomous navigation, we need visual

odometry for state estimation, control for autonomous flight,

mapping for operation in unknown environments and finally

motion planning. When dense maps are required, we believe

that direct methods are a better choice. In feature-based

methods, there is a density limit of the selected feature points

beyond which finding correspondences becomes computa-

tionally inefficient and algorithmically redundant. Feature

extraction and the matching process restricts the feature

points to be sparse, so mapping needs to be done separately,

which results in an inefficient use of computational resources.

In addition, the quality of the map depends only on the

quality of dense stereo matching. There are existing works

comparing different types of matching algorithms. Block

matching algorithms are fast but the generated disparity

map is noisy. Semi-global matching balances computational

power and accuracy, but a GPU is required for real-time

applications [19], and is currently infeasible to run on light

weight processors such as ARM CPUs. Direct methods

on the other hand, potentially allow the use of all pixels,

providing a chance to create a denser map alongside tracking

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

978-1-5386-3081-5/18/$31.00 ©2018 IEEE 3904



Fig. 2. Block diagram of our system.

by encoding dense or semi-dense feature points into the

optimization framework [14].

Very few works have addressed the problem of flying

aerial vehicles based on direct methods and concurrently

creating a semi-dense map of the surrounding environment.

In [20], the estimation is done online but mapping is carried

out in a post processing step on collected data, whereas

in [21], this problem has been addressed for large scale

platforms using powerful computational units, and eventually

GPUs [22] for mapping.

In this work, we are interested in autonomous flight

for a small size quadrotor with SWAP constraints. These

constraints only allow the use of a computationally-limited

CPU and light weight sensors such as cameras and IMU.

This work shows for the first time that direct visual odometry

and semi-dense mapping can run concurrently for closed

loop control on a limited computation board, allowing

autonomous flight for a small size quadrotor. Our main

contributions are:

• We show the use of direct visual odometry to estimate

the motion of the vehicle leveraging a small baseline

stereo camera.

• We show how to fuse this estimate with IMU data in

a nonlinear filter to provide smooth state estimates for

control.

• We analyze the various parameters affecting the system

performance and discuss the trade-off between accuracy

and CPU usage.

II. SYSTEM OVERVIEW

We use a forward-facing stereo camera pair and IMU as

the sensor suite which provides sufficient information for

autonomous navigation. Stereo cameras have the advantage

of avoiding scale drift [23] compared to monocular cam-

eras, and forward-facing cameras give a good viewpoint for

mapping. The stereo camera is used to compute the pose of

the robot which is fused with the IMU to obtain high rate

odometry for control. We leverage a small 8 cm baseline

stereo camera configuration available on a low power and

lightweight quadrotor with limited computational capabili-

ties. Our platform of choice, shown in Fig. 1, is a 22 cm

diameter, 250 g quadrotor using Qualcomm� SnapdragonTM

FlightTM.

Fig. 2 shows a block diagram of our system. The im-

ages captured by the forward-facing stereo camera are first

rectified, then sent to the semi-dense visual odometry node

where pose estimates and 3D point clouds are computed.

Then a UKF node fuses the 15 Hz pose estimates and 500 Hz

IMU data to obtain odometry used for control. All the

computations are done on board in ROS environment, and

3D point clouds and odometry are published as ROS topics,

which can be obtained and stored on the ground station for

visualization purposes.

III. DIRECT VISUAL ODOMETRY AND MAPPING

A. Direct Semi-Dense Visual Odometry

We model the stereo camera pair using a pinhole camera

model [24]. The pair is calibrated to obtain camera intrinsic

parameters, distortion coefficients and relative pose. The

images are undistorted and rectified, and an image pyramid is

created by blurring and sub-sampling to help achieve better

convergence.

We use a keyframe based approach [11] to minimize

drift while reducing the computational cost for the visual

odometry. When a frame is selected to be a keyframe,

new points to track are initialized by selecting high-gradient

pixels and a disparity map is generated. New keyframes are

created if any of the following conditions are met: 1) the

percentage of points visible during tracking falls below 70%;

2) the number of frames processed without creating a new

keyframe exceeds 50; 3) the angle between the current frame

and the last keyframe exceeds 0.2 rad; 4) the translation from

last keyframe exceeds 10% of the average scene depth; 5) if

tracking is lost. We find the optimal relative pose between

the current frame and the latest keyframe by minimizing the

photometric error of the re-projected high-gradient points.

We extract the high-gradient points for tracking only from

the keyframe and calculate the photometric error using the

points visible in the current frame.

In order to compute the photometric error from the re-

projected points, we find the 3D positions by computing

their disparities from the stereo camera. Disparity maps are

generated by a block matcher for each image pyramid level

and the 3D point positions can then be obtained using the

known camera intrinsics. The disparity map requires the use

of both camera images, but we only use the left camera

images during the tracking phase.

1) Optimization problem formulation: For each new

frame our objective is to find the optimum transformation

from the latest keyframe to the current frame which we rep-

resent as T (ξ) ∈ SE (3). Here ξ denotes the 6-dimensional

vector form of se (3), and T (ξ) can be obtained by the

exponential map from se (3) to SE (3) [24]. We use ξ
as the minimal parametrization for solving the non-linear

optimization problem.
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For each 3D feature point pi visible in the current frame,

we define its error term as a function of the relative pose ξ
between the current frame and the last keyframe:

ei(ξ) = I∗(π(pi))− I(π(T (ξ)pi)),

where I∗ and I are pixel intensities in the keyframe and the

current frame respectively, and π is the projection function

from 3D points in camera frame coordinates to image pixel

coordinates.

The cost function for the optimization is defined as the

weighted inner product of the error vector e, containing the

error terms of all the tracked pixels, with the weights give

by the information matrix Ω:

ξ∗ = argmin
ξ

eTΩe.

2) Optimization scheme: To solve this optimization prob-

lem we use an iterative method called the Inverse Composi-

tional Approach (ICA) [25]. The ith row of the n×6 Jacobian

is calculated by linearizing the ith pixel error with respect

to the pose ξ as follows:

ei(ξ ⊕ δ) = I∗(π(T (δ)pi))− I(π(T (ξ)pi)).

The operation ⊕ is defined as T−1(T (ξ) ·T (δ)). Note that

instead of putting the increment δ on the current frame term,

it is put on the keyframe so that the jacobian only depends

on the gradients of the keyframe image. This jacobian is

constant for all frames following that keyframe, enabling us

to compute it only once per keyframe [25]. In each iteration,

the error vector is recomputed with the new pose, and we find

δ by computing the minimum of the linearized cost function:

H = JTΩJ, b = JTΩe, δ = −H−1b,

where J is the n× 6 jacobian matrix. At each iteration, the

pose is updated as follows:

T (ξ)← T (ξ) · T (δ)−1.

Instead of using Gauss-Newton approach described above,

we use Levenberg-Marquardt Algorithm [26] to improve

convergence. We run this optimization in a coarse-to-fine

manner on the image pyramid and use the optimized pose

from coarser level as an initial guess for the next level to

obtain faster and more robust convergence.

B. Semi-dense Mapping

The map is generated by accumulating the triangulated

high gradient pixels from each keyframe once its pose is

optimized. The pixels we use for mapping are the same pixels

we use for tracking, creating a semi-dense map along with

the tracking process. We use a simple block matcher to obtain

disparity maps with low CPU usage. Due to the simplicity

of the block-matching algorithm, the resulting disparity map

is noisy. By selecting only the high-gradient points in the

image, we use the points that are more accurate in the

disparity map and avoid most of the noisy pixels.

Fig. 3. The left image shows the grayscale image, and the right image
shows only the high gradient pixels selected by the system.

IV. VISUAL INERTIAL DATA FUSION

To enable onboard control it is necessary to fuse the

camera pose estimate with the IMU to obtain a reliable high

rate state estimate of the vehicle. We use an UKF to estimate

the full state of the vehicle at 500 Hz as described in [9]. Very

briefly, the state is represented by

xf =
[
xT vT ΦT bTa

]T
,

where x, v are the position and linear velocity of the robot in

the world frame respectively, Φ is the quaternion representing

the orientation of the robot in the world frame and ba are

the accelerometer biases. The prediction step uses the linear

acceleration and angular velocity measurements given by the

IMU as input. The visual odometry pose estimates are then

used to update the state using a linear measurement model.

The measurement model is linear since the visual odometry

output consists of the absolute position and orientation of the

vehicle which is part of the filter’s state.

To compensate for the measurement delay due to image

processing, the filter also keeps a history buffer of past IMU

and state values. When it receives a new measurement from

visual odometry, the filter uses the measurement’s timestamp

to find the corresponding data in the IMU and state buffers,

applies the measurement update and integrates the IMU data

from that time onwards [27].

V. PLATFORM CONTROL

The position controller uses the estimated state from

the UKF as feedback to follow trajectories given as an

output of a high-level trajectory planner. In many previous

works, a backstepping approach is used for UAV control

because the attitude dynamics can be assumed to be faster

than the dynamics governing the position and so linearized

controllers are used for both loops [28]–[30]. However, we

need the system to be capable of large deviations from the

hover configuration to take advantage of the agility that is

inherent with small platforms. Therefore, we use a nonlinear

controller with a larger basin of attraction. The moment

M ∈ R
3 along the three axes of the body-fixed frame and

the thrust τ ∈ R are control inputs of the robot. For control,

we build on the work in [31] and [32] with 500 Hz feedback

control inputs chosen as

τ = (−kxex − kvev +mge3 +mẍd) ·Re3 = f ·Re3,
M = −kReR − kωeω + ω × Jω − J (

ω ×RTRcωc

)
,
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Fig. 4. Average running time of keyframe and non-keyframe with different
resolutions and grid sizes. Note that the keyframe processing time for the
2× 2 and 4× 4 grid sizes with 640× 480 resolution is the same since it
is dominated by the disparity computation time which is the same for both.

with ẍd is the desired acceleration and kx, kv , kR, and

kΩ are positive definite terms. The quantities ex, ev, eR, eΩ
are the position, velocity, orientation and angular rate errors

respectively, as defined in [31], [32]. The subscript C denotes

a commanded value, with RC =
[
b1,C , b2,C , b3,C

]

representing the commanded orientation, and ΩC the com-

manded angular velocity. These are calculated as

b2,des =
[− sinψdes, cosψdes, 0

]T
, b3,C =

f

||f || ,

b1,C =
b2,des × b3,C
||b2,des × b3,C || , b2,C = b3,C × b1,C ,

[ωC ]× = RT
CṘC ,

where ψdes is the desired yaw from the planner. Note that

here we define b2,des based on the yaw instead of b1,des as

done in [32] due to a different Euler angle convention (we

use the ZYX convention instead of ZXY). The thrust and

moments are then converted to motor speeds according to

the characteristics of the vehicle.

VI. EXPERIMENTAL RESULTS

The experimental platform shown in Fig. 1 is equipped

with a Qualcomm� SnapdragonTM FlightTM board. This

board is based on the SnapdragonTM 801 processor and

features Wi-Fi connectivity, downward facing VGA camera

with 160◦ field of view, a VGA stereo camera, and a 4K

camera, all packed in a compact 58mm× 40mm size.

A video of our experimental results can be found at

https://youtu.be/gU11R-CXwSM.

A. Running time analysis

Because of the constraints on the CPU, there is a clear

trade off between accuracy and computational speed. There

are various parameters that can be tuned in our system in

order to balance the trade-off for the best overall system

performance:

1) Frame rate: There are three frame rate modes avail-

able on the cameras onboard the robot, namely 10 Hz,

15 Hz and 30 Hz. Higher frame rate makes tracking

easier because changes are smaller between image

frames so it is more likely that the tracked pixels

fall into the gradient region of convergence, which

helps direct methods. Higher frame rate also has a

positive effect on the UKF estimation fusion process.

Our small platform uses an inexpensive IMU that

gives high frequency but noisy observations. In the

prediction step the UKF keeps accumulating IMU

measurements with high uncertainty and it drifts away

from actual states quickly. If the VO measurement

updates come in too slowly, there can be jumps in

state estimate during the update step. Thus, shorter

time between visual odometry measurements will give

smoother state estimates. However setting frame rates

to 30 Hz overloads the CPU and slows down the whole

system causing the control to be unstable. We find that

a frame rate of 15 Hz is a reasonable compromise.

2) Image resolution: Fig 4 shows that the runtime for

keyframe generation makes it hard for full resolution

(640 × 480) images to be used for visual odometry

in real time (at least 10 Hz), therefore we resort to

using the down-sampled resolution of 320 × 240 as

the largest layer in the image pyramid. We also found

that using two pyramid levels works best in terms of

the compromise between accuracy and CPU usage for

our system.

3) Number of tracked pixels: Tracking a larger number

of pixels in direct method increases tracking accuracy

[33], but it will also result in proportionally longer

runtime as well as more CPU usage. We first obtain

a gradient image from the input gray-scale image and

apply an adaptive threshold to select an initial set of

high gradient points. Then we divide image into grids

and only select the highest gradient point in each grid

cell. The grid is used so that we can use high resolution

images while still keeping the number of tracked pixels

relatively small. This reduces the total number of pixels

in the optimization and at the same time spreads out the

pixels evenly. Fig 4 shows that using grid of size 2×2
can reduce processing time so that the VO pipeline can

be run at 15 Hz and experiments show that the system

performs best under this configuration.

Based on the above considerations, we decided to fly with

two image pyramid levels with the base layer set to the sub-

sampled 320×240 resolution, a grid size of 2×2, and running

the image stream and VO pipeline at 15 Hz. Table I shows

detailed running time statistics for this configuration. We see

that the average processing time for keyframes is about twice

the time for non-keyframes. Unlike non-keyframes which

only involves tracking, handling keyframes also involves

image processing to generate disparity images and high

gradient pixel masks.

In the table, for keyframes the running time for individual

components do not add up to the total time, because these

components are running in parallel in different threads, and
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TABLE I

TIME STATISTICS FOR KEYFRAME AND NON-KEYFRAME PROCESSING

WITH BASE LAYER RESOLUTION OF 320× 240 AND GRID SIZE 2× 2.

Time [ms] Mean Std Dev Min Max
Keyframe (total) 59.1 8.2 43.7 80.2
– extract features 45.5 6.8 35.1 66.4
– feature tracking 41.7 13.1 6.3 71.2
– disparity 18.7 4.9 14.7 35
Non Keyframe (only tracking) 32 11.3 5 57.9

we record the time for each individual thread to finish.

Details of parallelization for keyframes are as follows: For

image preprocessing, two threads are used for left and right

images to do pyramid construction. The feature extraction

and disparity map generation for each pyramid resolution are

put into different threads. The tracking is done with respect

to the last keyframe and can run in parallel with the feature

extraction and disparity computation. This parallelization

scheme greatly reduces the time for keyframe processing,

and is one of the main factors allowing us to run the pipeline

at 15 Hz.

Fig. 5. The plot shows the comparison of position between UKF estimates
and Vicon data as the robot follows a slalom trajectory.

B. Accuracy

Fig. 5 and 6 shows the comparison of visual inertial pose

estimation to ground truth when our vehicle follows a slalom

and a repeated elliptical trajectory, respectively. The UKF

uses visual odometry as measurement update and its fused

estimation result closely follows visual odometry, hence we

are only showing the UKF estimates in the plots. The drift

for the ellipse trajectory over a distance of 22.62 m is 0.26 m

which is a drift of only 1.15% of the distance traveled.

C. Mapping

Fig. 8 shows the map created while the robot follows

the slalom trajectory. The readers can get a sense of the

environment we used when creating the map in Fig. 7. The

moving axis represents the pose estimates from our visual

odometry. The map clearly shows textured ground and a

textured board towards the end of the trajectory, a barrel

to the right and a traffic cone on the left.

VII. CONCLUSION

In this paper, we demonstrated for the first time that direct

visual inertial odometry, closed-loop control and semi-dense
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Fig. 6. Plots of the position and linear velocity from the UKF and Vicon
for the ellipse trajectory.

Fig. 7. A picture of the testing environment.

mapping can be achieved concurrently on a smart phone

grade processor, allowing autonomous flight of a small-sized

quadrotor under SWAP constraints. We strongly believe that

autonomy at this scale is an important enabler for search and

rescue and first response missions. Future work will focus

on further improving the quality of the map with outlier

rejection based on the residuals during optimization and

using it for autonomous navigation for SWAP constrained
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Fig. 8. The semi-dense map created by while following a slalom trajectory.

aerial platforms.
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