
Decoding a Thesis: Properties of Quasi-Cyclic Codes Under the Schur

Product

Michael Rudow

A THESIS

in

Mathematics

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Master of Arts

2017

Supervisor of Thesis

Graduate Group Chairman

1 Acknowledgements

The author would like to acknowledge the invaluable advice he received from Professor

Brett Hemenway and Professor Nadia Heninger. As the author’s advisers for this

thesis, they introduced him to the problem, directed him to background to reading

for context, helped him with the plethora of questions that arose, and moreover guided

him throughout the research process.

ii

2 Abstract

For a subspace W of a vector space V of dimension n, the schur product space W k

for k ∈ N is defined to be the span of all vectors formed by the component-wise

multiplication of k vectors in W . It is well known that repeated applications of the

schur product to the subspace W creates subspaces W,W 2,W 3, . . . whose dimen-

sions are monotonically non-decreasing [Ran15]. However, quantifying the structure

and growth of such spaces remains an important open problem with applications to

cryptography and coding theory. This paper focuses on quasi-cyclic error correcting

codes, a subclass of linear spaces particularly relevant to cryptography. Specifically,

it qualifies how increasing powers of quasi-cyclic codes grow under the schur prod-

uct. The paper shows that given a generator of a quasi-cyclic code, it is possible in

quadratic time to determine the maximum dimension the code will grow to, as well

as the generators for any powers of the code that have achieved that dimension. It

also qualifies when powers of the code and or dimension of the code is invariant under

the schur product.

iii

1

3 Introduction

This paper focused on properties of quasi-cyclic codes under the schur product (component-

wise multiplication). Quasi-cyclic codes are a special subset of the commonly used

linear codes, whose properties under the schur product have been a recent area of

research. Due to their efficient descriptions, quasi-cyclic codes have also appeared in

variants of the McEliece Cryptosystem [BCGO09]. Furthermore, quasi-cyclic codes,

especially cyclic codes, are closely related to cyclic lattices, which have applications

to cryptography.

Lattice-based cryptography, such as cryptography based on the shortest vector

problem, is becoming increasingly popular due to its post-quantum nature. Replac-

ing traditional lattices with cyclic lattices, which are structurally similar to cyclic

codes, may offer a significant improvement in computation time by reducing stor-

age space and matrix-vector product operations [MR08]. Moreover, Micciancio and

Regev list as an open question whether using such cyclic lattices will greatly improve

the public key length and efficiency of a LWE-based cryptosystem [MR08]. Through

understanding properties of cyclic lattices, cryptographers will be more able to avoid

incorporating possible structural weaknesses in cryptosystems that might arise from

using cyclic lattices. It is a natural extension to explore whether this paper’s results

can be extended to cyclic lattices due to their similarities. Furthermore, Kositwat-

tanarerk and Oggier show how to produce a lattice from a family of nested binary

linear codes which are closed under the schur product [KO14]. Perhaps exploring the

2

subclass of nested cyclic codes that are closed under the schur product will produce

lattices with interesting properties. Kositwattanarerk and Oggier also mention that

“[c]onnections between lattices and linear codes are classically studied (see e.g. [2]).

Lattices constructed from codes often inherit certain properties from the underlying

codes and have manageable encoding and decoding complexity”[KO14]. Thus there

is reason to believe that some properties of quasi-cyclic codes may translate to the

lattices they can construct.

The McEliece Cryptosystem is a well known cryptosystem based on the difficulty

of the decoding problem for general linear codes [McE78], and it is believed to re-

main secure against quantum computing adversaries. While this property makes the

McEliece Cryptosystem desirable, the length of the private key is significantly longer

than other modern cryptosystems. Through modifying the McEliece Cryptosystem

to use quasi-cyclic codes, one can substantially reduce the length of the private key.

Unfortunately, certain properties of quasi-cyclic codes can cause such modifications

to introduce vulnerabilities to the cryptosystem. For example, in an attempt to

reduce the drawback of having a long private key in the McEliece Cryptosystem,

Berger, Cayrel, Gaborit, and Otmani described a variant of the cryptosystem using

quasi-cyclic codes [BCGO09]. Later, Otmani, Perret, and Tillich as well as Cou-

vreur, Márquez-Corbella, and Pellikaan were able to produce an attacks against the

quasi-cyclic code based McEliece system [FOPT10, UL09]. Through another avenue

of attacks using properties of codes when squared under the schur product, Couvreur,

3

Otmani, and Tillich were able to successfully break other variants of the McEliece

Cryptosystem [COT17]. Specifically, random codes squared under the schur product

grow in dimension faster than wild goppa codes, and this enables an attacker to dis-

tinguish between certain wild goppa and random codes; through doing so, an attacker

can compute a filtration of the public code which can be used to efficiently recover the

key [COT17]. Overall, the behaviour of quasi-cyclic codes under the schur product

have important applications variants of the McEliece Cryptosystem.

This thesis will focus on properties of quasi-cyclic codes under the schur product.

Namely, it will show how a generator for a quasi-cyclic code is sufficient to efficiently

compute the following: (1) the dimension the code will grow to under the schur

product, (2) the generators for powers of the code after reaching the equilibrium

dimension, (3) the criteria under which the code or powers of the code is invariant

under powers of the schur product. In doing so, it will supplement the existing

framework for the design and analysis of related cryptosystems.

4

4 Preliminaries

This section will highlight key definitions which will be used throughout the paper.

These definitions are closely related to key properties that the theorems will to prove

as well as standard building blocks that the proofs will use to do so. It is necessary to

learn them not only to follow the proofs, but to understand the motivations behind

and consequences of the results.

Definition 4.1 (Schur Product of Vectors). Let C be a code in Fn and let c, d ∈ C.

The schur product of vectors c and d, denoted c ∗ d, is the component wise product

of the codes (c1 · d1, · · · , cn · dn).

Definition 4.2 (Ideal Codes). Let F be a finite field, and f(x) ∈ F[x] a polynomial

with deg(f) = n. Then for any divisor g(x) of f(x), define the ideal code

C = {coeff(g(x)h(x) mod f(x)) | h(x) ∈ F[x]/(f)} ⊂ Fn

Definition 4.3 (Linear Code). A code C over Fn is linear if ∀c1, c2 ∈ C, c1 + c2 ∈ C

and ∀a ∈ F, c ∈ C, a · c ∈ C.

Definition 4.4 (Quasi-Cyclic Codes). Let F be a finite field, and C an ideal code

over F with modulus f(x).

• When f(x) = xn − a, for some a ∈ F, the ideal code is called a quasi-cyclic

code. Quasi-cyclic codes are a subset of linear codes. Let ` denote the minimum

natural number such that a` = 1.

5

• When f(x) = xn − 1, the ideal code is called a cyclic code.

• When f(x) = xn + 1, the ideal code is called a negacyclic code.

Definition 4.5 (Support of a vector). For a vector c ∈ Fn, define

supp(c) = {i | ci 6= 0}

Definition 4.6 (Coefficients of a polynomial). Let f(x) = xn − a and p(x) ∈

F[x]
f(x)

. Therefore, p(x) =
∑n

i=0 cix
i where c0, . . . , cn ∈ F. Then define coeff(p(x)) =

(c0, . . . , cn).

Definition 4.7 (Hamming weight). For a vector c ∈ Fn, define

wt(c) = | supp(c)|

Definition 4.8 (Minimum distance, minimum weight). Let C be a linear code over

Fn. Then the minimum distance of C is given by minc1,c2∈C wt(c1 − c2). Since C is a

linear code, c1 − c2 = c3 ∈ C is defined to be a vector of minimum weight in C.

Definition 4.9 (Generator Matrix (G)). Let F be a field and C be a quasi-cyclic code

generated by polynomial g(x) of degree n − k which divides xn − a. The generator

matrix for C is defined as the k×n matrix where the ith row is equal to coeff(xi ·g(x)).

Denote this matrix G. G is upper triangular because deg(g(x)) = n− k.

Definition 4.10 (Standard Form Generator Matrix (G′)). Let F be a field and C be

a quasi-cyclic code generated by polynomial g(x) of degree n−k which divides xn−a.

6

The standard form generator matrix for C is defined as the reduced row echelon form

of the Generator Matrix G. The reduced Generator Matrix is a k × n matrix whose

leftmost k×k sub-matrix is Ik. Denote this matrix G′. Denote its ith row as gi. Note

that gk = coeff(xk · g(x)) because G is upper triangular and Gaussian Elimination on

an upper triangular matrix doesn’t change the final row.

Definition 4.11 (Shift). Let F be a finite field, and C a quasi-cyclic code over F

generated by g(x). Let c = coeff(p(x) · g(x)) ∈ C for some polynomial p(x). Then

sic is defined to be = coeff(xi · p(x) · g(x)). Moreover, for c = (c1, c2, · · · , cn−1, cn), it

follows that sc = (a · cn, c1, c2, · · · , cn−1)

Definition 4.12 (Castelnuovo-Mumford Regularity [Ran15]). The Castelnuovo-Mumford

regularity of a nonzero linear code C ⊆ Fn is the smallest integer r = r(C) ≥ 0 such

that dim(Cr) = dim(Cr+i),∀i ≥ 0.

Definition 4.13 (Hilbert Sequence [Ran15]). Let C ⊆ Fn be a linear code. The

sequence of integers dim(Ci), i ≥ 0 is called the dimension sequence, or the Hilbert

Sequence, of C. The sequence of integers, dmin(Ci), i ≥ 0 is called the distance

sequence of C.

Definition 4.14 (Resultant Polynomial). Let C ⊂ Fn be an ideal code with modulus

f(x) = xn − a, generator g(x) and dimension k. The Quasi-Cyclic Hilbert Sequence

will eventually reach some Cz`+1 such that |Cz`+1| = |C(z+r)`+1| for any natural

number r, and z = r′(C). Let Cz`+1 = (q(x)) for n − deg(q(x)) = |Cz`+1| and

q(0) = 1. Then q(x) is defined to be the resultant polynomial of g(x).

7

Definition 4.15 (Pattern Polynomial). Let C ⊂ Fn be an ideal code with modulus

f(x) = xn−a, generator g(x)|f(x) with identity constant term and dimension k. Let

p(x) be the highest degree polynomial, with degree n−v, v|n, and p(0) = 1, such that

p(x)|g(x) and {xip(x), 0 ≤ i < v} have disjoint support. Then p(x) is defined to be

the pattern polynomial of g(x). Note, that by transitivity, p(x)|f(x). Furthermore, for

non-trivial g(x), since p(x)|g(x), it is clear that g(x) = p(x) · q(x). Thus deg(p(x)) +

deg(q(x)) = n− v + deg(q(x)) = deg(g(x)) < n, so g(x) =
∑v−1

i=0 cix
ip(x).

8

5 Prior Work

There have been a number of recent results pertaining to properties of linear codes

under the schur product. This section will highlight a few of the results of Randri-

ambololona which are extremely relevant to this paper and will be referenced later.

Lemma 5.1 ([Ran15]). For any linear code C ⊆ Fn and z ≥ 1, dim(Cz+1) ≥

dim(Cz). dmin(Cz+1) ≤ dmin(Cz) where dmin denotes the minimum distance.

Lemma 5.2 ([Ran15]). ∀z ∈ {1, . . . , r(C)− 1}, dim(Cz+1) > dim(Cz).

Lemma 5.3 ([Ran15]). For any linear code C ⊆ Fn, z ≥ 0, z ∈ Z. Then z ≥ r(C) if

and only if dim(Cz) = dim(Cz) which occurs if and only if Cz is generated by a basis

of codewords with disjoint supports.

9

6 Basic known results about quasi-cyclic codes

This section will introduce well known results about quasi-cyclic codes. In doing so,

it will build the framework to support the novel results presented later in the paper.

Furthermore, it will introduce the reader to straightforward examples of several proof

styles involving quasi-cyclic codes under the schur product. Overall, the material in

this section completes the necessary background to understand this paper’s results.

Lemma 6.1. Let F be a field, and n ∈ Z+. Then Fn is a commutative ring under

the schur product with multiplicative identity 1 = 1n and additive identity 0 = 0n.

Proof. F is a field, so it is a commutative ring. Thus in each component of Fn, the

component is a commutative ring with additive identity 0 and multiplicative identity

1. Hence Fn is a commutative ring with additive identity 0n and multiplicative identity

0n under component-wise addition and multiplication.

Lemma 6.2 (Consecutive zeros of a quasi-cyclic code). Let C ⊂ Fn be a quasi-cyclic

code of dimension k. Then c ∈ C has k consecutive zeros if and only if c = 0n.

Proof. In the first direction, if c = 0n then clearly it contains n consecutive 0′s hence

k consecutive zeroes.

In the second direction, suppose c has k consecutive zeroes starting in position i

when c is considered as a one-indexed array. Let c′ = sn−i+1c and note that c′ has

the same number of nonzero indices as c and begins with k consecutive zeroes.

10

As a quasi-cyclic code of dimension k, C is generated by k linearly independent

codewords c1, . . . , ck. Let d1, . . . , dk be the result of applying Gaussian Elimination

to the matrix whose jth row is cj. Then Span({d1, . . . , dk}) = Span(C). Thus

c′ =
∑k

j=1 ajdj =
∑

j=0 0 · dj = 0n because the first k positions of c′ are zero, the first

k positions of each the dj’s have disjoint support, so in order for
∑k

j=1 ajdj to be zero

in the first k positions, aj = 0 ∀j ∈ {1, . . . , k}. Since c′ and c each have the same

number of nonzero positions, then c has n positions that are 0, so c = 0n.

Lemma 6.3 (Basis of a quasi-cyclic code). For any quasi-cyclic code C of dimension

k over modulus xn−a and field F, if C is generated by a polynomial of minimal degree

g(x) of degree n− k, then g(x)|xn− a and {coeff(xi · g(x)) | 0 ≤ i < k} forms a basis

for C.

Proof. While this is a well known result, a proof is included for completeness. Let

g(x) be the generator of C with minimal degree.

The following will prove that g(x)|xn − a. Suppose towards contradiction that

g(x) doesn’t divide xn−a. Then d(x) = gcd(g(x), xn−a) and deg(d(x)) < deg(g(x)),

so a(x)g(x) + b(x)(xn − a) = d(x). Therefore, d(x) ∈ (g(x)) and deg(d(x)) < n − k,

so {xid(x), 0 ≤ i ≤ k} are k + 1 linearly independent vectors contradicting that g is

the generator. Thus g(x)|xn − a as desired.

The next proof will show that {coeff(xi · g(x)) | 0 ≤ i < k} forms a basis for C.

Since deg(xi ·g(x)) 6= deg(xj ·g(x))∀i 6= j ∈ {0, . . . , k−1}, B = {xi ·g(x) | 0 ≤ i < k}

11

is a linearly independent set of size k.

Furthermore, a proof by induction will show xi · g(x) ∈ Span(B). In the base

case i = 0 so xi · g(x) = g(x) ∈ Span(B). Next, assume in the inductive hypothesis,

for 0 ≤ i < s, that xi · g(x) ∈ Span(B). For the inductive step, let i = s then

xi ·g(x) = x·(xi−1 ·g(x)) = x·
∑k−1

j=0 cjx
jg(x) for some cj’s by the inductive hypothesis.

Thus xi · g(x) =
∑k−1

j=0 cjx
j+1g(x). For j + 1 < k, cjx

j+1g(x) ∈ Span(B), so it suffices

to show xkg(x) ∈ Span(B). Since B contains a polynomial of degree xn−k+j for

0 ≤ j < k, ∃c′(x) ∈ Span(B) such that deg(xkg(x) − c′(x)) < n − k. But then

coeff(xkg(x)−c′(x)) ends in at least k zeroes, so by Lemma 6.2, coeff(xkg(x)−c′(x)) =

0n. Therefore, xkg(x) ≡ c′(x) ∈ Span(B). This concludes the proof by induction that

xi · g(x) ∈ Span(B). Therefore, (g(x)) = C = Span(B).

Since C = Span(B) and B is a linearly independent set, it is a basis for C.

Lemma 6.4 (Minimum weight of a quasi-cyclic code). Any quasi-cyclic code of length

n and dimension k has minimum distance ≥ n
k

. Furthermore, if a code c has weight

n
k

and its first position where it is nonzero is position p, then c is nonzero exactly in

positions p+ z · k for 0 ≤ z < n
k

.

Proof. By linearity of C, the code’s minimum distance is the same as the minimum

weight of a nonzero codeword. Suppose towards contradiction that c 6= 0n ∈ C and

wt(c) < n
k
, let i be the first nonzero index of c and c′ = sn+1−ic. Hence c′ starts

with a nonzero index. Let i1 < i2 < . . . < id denote the indices of the nonzero

coordinates of c′. By assumption, d < n
k
. The following will prove by induction that

12

ij ≤ 1 + (j − 1)k. In the base case, i1 = 1 so it holds. In the inductive hypothesis,

assume ij ≤ 1+(j−1)k. In the inductive step, ij+1 ≤ k+ij ≤ k+1+(j−1)k ≤ 1+jk

by Lemma 6.2. Hence ij+1 ≤ 1 + jk.

Then id ≤ 1 + (d− 1)k < 1 + (n
k
− 1)k = n+ 1− k. Thus id ≤ n− k so c′ is zero

in its final k positions. This means c′ = 0n, so c = 0n, which contradicts that c 6= 0n.

Hence the original assumption is false, no c 6= 0n ∈ C can have wt(c) < n
k
.

In the case that wt(c) = n
k
, let c′ be defined similarly. Replace d < n

k
with d = n

k

then id ≤ 1+(d−1)k becomes id ≤ 1+(d−1)k = 1+(n
k
−1)·k = 1+n−k = n−k+1.

As before, if id < n − k + 1 there is a contradiction, thus id = n − k + 1 to avoid

contradiction. But in order for this to happen, id − i1 − 1 = n − k + 1 − 1 = n − k

and id− i1 =
∑d−1

j=1 ij+1− ij ≤
∑d−1

j=1 k = (d− 1)k = (n
k
− 1)k = n− k by Lemma 6.2.

Equality requires ij+1 − ij = k uniformly. Thus c′ is nonzero in and only in positions

1 + z · k for 0 ≤ z < d as desired. A simple shift back from c′ to c completes the

proof.

Lemma 6.5 (Generator of a quasi-cyclic code). Let C be a quasi-cyclic code of length

n, dimension k and generator g(x) over modulus xn−a and field F. Then ∃q(x)|xn−a

such that (g(x)) = (q(x)) = C.

Proof. Suppose no q(x) exists that generates C and q(x)|xn − a. Then d(x) · g(x) +

s(x) · (xn−a) = q(x) for q(x) = gcd(g(x), xn−a). Since d(x) · g(x) ≡ q(x) mod xn−

a, (q(x)) ⊆ (g(x)). Since q(x)|g(x), (g(x)) ⊆ (q(x)). Furthermore, x - q(x) since

q(x)|xn − a and x - xn − a. Therefore C = (q(x)) for q(x)|xn − a contradicting the

13

assumption.

Lemma 6.6 (Schur Product of a quasi-cyclic code). Let C be a quasi-cyclic code

of length n, dimension k and generator g(x) over modulus xn − a and field F. Let `

denote the minimum natural number such that a` = 1. Then for z ∈ N (where 0 ∈ N),

Cz·`+1 is a quasi-cyclic code of length n over modulus xn − a with generator q(x).

Proof. Proof by induction on z that Cz·`+1 is a quasi-cyclic code of length n, dimension

k over modulus xn − a. In the base case, z = 0 so C is by assumption a quasi-cyclic

code. In the inductive hypothesis, C(z−1)·`+1 is assumed to be quasi-cyclic for z ≥ 1.

In the inductive step, it suffices to show Cz·`+1 is an ideal of xn− a since the domain

is a PID and by Lemma 6.5 the generator of the ideal can without loss of generality

be assumed to divide xn − a. Note: Cz·`+1 is a linear code.

The following will show that Cz·`+1 is a subgroup under addition. By the inductive

hypothesis, C(z−1)·`+1 is a quasi cyclic code. Take any p1(x), p2(x) ∈ Cz·`+1, and then

showing p1(x) − p2(x) ∈ Cz·`+1 shows that the ideal is a subgroup under addition.

This holds by virtue of the fact that it is a linear combination of elements of Cz·`+1,

which itself is a linear code.

Thus it suffices to show Cz·`+1 is closed under multiplication. Take any r(x), z(x) ∈

Cz·`+1. Let r(x) = p(x) ∗
∑`

i=1 qi(x) for some p(x) ∈ C(z−1)·`+1 and qi(x) ∈ C∀i ∈

{1, . . . , `}. Let z(x) =
∑n−1

i=0 dix
i. Then r(x) · z(x) =

∑n−1
i=0 dix

i · r(x). Since Cz·`+1 is

closed under linear combinations, it only remains to be shown that xi · r(x) ∈ Cz·`+1

14

for i ∈ {0, . . . , n− 1}.

It suffices to show xi · r(x) = (xi · p(x)) ∗ (π`j=1x
i · qj(x)) ∈ Cz·`+1. To do so, it

suffices to show (xi · r(x))[m] = ((xi · p(x)) ∗ (π`j=1x
i · qj(x)))[m]. If m − i ≥ 0 then

(xi · r(x))[m] = r(x)[m − i] = (xi · p(x)) ∗ (π`j=1x
i · qj(x))[m − i] by definition. If

m− i < 0 then (xi · r(x))[m] = r(x)[n+m− i] ·a and (xi · p(x)) ∗ (π`j=1x
i · qj(x))[m] =

(p(x)[n+m− i] ·a)∗ (π`j=1 ·qj(x)[n+m− i] ·a) = (p(x)[n+m− i])∗ (π`j=1qj(x)[n+m−

i]) · a`+1 = (p(x)[n+m− i]·) ∗ (π`j=1 · qj(x)[n+m− i]) · a as desired since p(x), qj(x)

are all quasi cyclic over xn − a.

Example 6.7 (Schur Product of a quasi-cyclic code). There exists a quasi-cyclic code

C such that Cd is not quasi-cyclic.

Consider x6 − 2 = (x3 + 2)(x3 + 4) over F = Z mod 7 then 2 ≡ 2 mod 7, 22 ≡ 4

mod 7, 23 mod 7 ≡ 1 so ` = 3. Let g(x) = x3 + 4 and C = (g(x)). Next, consider

C2, noting that 2 6= z · `+ 1. C is spanned by ({x3 + 4, x4 + 4x, x5 + 4x2}).

For any v1 6= v2 ∈ {x3 + 4, x4 + 4x, x5 + 4x2}, v1 ∗ v2 = 0 since they never both

have a nonzero coefficient in the same power of x. Thus C2 is spanned by ({(x3 + 4)∗

(x3 + 4), (x4 + 4x) ∗ (x4 + 4x), (x5 + 4x2) ∗ (x5 + 4x2)}) = ({x3 + 2, x4 + 2x, x5 + 2x2}).

Suppose towards contradiction that this was a quasi-cyclic code over x6 − 2, then it

is generated by q(x) = x3 + 2.

(x3 + 2) · (−x3) + (x6 − 2) ≡ −2x3 − 2 ≡ 5x3 + 5

(x3 + 2) · (−5) + (5x3 + 5) ≡ 2

15

(x3 + 2) · 4(−x3 − 5) + (4) · (x6 − 2) ≡ (x3 + 2) · 4(6x3 + 2) + (4) · (x6 − 2) ≡

(x3 + 2) · (3x3 + 1) + (4x6 + 6) ≡ (3x6 + 6x3 + x3 + 2) + (4x6 + 6) ≡ 1

If C2 = (q(x)) then |C2| = 6. Yet C3+1 = ((x3 + 4)4) = ((x3 + 1) ∗ (x3 + 4)) =

(x3 + 4) = C so |C3+1| = 3 < 6 = |C2|. This is a contradiction by Lemma 5.1, so C2

is not a quasi-cyclic code over x6 − 2

As a result of Lemma 6.6 and Example 6.7, the following definitions are needed

to reflect that only certain powers of quasi-cyclic codes are quasi-cyclic:

Definition 6.8 (Quasi-Cyclic Castelnuovo-Mumford Regularity). Let C be a quasi

cyclic code generated by some g(x) dividing modulus f(x) = xn − a over F with

a` = 1. Then the quasi-cyclic Castelnuovo-Mumford regularity, r′(C) = z for the

unique z ∈ Z such that z`+ 1 ≥ r(C) > (z − 1)`+ 1.

Definition 6.9 (Quasi-Cyclic Hilbert Sequence). Let C ⊆ Fn be a quasi-cyclic code

generated by some g(x) dividing modulus f(x) = xn − a over F with a` = 1. The

quasi-cyclic Hilbert sequence of C is defined as dim(Ci`+1), i ≥ 0.

16

7 Results

This section will introduce the novel results of this paper. In particular, Theorem

7.1 and Theorem 7.2 will qualify the structure for of quasi-cyclic codes that leads to

growth under the schur product. Furthermore, Theorem 7.3 will show that such a

structure can be efficiently identified. Moreover, Theorem 7.13 and 7.15 will qualify

when the code remains invariant under the schur product for powers z` + 1 for z ≥

r′(C) or for any z` + 1. Finally, Lemma 7.16 will show how the generators for the

intermediate codes can be computed efficiently.

Theorem 7.1. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn− a, gen-

erator g0(x) and dimension k. Let q(x), with degree n−k′, be the resultant polynomial

of g0(x) and z = r′(C). Let p0(x) be the pattern polynomial of g0(x). Consider the

start of the Quasi-Cyclic Hilbert Sequence C, . . . , Cz`+1 where gi(x) is the generator

of Ci`+1, and pi(x) is the pattern polynomial of gi(x). Then pi(x) = p0(x)i`+1, and so

since gz(x) = q(x) =
∑0

i=0 x
0q(x), p0(x)z`+1 = pz(x) = q(x).

Proof. To show the existence of a pattern polynomial for g(x), it suffices to show that

at least one polynomial p′(x) exists which satisfies all the properties of the pattern

polynomial other than being of maximal degree, since the pattern polynomial is then

taken to simply be the one of highest degree. For any generator g(x), since 1|f(x),

{xi, 0 ≤ i < n} has disjoint support, and g(x) =
∑n−1

i=0 cix
i·1, the polynomial p′(x) = 1

satisfies all properties of the pattern polynomial other than perhaps being of maximal

degree. Therefore, generator g(x) will necessarily have some pattern polynomial p(x)

17

which may or may not equal 1.

Proof by Induction that pi(x) = p0(x)i`+1. Let g0(x) =
∑v−1

α=0 bαx
αp0(x). In the

base case, it is clear that p0(x) = p0(x)1 by definition. In the inductive hypothesis,

assume that for 0 ≤ i < ζ that pi(x) = p0(x)i`+1 and gi(x) =
∑v−1

j=0 ejx
jpi(x). In

the inductive step, let i = ζ, and it suffices to show Ci`+1 = (gi(x)) where pi(x) =

p0(x)i`+1.

By the IH, it is given that C(i−1)`+1 = (gi−1(x)). Then Ci`+1 = (A) for A =

{(xj · gi−1(x)) ∗ Π`
m=1x

hm · g0(x), 0 ≤ j < n − deg(gi−1(x)), 0 ≤ hm < k}. Let

w = |Ci`+1|. Take any r(x) = (xj · gi−1(x)) ∗Π`
m=1x

hm · g0(x) ∈ A. The following will

show that the pattern polynomial of r(x) is given by p0(x)i`+1

Case 1: r(x) = 0. Then r(x) =
∑w−1

j=0 bjx
jp0(x)i`+1 for bj = 0 uniformly.

Case 2: r(x) 6= 0. Therefore xj·gi−1(x) = xj
∑v−1

t=0 etx
tpi−1(x) =

∑v−1
m=0 etx

t+jp0(x)(i−1)`+1.

Since j+deg(gi−1(x)) < n it means that et = 0 for any t+j+deg(p0(x)) ≥ n. Thus if

et 6= 0 then t+j+(n−v) < n so t+j < v. Then xhm ·g0(x) = xhm ·
∑v−1

a=0 bax
ap0(x) =∑v−1

α=0 bαx
hm+αp0(x). Since hm + deg(g0(x)) < n it means that bα = 0 for any

hm + α + deg(p0(x)) ≥ n. Thus if bα 6= 0 then hm + α + (n− v) < n so hm + α < v.

r(x) = (
∑v−1

t=0 etx
t+jp0(x)(i−1)`+1) ∗ (Π`

m=1

∑v−1
α=0 bαx

hm+αp0(x)).

r(x) =
∑v−1

t=0 etx
t+jp0(x)(i−1)`+1 ∗ Π`

m=1

∑v−1
α=0 bαx

hm+αp0(x).

Π`
m=1

∑v−1
α=0 bαx

hm+αp0(x) =
∑

(δ1,...,δ`)∈∆ Π`
m=1bδmx

hm+δmp0(x). For some appro-

priately defined set ∆ which has the property that ∀(δ1, . . . , δ`) ∈ ∆, 0 ≤ δm < v for

1 ≤ m < ` and hm + δm < v. This holds as it is simply a reordering of terms.

18

r(x) =
∑v−1

t=0 etx
t+jp0(x)(i−1)`+1 ∗ (

∑
(δ1,...,δ`)∈∆ Π`

m=1bδmx
hm+δmp0(x)).

r(x) =
∑v−1

t=0

∑
(δ1,...,δ`)∈∆(etx

t+jp0(x)(i−1)`+1) ∗ Π`
m=1(bδm · xhm+δm · p0(x)).

r(x) =
∑v−1

t=0

∑
(δ1,...,δ`)∈∆ Π`

m=1(et · bδm)(xt+jp0(x)(i−1)`+1) ∗ (xhm+δm · p0(x)).

By definition (xαp0(x)) ∗ (xbp0(x)) if nonzero for 0 ≤ α, b < v iff α = b. Since

0 ≤ t+j < v, 0 ≤ hm+δm < v for 1 ≤ m ≤ `, et ·bδm 6= 0 if and only if t+j = hm+δm

for 1 ≤ m ≤ `. So all nonzero terms have are a constant multiplied by a power of

x in {0, . . . , v − 1} multiplied by p0(x)i`+1. Through eliminating terms which are

zero and collecting similar terms, r(x) can be rewritten as r(x) =
∑v−1

t=0 ftx
tp0(x)i`+1

for appropriately defined ft’s. Since r(x) ∈ A arbitrarily, ∀r(x) ∈ A, it holds that

r(x) =
∑v−1

t=0 ftx
tp0(x)i`+1 for appropriately defined ft’s.

For any r(x) ∈ (A), by Lemma 7.4, r(x) can be written as r(x) =
∑v−1

t=0 ftx
tp0(x)i`+1.

Since gi(x) is a linear combination of terms in (A) and gi(0) = 1, gi(x) =
∑v−1

t=0 ftx
tp0(x)i`+1

where f0 = 1

In order to show that p0(x)i`+1 is the pattern polynomial for gi(x), it therefore

suffices to show that there is no higher degree polynomial p′(x) which is the pattern

polynomial of gi(x). This will be achieved in a proof by contradiction. Suppose not.

Then gi(x) =
∑v′−1

t=0 f ′tx
t′p′(x) for v′ < v, f ′0 = 1, and p′(x) =

∑ n
v′−1

j=0 (d′)jxv
′j.

By Lemma 7.4, it is clear that for anym(x) ∈ (gi(x)) = Ci`+1,m(x) =
∑v′−1

j=0 βjx
jp′(x) =∑n−1

j=0 γjx
j which means that whenever γj 6= 0 that γy 6= 0 for y ≡ j + v′ mod n and

y, j ∈ {0, . . . , n − 1}. Because p0(x) is the pattern polynomial of g0(x), there is no

pattern polynomial of g0(x) of degree n − v′ > n − v or equivalently v′ < v. By

19

Lemma 7.5, ∃m′(x) ∈ (g0(x)) s.t. m′(x) =
∑n−1

j=0 γ
′
jx
j and γ′j 6= 0 but γ′y = 0 for

y ≡ j mod v′. Then m′(x)i`+1 ∈ (gi(x)) which is a contradiction. Thus the original

assumption is false, no such p′(x) exists. Thus p0(x)i`+1 is the pattern polynomial for

gi(x). This concludes the proof of the inductive step and thus the proof by induction

that the pattern polynomial of gi(x) is p0(x)i`+1.

Theorem 7.2. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn − a,

generator g(x) and dimension k. Let q(x), with degree n − k′, be the resultant poly-

nomial of g(x) and p(x) its pattern polynomial. Then the generator gz(x) for Cz`+1

for z ≥ r′(C) is given by p(x)z`+1.

Proof. By Theorem 7.1, q(x) = p(x)r
′(C)`+1. Then for z ≥ r′(C) let z′ = z − r′(C).

Cz`+1 = Cr′(C)`+1 ∗Cz′`. Since Cr′(C)`+1 = (p(x)r
′(C)`+1), Cz`+1 = Span({p(x)r

′(C)`+1 ∗

Πz′`
i=1x

big(x)}) for 0 ≤ bi < k. By definition of the resultant polynomial, |Cr′(C)`+1| =

|Cz`+1| = v. Since coeff(p(x)r
′(C)`+1 ∗ (xbig(x))) starts with bi zeroes and ends in v−1

zeroes, bi 6= 0 → p(x)r
′(C)`+1 ∗ (xbig(x)) = 0 by Lemma 6.2. Thus the only nonzero

term in the span is p(x)r
′(C)`+1 ∗ g(x)r

′(C)`+1 where g(x) = p(x) +
∑v−1

j=1 x
jcjp(x).

By similar reasoning, p(x)r
′(C)`+1 ∗

∑v−1
j=1 x

jcjp(x) = 0, so the span is generated by

p(x)z`+1.

Theorem 7.3. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn − a,

generator g(x), and dimension k. Let w be the length of the input. Clearly w ≥

20

wt(g(x)) + log(n) + log(a) to include a description of g(x), n, and a. It is possible to

compute the pattern polynomial p(x) in O(w2) time. After doing so, it is possible to

compute {ci} such that g(x) =
∑v−1

i=0 cix
ip(x) in O(v) time.

Proof. p(x) =
∑n

v
−1

j=0 α
ixvi. When g(x) =

∑v−1
j=0 cix

ip(x), g(x) =
∑n−1

i=0 bix
i and with-

out loss of generality, g(0) = p(0) = 1. Either p(x) = u for a unit u, or p(x) has

two nonzero terms who occur as coefficients for x0 and xv. Thus v ∈ D ∪ {n} where

D = {bi− b0} = {bi−1} for 0 ≤ i < n chosen only from bi listed in the input. Choose

bi’s with increasing order of i to get D ∪ {n} in an array A that is sorted. Thus a set

of set of candidates for v which includes v is acquired in O(w) time.

Furthermore, since at most one element was added to A for each nonzero coefficient

of g(x), |A| < w. p(x) has the smallest v and therefore largest deg(p(x)) = n − v

for a pattern that fits the other requirements. Therefore, test the candidate v’s in

increasing order, and halt when v is found that passes the test.

To test a candidate v ∈ A: If v = n it is trivial that p(x) = 1. So if that point

in the check is reached, it can be computed in O(1). Otherwise, see if v|n and if not

discard v. If v|n keep track of d such that v · d = n. Then since c0 = 1 it is clear that

if the candidate v is correct, then by definition bv = 1 ·α1 = α, as the second nonzero

position of p(x) is given by α1. It is necessary to check α−
n
v = a and if not reject this

candidate v. Let I be defined as the set of indexes of g(x) that are nonzero and are

therefore entered in the input.

Then this v is correct and p(x) is certified by definition if and only if for every

21

starting position t ∈ {0, . . . , v− 1} ∩ I it is the case that: bt = 0, bj = 0 for any j ≡ t

mod v or bt 6= 0, bt+e·v = αbt+(e−1)·v for every e ∈ {1, . . . , n
v
− 1}. After checking all

case 1 and 2 possibilities, every single index in I of g(x) has been checked (if an index

unchecked, then discard v).

If v passes this test, then g(x) =
∑v−1

j=0 cix
ip(x) where p(x) =

∑n
v
−1

j=0 α
ixvi and

α−
n
v = a so by Lemma 7.6, p(x)|f(x). If v fails this test, then the pattern polynomial

clearly cannot have degree n− v so v should be discarded.

p(x) =
∑n−1

j=0 ζjx
j where ζi 6= 0 if and only if i ≡ 0 mod v. Hence B =

{xjp(x), 0 ≤ j < v} has disjoint support, since (xjp(x))[i] 6= 0 iff i ≡ j mod v.

p(x) =
∑n

v
−1

j=0 α
jxvj and α−

n
v = a so by Lemma 7.6, p(x)|xn − a.

Thus p(x) meets all the requirements to be the pattern polynomial for g(x), so

p(x) is the pattern polynomial for g(x).

At most one position was checked that didn’t lie on the input g(x) (because if

such a position was checked, it would automatically eliminate v) so the total time to

check v is O(w) because it is necessary to check every position of g(x) (lest g(x) =

(
∑v−1

i=0 βix
ip(x)) + Error. So total time to check v is O(w). Since |A| ≤ w it means

there are at most O(w) such v to check. Therefore, time to check all possible v (and

thus acquire the correct one) is O(w2).

Given p(x) with p(0) = g(0) = 1, it is clear that ci = bi. There are at most v such

constants so it takes O(v) time to compute them. Thus for g(x) =
∑n−1

j=0 bix
i it the

case that g(x) =
∑v−1

j=0 bix
ip(x).

22

Lemma 7.4. Let A be a set of polynomials such that ∀rb(x) ∈ A, rb(x) =
∑v−1

t=0 ft,bx
tp(x).

Then ∀r′b(x) ∈ (A), r′b(x) =
∑v−1

t=0 f
′
t,bx

tp(x).

Proof. It suffices to show that the property of A is closed under addition and mul-

tiplication. For addition Let r(x) =
∑v−1

j=0 ejx
jp(x) ∈ A, z(x) =

∑n−1
α=0 cαx

αp(x) ∈ A

Then r(x) + z(x) =
∑v−1

j=0(ej + cj)x
jp(x) as desired.

It remains to show closure under multiplication. Take any r(x) =
∑v−1

j=0 ejx
jp(x) ∈

A, z(x) =
∑n−1

α=0 cαx
α. Then r(x) · z(x) =

∑v−1
j=0

∑n−1
α=0(ejcα)p(x) · xα+j

=
∑v−1

j=0(
∑n−1−j

α=0 (ejcα)p(x) · xα+j +
∑n−1

α=n−1−j+1(ejcα)p(x) · xα+j−n)

=
∑v−1

j=0(
∑n−1−j

α=0 (ej · cα · xα+j)p(x)) + (
∑n−1

α=n−j(ej · cα · a · xα+j−n)p(x)). Since

{xjp(x), 0 ≤ j < v} spans (p(x)), it is clear that the above expression =
∑v−1

j=0 βjx
jp(x).

Hence any m(x) ∈ (A) is given by m(x) =
∑v−1

j=0 βjx
jp(x) as desired.

Lemma 7.5. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn − a, gen-

erator g(x) and dimension k with constant term = 1. If g(x) has pattern polynomial

p(x) of degree v then for any v′ < v s.t. v′|n, ∃m(x) =
∑n−1

j=0 βjx
jp(x) ∈ (g(x)) and

j 6= y ∈ {0, . . . , n− 1} s.t. y ≡ j + v′ mod n and βj 6= 0, βy = 0

Proof. Proof by contradiction. Assume not, then ∀m(x) =
∑n−1

j=0 βjx
jp(x) ∈ (g(x))

and j 6= y ∈ {0, . . . , n − 1} such that y ≡ j + v′ mod n, βj 6= 0 iff βy 6= 0. Then

g(x) =
∑v′−1

j=0 αjx
jpj(x) where pj(x) are each polynomials of degree n− v′ which are

23

have nonzero coefficients for all and only terms whose powers are congruent to 0 mod

v′.

Furthermore, for any l(x) = g(x)− d · xzg(x) ∈ (g(x)), l(x) =
∑v′−1

j=0 γjx
jp′j(x) for

some degree n − v′ polynomials p′j(x) who have nonzero coefficients for all and only

terms whose powers are congruent to 0 mod v′. This is necessary to prevent having a

nonzero constant multiplied by xj in l(x), but then having zero multiplied by xy for

y ≡ j mod v′.

The following will show that the original pj(x)’s are equal up to multiplication by

a unit. Then for d = −pη(0)pθ(0)−1 it is clear that pη(x)− d · pθ(x) = 0. The reason

is without loss of generality assume η ≥ θ then g(x)− d · xη−θg(x) is zero in position

η − θ, so it is zero in all positions ≡ η − θ mod v′. This means that it is zero in all

positions corresponding to pη(x)− d · pθ(x), so pη(x)− d · pθ(x) = 0. Thus pη = d · pθ.

So g(x) =
∑v′−1

j=0 γjx
jp′(x) for some p′(x) = pη(x) of degree n − v′. WLOG, let

p′(x) have constant term = 1. B = {xjp′(x), 0 ≤ j < v′} has disjoint support by

definition.

p′(x) =
∑ n

v′−1

i=0 cix
v′i. supp(p′(x)) = supp(xvp′(x)) = {y, y ≡ 0 mod v′}. Let d be

the coefficient of the term of degree n−v′ of p′(x). Then xv
′
p′(x)−d·a·p(0)−1p(x) = 0

since it is zero in the constant term and so it must be zero in every term congruent

to 0 mod v′, and those were the only nonzero terms. Thus for e = (d · a · p(0)−1)−1,

xv
′
p′(x) = e−1p′(x). Then ci+1 = eci and ae

n
v′−1 = e−1, so e−

n
v′ ≡ a. Without loss

of generality, let p′(0) = 1. p′(x) =
∑ n

v′−1

i=0 eixv
′i with e−

n
v′ ≡ a so by Lemma 7.6,

24

p′(x)|f(x). But also B has disjoint support and g(x) =
∑v′−1

j=0 γjx
jp′(x) for p′(x) of

degree n − v′ > n − v. By assumption, v′|n, so p′(x) meets all the requirements to

be the pattern polynomial of g(x), except perhaps there is polynomial meeting all

such requirements of even lower degree. This violates the assumption that p(x) is the

pattern polynomial of g(x), thus no such p′(x) exists.

Thus ∃m(x) =
∑n−1

j=0 βjx
jp(x) ∈ (g(x)) and j 6= y ∈ {0, . . . , n− 1} s.t. y ≡ j + v′

mod n and βj 6= 0, βy = 0

Lemma 7.6. Let v|n and p(x) =
∑n

v
−1

j=0 d
jxv

′j with d−
n
v = a. Then p(x)|xn − a.

Proof. p(x) · (xv · a · d− a) = (
∑n

v
−1

j=0 d
j+1 · a · xv(j+1))− (

∑n
v
−1

j=0 d
j · a · xvj)

= (
∑n

v
j=1 d

j · a · xvj) − (
∑n

v
−1

j=0 d
j · a · xvj) = d

n
v · a · xv·nv + (

∑n
v
−1

j=1 d
j · a · xvj) −

(
∑n

v
−1

j=1 d
j · a · xvj)− ax0

= d
n
v · a · xn − a = xn − a = f(x)

Thus p(x) · (xv · a · d− a) = f(x) so p(x)|xn − a.

Lemma 7.7. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn − a, gen-

erator g(x) and dimension k. The Quasi-Cyclic Hilbert Sequence C,C`+1, C2`+1, . . .

monotonically increases in dimension until Cz`+1 = (q(x)) for some q(x)|xn − a at

which point |Cz′`+1| = |Cz`+1| = k′ for any z′ ≥ z. Furthermore, q(x) =
∑ n

k′−1

i=0 dixi·k
′

where d−
n
k = a, k′|n, and the minimum weight vector in (q(x)) has weight n

k′
.

Proof. By Lemma 5.1, it is clear that dim(C(m+1)`+1) ≥ dim(C(m+1)`) ≥ . . . ≥

dim(Cm`+1). By Lemma 5.2, it is clear dim(C(m+1)`+1) > dim(Cm`+1) for m < r(C).

25

By Lemma 5.3, it is clear that by the existance of r(C), there exists z as desired.

Moreover, z = r′(C). At this point, dim(Cz`+1) = dim(Cz`+2) as a linear code by

Lemma 5.3 suggest Cz`+1 is generated by dim(Cz`+1) codewords of disjoint support,

and let B be the set of the polynomial representations of such codewords.

Let q(x) ∈ B with lowest degree. Let dim(Cz`+1) = k′. Then each of the code-

words in B have weight at least n
k′

by Lemma 7.10.
∑

a(x)∈B wt(a(x)) ≥ k′ n
k′

= n for

|B| = k′. In order for this to happen, wt(a(x)) = n
k′

for each a(x) ∈ B, so k′|n. Thus

by Lemma 7.10, a(x) = xm
∑ n

k′−1

j=0 ca,ix
k′j for some 0 ≤ m < k′ for all a(x) ∈ B. Thus

deg(q(x)) = n− k′, q(x) =
∑ n

k′−1

j=0 cjx
k′j and {xi · q(x), 0 ≤ i < k′} are k′ polynomials

of different degrees, thus k′ linearly independent polynomials which must span Cz`+1.

Now {xi · q(x), 0 ≤ i < n − deg(q(x))} has disjoint support and generates Cz`+1,

a quasi-cyclic code of dimension k′ over xn − a. By Lemma 7.11 q(x) =
∑ n

k′−1

i=0 dixi·k
′

where d−
n
k = a. By Lemma 7.10, k′|n and the minimum weight vector has weight

n
k′

.

Lemma 7.8. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn − a,

generator g(x), pattern p(x) =
∑n

v
−1

j=0 d
jxvj, and dimension k. Let z = r′(C). Then

∀e ≥ z ∈ N, Ce`+1 = (p(x))e`+1).

Proof. Proof by induction that Ce`+1 = (p(x)e`+1) for e ≥ z. In the base case, by The-

orem 7.1, Cz`+1 = (q(x)) = (p(x)z`+1). In the inductive hypothesis, assume for some

(e− 1) ≥ z that C(e−1)`+1) = (p(x)(e−1)`+1). In the inductive step, q(x)g(x)(e−z)`+1 =

p(x)e`+1 ∈ Ce`+1 is a polynomial of degree n− v. Thus B = {xip(x)e`+1, 0 ≤ i < v} is

26

a set of v linearly independent vectors in Ce`+1. Since |Cz`+1| = n − deg(p(x)) = v,

|Ce`+1| = v, B spans Ce`+1. Hence (p(x)e`+1) = Ce`+1. This concluded the proof by

induction.

Lemma 7.9. Let C ⊂ Fn for F a finite field be an quasi-cyclic code with modulus

f(x) = xn − a, generator g(x) with pattern p(x) and dimension k. Let p(x) =∑n
v
−1

j=0 cjx
vj. Let z = r′(C). Then Cz`+1, C(z+1)`+1, C(z+2)`+1, . . . forms a cycle of

length at most max(z · |F |, |F |) that contains some code generated by p(x)

Proof. By Lemma 7.8, Cz′`+1 = p(x)z
′`+1 for any z′ ≥ z. Consider m = max(z ·

|F |, |F |). Then Cm`+1 = (Cm)` ∗ C = ((p(x)m)` ∗ p(x)) = ((
∑n

v
−1

j=0 c
m
i x

jv)` ∗ p(x)) =

((
∑n

v
−1

j=0 x
jv)` ∗ p(x)) = ((

∑n
v
−1

j=0 x
jv) ∗ p(x)) = (p(x)). Then C(e·m)`+1 = (Cm)e·` ∗C =

(p(x)) by a similar argument. This sequence of codes forms a cycle, and the cycle’s

length is at most m.

Lemma 7.10. Let C be a quasi-cyclic code of size n with generator polynomial, g(x),

and dimension k. Then then B = {xi · g(x) | 0 ≤ i < k} has disjoint support if and

only if the minimum weight vector of C has weight n
k

and g(x) has minimum weight.

This occurs only when k|n. In this case, G = G′, and g(x) =
∑n

k
−1

i=0 cix
k·i.

Proof. To begin, note that the minimum weight vector is always an integer. Thus if

the minimum weight is n
k
, then k|n and n = k · w. The following argument will use

one-indexing.

27

Suppose c is the minimum weight vector of c and wt(c) = n
k
. Then ∃c′ s.t.

wt(c′) = n
k

and c′[1] = 1. There are n
k
− 1 remaining nonzero positions, and each

one must occur within k positions of the previous one to avoid violating Lemma 6.2.

Thus the final nonzero positions occurs at or before position k(n
k
−1) + 1 = n−k+ 1.

If it occurred before position n − k + 1 then the final k positions would be zero,

forcing c′ = 0. Thus the final nonzero position occurs at position n − k + 1. Thus

there are n
k
− 1 nonzero indexes each at most k positions apart, spanning a total of

(n− k + 1)− 1 = n− k positions. The only way for this to occur is if each nonzero

position is exactly k positions apart from the previous one. Thus c′(x) =
∑n

k
−1

i=0 dix
ki.

(c′ − g)[1] = 0 since c′[1] = g[1] = 1. (c′ − g)[n − j] = 0 for 0 ≤ j < k since

c′[n − j] = g[n − j] = 0. Thus k consecutive positions of c′ − g are zero, hence

c′ − g = 0 by Lemma 6.2, so c′ = g. The vectors of B have disjoint support since

{xic′(x), 0 ≤ i < k} has the property that xic′(x) is nonzero in and only in positions

≡ i+ 1 mod k.

Suppose B has disjoint support. wt(
∑k

i=1 gi) =
∑k

i=1 wt(gi) ≤ n. Furthermore,

wt(gi) ≥ n
k

for any gi. n ≥
∑k

i=1 wt(gi) ≥
∑k

i=1
n
k
≥ n by Lemma 7.10 which requires

wt(gi) = n
k

for every gi. So n
k

is an integer. Since ∀c ∈ C,wt(c) ≥ n
k

by Lemma 7.10

and ∃c = g ∈ C s.t. wt(c) = n
k

it is clear that c = g is the minimum weight vector.

G = {xig(x), 0 ≤ i < k}, and g(x) =
∑n

k
−1

i=0 dix
ki where d0 = 1 without loss of

generality. G is upper triangular since deg(g(x)) = n − k and it is lower triangular

since g[j] = 0 for any j ∈ {2, . . . , k}. Thus G is in RREF and G = G′.

28

Lemma 7.11. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn − a,

generator g and dimension k. Then B = {xi · g(x), 0 ≤ i < k} has disjoint support

iff g = u ·
∑n

k
−1

i=0 dixk·i where u is a unit and d−
n
k = a

Proof. Suppose g = u ·
∑n

k
−1

i=0 dixk·i where u is a unit and d−
n
k = a. Take (xig(x)) ∗

(xjg(x)) | i 6= j ∈ {0, . . . , k − 1} Then xig(x) is nonzero only in positions congruent

to i mod k and xjg(x) is only nonzero in positions congruent to j mod k. Since no

position is congruent to i and j mod k, no position can be nonzero. Thus (xig(x)) ∗

(xjg(x)) ≡ 0. Thus B has disjoint support.

Suppose B has disjoint support. By Lemma 7.10, g(x) =
∑n

k
−1

i=0 cix
ki and xkg =∑k−1

i=0 eix
ig(x) = e0g(x) since xkg(x)[i] = 0 for i ∈ {2, . . . , k}. Thus xkg(x) = e0g(x).

Hence ci+1 · e0 = ci. So ci+1 = d · ci for d = e−1
0 . Thus by starting without loss of

generality with c0 = 1, then ci = di. Hence g(x) = u
∑n

k
−1

i=0 dixki for unit u which

makes c0 = 1. Furthermore, since xkg(x) ≡ e0g(x) ≡ d−1g(x), d
n
k
−1 · a ≡ e0 · c0 ≡ d−1

so d−
n
k ≡ a.

Lemma 7.12. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn − a,

generator g(x) and pattern polynomial p(x) of dimension v. If Cz`+1 = C(z+1)`+1,

then every nonzero coefficient y of p(x) satisfies y` = 1.

Proof. Clearly, by definition of the Quasi-Cyclic Castelnuovo-Mumford Regularity,

z ≥ r′(C). Hence Cz`+1 = (q(x)∗p(x)z
′`) for some non negative integer z′ by Theorem

7.1. But also by Theorem 7.1, q(x) = p(x)r
′(C)`+1, so Cz`+1 = (p(x)z`+1). so |Cz`+1| =

29

n− deg(p(x)z`+1) = n− deg(p(x)) = v. Furthermore, p(x)z`+1 = u · p(x)z`+1 ∗ p(x)`.

By definition, p(x) = u′ ·
∑n

k
−1

i=0 dixk·i where u′ is a unit. But without loss of

generality, let p(0) = 1. Then p(0)(z+1)`+1 = p(0)z`+1 = 1. Therefore, p(0)z`+1 −

p(0)(z+1)`+1 = 0 and deg(p(x)z`+1−p(x)(z+1)`+1) = deg(p(x)) = n−v. Hence p(x)z`+1−

p(x)(z+1)`+1 contains v consecutive zeroes, so by Lemma 6.2, p(x)z`+1−p(x)(z+1)`+1 =

0. Thus p(x)z`+1 = p(x)z`+1 ∗ p(x)` so p(x)` is 1 in every nonzero position. Therefore

the nonzero coefficients y of p(x) are all such that y` = 1.

Theorem 7.13. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn − a,

generator g, dimension k, pattern polynomial p(x) of degree n − v, and resultant

polynomial q(x). Then Cz·`+1 = C(z+1)·`+1 if and only if z ≥ r′(C) and p(x) =

u ·
∑n

v
−1

i=0 dixv·i where u is a unit and d` = 1 (note since that format has disjoint

support, d−
n
v = a)

Proof. First suppose Cz`+1 = C(z+1)`+1. Clearly, by definition of the Quasi-Cyclic

Castelnuovo-Mumford Regularity, z ≥ r′(C). Hence Cz`+1 = q(x) ∗ p(x)z
′` for

some non negative integer z′ by Corollary 7.20. But also by Theorem 7.1, q(x) =

p(x)r
′(C)`+1, so Cz`+1 = p(x)z`+1. Thus p(x)z`+1 = u · p(x)z`+1 ∗ p(x)`.

By definition and an application of Lemma 7.11, p(x) = u′ ·
∑n

v
−1

i=0 dixv·i where u′

is a unit and d−
n
v . By Lemma 7.12, every nonzero coefficient y of p(x) satisfies y` = y.

Therefore, either p(x) = 1 and 1` = 1 or d1 = d is a nonzero coefficient of p(x) and

d` = 1.

30

Suppose p(x) = u ·
∑n

v
−1

i=0 dixv·i where u is a unit, d` = 1, and z ≥ r′(C). By

Theorem 7.1, g(x)z`+1 = q(x) · p(x)z
′` for some non negative integer z′. Therefore,

Cz`+1 = (p(x)z`+1) and C(z+1)`+1 = (p(x)(z+1)`+1). p(x)(z+1)`+1 = p(x)z` ∗ p(x)z`+1 =

p(x)z`+1 because every nonzero coefficient of p(x)z`+1 is multiplied by some y` = 1

from the corresponding coefficient of p(x)`. So Cz`+1 = (p(x)z`+1) = (p(x)(z+1)`+1) =

C(z+1)`+1.

Corollary 7.14. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn − a,

generator g, dimension k, pattern polynomial p(x) of dimension v. Then C1+` = C

if and only k|n and g = u ·
∑n

k
−1

i=0 dixk·i where u is a unit and d` = 1 (note since that

format has disjoint support, d−
n
k = a)

Proof. First suppose C = C`+1. Clearly, r′(C) = 0 so Cz`+1 = C1 for z = 0 has

z ≥ r′(C). Then g(x) is its own resultant polynomial, so g(x) = p(x)1 = p(x) and

k = v. By Theorem 7.13, p(x) = u ·
∑n

v
−1

i=0 dixv·i = g(x) for d` = 1.

Suppose g(x) = u ·
∑n

k
−1

i=0 dixk·i where u is a unit and d` = 1. By definition,

g(x) = p(x) then by Theorem 7.13, C(z+1)`+1 = Cz`+1 for z = 0. Hence C`+1 = C.

Theorem 7.15. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn − a,

generator g(x), dimension k and pattern polynomial p(x). Then |C1+z·`| = |C| = k if

and only if g(x) = p(x) (Thus C1+z·` = (g(x)1+z·`))

Proof. In the first direction, let |C1+z·`| = |C|. C is generated by B = {xig(x), 0 ≤ i <

k}. B has disjoint support otherwise without loss of generality ∃i < j ∈ {0, . . . , k−1}

31

and (xig(x))z·` ∗ (xjg(x)) 6= 0. But xig(x) ends in k − i− 1 zeroes, and by xjg(x) it

begins with j zeroes, so (xig(x))z·`(xjg(x)) has k+ (j− i)− 1 ≥ k consecutive zeroes.

Therefore, by Lemma 6.2, it is zero, which is a contradiction. Thus B has disjoint

support. Then by Lemma 7.11, g(x) = u ·
∑n

k
−1

i=0 dixk·i where u is a unit, k|n and

d−
n
k = a, so p(x) = g(x). Then by Theorem 7.1, C1+z·` = (p(x)1+z·`) = (g(x)1+z·`)

In the reverse direction, if g(x) = p(x) then C is generated by codewords of

pairwise disjoint support, so by Lemma 5.3, 1 ≥ r(C) so r′(C) = 0. Therefore,

|C| = |C1+z·`|. Then by Theorem 7.1, since g(x) is its own resultant polynomial,

C1+z·` = (p(x)1+z·`) = (g(x)1+z·`)

Lemma 7.16. Given any quasi-cyclic code C where |C| = k and given at least k

linearly independent code words c1, . . . , cj for j ≥ k, it is possible to determine g

s.t. (g) = C in O(k2n) operations. Furthermore, given C = (g(x)) it is possible to

determine q s.t. (q) = C1+z·` given a basis for C in O(n4log(z · `)) operations. Given

C = (g(x)) it is possible to acquire the resultant polynomial q(x) in O(n4log(n))

operations. Given C = (g(x)) it is possible to determine q s.t. (q) = C1+z·` given a

basis for C in O(n4log(n)+nlog(z · `)) operations. Note, while it is possible to encode

g(x) in roughly wt(coeff(g(x))) input length, when working with vectors of length n,

it is not unreasonable to want poly(n) time solution algorithms.

Proof. Form G′ by taking c1, . . . , ck and applying gaussian elimination. The kth row

of G′, gk will be the final nonzero row and will be the representation of sk−1g. It is

32

represented by (0k−1, 1, . . .). Thus by taking s−(k−1)gk, the possibility of multiplying

the shifted positions by a−1 is irrelevant since all such positions are zero. Then the

representation of g is s−(k−1)gk and given the vector representation of g, g(x) is easily

determined.

There are k steps to the gaussian elimination for k rows. In each step, the pivot

position moves to the right one. It takes O(k) operations to find the row from the

remaining rows that is nonzero in the pivot position. If none exist, then this extra

computation is wasted. But it only occurs at most O(n) times and O(k · n) doesn’t

effect the asymtotic runtime. If at least one row exists, it takes O(n) time to swap

the first remaining row and that row, and O(n) operations to multiply the new first

row by the appropriate value to have it begin with a leading 1. Then to reduce the

remaining rows, it takes O(n) time (one multiplication, and one subtraction) per row

for k rows, so O(k ·n) time. There are O(k) leading ones in G′, so this O(k ·n) penalty

is paid at most O(k) times for a total cost of O(k2 · n).

Given a basis of C, it is possible to determine a basis of C1+z·` through use the

method of repeated squaring to determine the basis for C,C2, C4, . . . until acquiring

Cb for b ≤ 1 + z · ` < 2b. Then create a product tree of the b = log(1 + z · `) at

most n×n matrix representations of the basis, including the Ce’s for e such that the

eth bit of 1 + z · ` is 1. This tree involves at most b products. For each product,

taking E ∗ F for n × n matrices E,F will create a n2 × n matrix. This takes O(n3)

time because there are O(n2) combination of rows, and the schur product of two rows

33

involves n multiplications. Then gaussian elimination is applied by focusing on O(n)

pivot positions, taking O(n2) operations to find a row with nonzero first position,

swap it to the first position, and multiply it by a value to make its first position

1. Or if none exists, there are no further operations on that pivot. Afterwords, it

takes O(n) operations (via a subtraction) to reduce each of the remaining O(n2) rows

accordingly. Thus each pivot costs O(n3) operations, and there are O(n) pivots. After

the final pivot is acquired, the final n2−n rows are removed to leave an n×n matrix.

Since, at any intermediate step, there can be at most n linearly independent thus

nonzero rows, this simplification is legitimate. Thus total number of operations is

O(n4). This computation is completed O(log(1 + z · `)) times, so total operational

cost is O(n4log(1 + z · `)).

Note that even though many intermediary powers of C are not congruent to 1

mod `, performing the Gaussian Elimination is justified. Linear codes are closed

under the schur product, so intermediary powers of C, as linear codes, are closed

under Gaussian Elimination. Furthermore, in each intermediate step, the rows kept

form a basis for the intermediate code, so any removed rows were superfluous.

Since r′(C) ≤ n it suffices to find r′(C) in O(n4log(n)) time, then one can obtain

q(x), the generator of Cr′(C)`+1 in O(n4log(n)) time as above. Using the method

of repeated squaring, C,C2, C4, . . . will encounter Cn in at most log(n) + 1 steps.

Continue and at each step compute the generating matrix until either the dimension

is n or the dimension doesn’t grow. Let b be the power such that either |Cb| = n or

34

|Cb| = |C2b|. Then b
2
≤ r(C) ≤ b and with the precomputed chain above, one can do

binary search to find the largest index i such that |Ci| = |Cb| on the interval [b
2
, b] and

check any particular index with one multiplication and Gaussian Elimination using

the already computed powers of C. b− b
2

= O(n), so it takes O(log(n)) such guesses

to obtain i = r(C) and for each guess takes O(n4) time. Given r(C) it is simple to

compute r′(C). Thus in O(n4log(n)) time, one can obtain r′(C) as desired. Then one

can use this in O(n4log(n)) time to obtain q(x).

It is possible determine the generating polynomial g(x) for C in O(n3) time re-

gardless of the input format (use Gaussian Elimination). If 1 + z · ` ≤ n, then it is

possible to determine C1+z·` in O(n4log(n)) operations. Otherwise 1 + z · ` > r′(C)

so compute p(x), the pattern polynomial of in O(n3 + n2) = O(n3log(n)) operations.

Then the generator for C1+z·` = {p(x)1+z·`}. Use repeated squaring of the at most

n nonzero positions of p(x), taking O(log(z · `)) operations on each such position,

to compute p(x)1+z·`. Thus it takes O(nlog(z · `)) additional operations. So total

number of operations if O(n4log(n) + nlog(z · `))

Lemma 7.17. Let C ⊂ Fn be an quasi-cyclic code with modulus f(x) = xn − a,

generator g(x), dimension k. If k > n/2 then |C`+1| = |C| or |C`+1| = n

Proof. If |C`+1| = |C| > n/2, then the Lemma holds. Otherwise, |C`+1| > |C|.

Consider G′ where g1 = (b1, . . . , bn), b1 = 1, bj = 0∀j ∈ {2, . . . , k}, and k > n
2
.

Let g = coeff(g(x)) = (c1, . . . , cn) where c1 = 1, cj = 0∀j ∈ {n − (k − 2), n} since

35

deg(g(x)) = n− k. Furthermore, k > n/2, thus 2k > n, so 2k− 1 = 2(k− 1) + 1 ≥ n.

Hence 1+ |{2, . . . , k}|+ |{n− (k−2), . . . , n}| = 1+2(k−1) ≥ n, so {1}∪{2, . . . , k}∪

{n− (k − 2), . . . , n} = {1, . . . , n}. Then g`1 ∗ g = (b1c1, . . . , bncn) = (1, 0n−1) because

b1 · c1 = 1 · 1 = 1 and ∀j ∈ {2, . . . , n}, j ∈ {2, . . . , k} ∪ {n − (k − 2), . . . , n}. Thus

(1, 0n−1) ∈ C`+1, so |C`+1| = n.

Lemma 7.18. It is possible for |C2| − |C| = 1.

Proof. The following will be a proof by example. Let F = GF (3) and f(x) = x6 − 1

(so ` = 1). Let C = (g(x)), g(x) = x4 + 2x3 + x + 2, so |C| = k = 2. C =

({(2, 1, 0, 2, 1, 0), (0, 2, 1, 0, 2, 1)}). Then C2 = ({(2, 1, 0, 2, 1, 0)∗(2, 1, 0, 2, 1, 0), (2, 1, 0, 2, 1, 0)∗

(0, 2, 1, 0, 2, 1)}) = ({(1, 1, 0, 1, 1, 0), (0, 2, 0, 0, 2, 0)}) = ({(1, 1, 0, 1, 1, 0), (0, 1, 0, 0, 1, 0)}) =

({(1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0)}) = ({(1, 0, 0, 1, 0, 0)}) = (1+x3). Thus |C2| = 6−3 =

3. So |C2| − |C| = 3− 2 = 1.

Lemma 7.19. In the cyclic case for 1n /∈ C,
∑n−1

i=0 sg = 0n

Proof. Suppose towards contradiction that
∑n−1

i=0 sg = (b, b, . . . , b) for some b 6= 0.

Then b−1 · (b, b, . . . , b) = 1n, which is a contradiction.

Corollary 7.20. Aside from the trivial subspace C = {0n} generated by g(x) = 0,

there is a bijection between subspaces C ⊂ Fn where C2 = C and factors of n where

for each factor k the corresponding C has dimension k. This corollary applies only

36

to when working over f(x) = xn − 1 (cyclic case). Note: Corollary 7.20 does not say

that if dim(C) = k and k | n then C2 = C.

Proof. Let m(k) =
∑n

k
−1

i=0 xk·i for k|n.

For any factor k of n, let g(x) = m(k) =
∑n

k
−1

i=0 xk·i. (xk − 1)g(x) = xn − 1 by

Lemma 7.6 and dim((g(x)) = k. Then g(x) is its own pattern polynomial, so by

Corollary 7.14, C2 = C. Thus m maps factors of n to nontrivial generators of C’s

of the form C2 = C. In doing so, m is injective because deg(m(k)) 6= deg(m(k′)) for

k′ 6= k.

Since ` = 1 so p(x) must satisfy its nonzero coefficients y has y` = y = 1. In this

case, by Corollary 7.14, the only relevant g(x) are such that g(x) = p(x). So for any

such g(x) that C2 = C, it is clear that g(x) =
∑n

k
−1

i=0 xk·i to be a pattern polynomial

of that desired form. But then g(x) = m(k). So m is surjective.

Thus m is bijective as desired.

Example 7.21. It is possible C 6⊆ C`+1. This is important since it is often the case

that C ⊆ C`+1. In particular, for a cyclic code C such that 1n ∈ C, then for any

c ∈ C, c ∗ (1n) = c ∈ C2 so C ⊆ C2.

Consider over F = GF (5) and the polynomial r(x) = x4−1. Since (1)1 = 1, ` = 1.

Then r(x) = (x + 1)(x + 2)(x + 3)(x + 4). Consider g(x) = (x + 1)(x + 2)(x + 4) =

x3 +2x2 +4x+3. deg(g(x)) = 3 and deg(r(x)) = 4 so rank(C) = 4−3 = 1. Therefore,

the basis is generated by Span([3, 4, 2, 1]). Hence the basis of C2 is generated by

37

Span([3, 4, 2, 1] ∗ [3, 4, 2, 1]) = Span([3 · 3, 4 · 4, 2 · 2, 1 · 1]) = Span([4, 1, 4, 1]).

Also, [1, 4, 1, 4] · 4 = [4, 1, 4, 1], so it is closed under shifts. [4, 1, 4, 1] is generated

by (x+ 2)(x+ 3)(x+ 4) = 4 + x+ 4x2 + x3, where x+ 1|g(x), x+ 1 6 |4 + x+ 4x2 + x3.

Note [3, 4, 2, 1] /∈ Span([4, 1, 4, 1]) since 2 · [4, 1, 4, 1] = [3, 2, 3, 2] which is necessary to

match first position, but then the rest of the positions are off. So C 6⊆ C2.

38

8 Conclusion and Future Directions

Overall, it is clear that quasi-cyclic codes have structured growth under the schur

product. One can efficiently identify the dimension the code will grow to, the gener-

ators of the powers of the code past r′(C), and when the code and or powers of the

code are invariant under the schur product. This inherent structure is important to

consider when developing and or performing cryptanalysis of cryptosystems involving

quasi-cyclic or related codes to avoid inducing or to exploit vulnerabilities related to

such properties.

The future directions of this work are twofold: improving the results proven in

this paper and extending the results to other areas. In the first category, can the

complexity bound for acquiring the pattern polynomial be improved from O(w2)?

Can r′(C) be computed in time faster then O(n3log(n))? Can the time used to

acquire generators of powers of C be written in terms of the input length rather

than n, perhaps by using sparse matrix operations? Can the chain of generators for

C,C`+1, C2`+1, · · · , Cr′(C)`+1 be obtained more efficiently through using properties of

the pattern polynomial? In the second category, can any of these results be extended

to the context of cyclic lattices? Can the techniques used in this paper be modified

to apply to similar yet different results in cyclic lattices? Micciancio and Regev

[MR08] wondered if one could safely use cyclic lattices in LWE-based cryptosystems

to improve efficiency. Can such extensions be used to justify or preclude doing so?

Can properties of quasi-cyclic codes under the schur product be used to design and

39

or break future cryptosystems which use quasi-cyclic codes?

40

References

[BCGO09] Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Ot-

mani. Reducing Key Length of the McEliece Cryptosystem, pages 77–97.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[COT17] A. Couvreur, A. Otmani, and J. P. Tillich. Polynomial time attack on

wild mceliece over quadratic extensions. IEEE Transactions on Information

Theory, 63(1):404–427, Jan 2017.

[FOPT10] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre

Tillich. Algebraic Cryptanalysis of McEliece Variants with Compact Keys,

pages 279–298. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[KO14] Wittawat Kositwattanarerk and Frédérique Oggier. Connections between

construction d and related constructions of lattices. Designs, Codes and

Cryptography, 73(2):441–455, 2014.

[McE78] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding

Theory. Deep Space Network Progress Report, 1978.

[MR08] Daniele Micciancio and Oded Regev. Lattice-based cryptography, 2008.

[Ran15] Hugues Randriambololona. On products and powers of linear codes under

componentwise multiplication. Contemporary Mathematics, 637, 2015.

41

[UL09] Valerie Gauthier Umana and Gregor Leander. Practical key recovery attacks

on two mceliece variants. Cryptology ePrint Archive, Report 2009/509,

2009.

