Chapter 16

Isometries, Local Isometries,
Riemannian Coverings and
Submersions, Killing Vector Fields

16.1 Isometries and Local Isometries

Recall that a local isometry between two Riemannian
manifolds M and N is a smooth map ¢: M — N so
that

<(d90)p<u>7 (d¢p><v>>g@(p) — <u7 U>p7

for all p € M and all u,v € T,M. An isometry is a
local isometry and a diffeomorphism.

By the inverse function theorem, if p: M — N is a local
isometry, then for every p € M, there is some open subset
U C M with p € U sothat ¢ | U is an isometry between
U and p(U).
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Also recall that if o: M — N is a diffeomorphism, then
for any vector field X on M, the vector field ©, X on N

(called the push-forward of X) is given by

(W*X>q — dgpgo_l(q)X“O_l(qwa for all q < N,

or equivalently, by

(X)) = dipp X (p), for all p € M.

For any smooth function h: N — R, for any ¢ € N, we
have

Xi(h)g = X(hogp)

v~ 1(q)

or
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It is natural to expect that isometries preserve all “nat-
ural” Riemannian concepts and this is indeed the case.
We begin with the Levi-Civita connection.

Proposition 16.1. If o: M — N 1is an isometry,
then

0.(VxY) =V, x(p.Y), for all X, Y € X(M),

where VxY 1is the Levi-Civita connection induced by
the metric on M and stmilarly on N.

As a corollary of Proposition 16.1, the curvature induced
by the connection is preserved; that is

0. R(X,Y)Z = R(p. X, 0.Y)0.Z,

as well as the parallel transport, the covariant derivative
of a vector field along a curve, the exponential map, sec-
tional curvature, Ricci curvature and geodesics.
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Actually, all concepts that are local in nature are pre-
served by local diffeomorphisms! So, except for the Levi-
Civita connection and the Riemann tensor on vectors, all
the above concepts are preserved under local diffeomor-
phisms.

Proposition 16.2. If o: M — N 1s a local 1sometry,
then the following concepts are preserved:

(1) The covariant derivative of vector fields along a
curve vy, that is

DX Dg,X
oo gr = "ar

for any vector field X along v, with (. X)(t) =
do,mY (t), for all t.

(2) Parallel translation along a curve. If P, denotes
parallel transport along the curve v and if Py,
denotes parallel transport along the curve o o 7y,
then

dpy(1) © Py = Ppoy 0 dpy ().
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(8) Geodesics. If v is a geodesic in M, then po-y is a
geodesic in N. Thus, if v, 18 the unique geodesic
with v(0) = p and 7,(0) = v, then

¥ O Yo = Vdppv;

wherever both sides are defined. Note that the do-
main of Yag,w may be strictly larger than the do-
main of v,. For example, consider the inclusion of
an open disc into R?.

(4) Exponential maps. We have
(p © €XP,, = EXPyy(p) odgpp,
wherever both sides are defined.

(5) Riemannian curvature tensor. We have

deyR(x,y)z = R(deyx, deyy)deyz,
forall z,y,z € T,M.
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(6) Sectional, Ricci, and Scalar curvature. We have
K(deyr, depy) = K(x,y)p,
for all linearly independent vectors x,y € 1T,M;
Ric(dppz, dpyy) = Ric(z, y),
for all x,y € T,M;
Sy = Sn o .

where Sy 1s the scalar curvature on M and Sy 1s
the scalar curvature on N.

A useful property of local diffeomorphisms is stated be-
low. For a proof, see O'Neill [44] (Chapter 3, Proposition
62):

Proposition 16.3. Let ¢, v: M — N be two local
isometries. If M is connected and if o(p) = ¥(p) and
dyp, = di, for some p € M, then ¢ = 1.
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16.2 Riemannian Covering Maps

The notion of covering map discussed in Section 7.3 (see
Definition 7.8) can be extended to Riemannian manifolds.

Definition 16.1. If M and N are two Riemannian man-
ifold, then a map m: M — N is a Riemannian covering
iff the following conditions hold:

(1) The map 7 is a smooth covering map.

(2) The map 7 is a local isometry.

Recall from Section 7.3 that a covering map is a local
diffeomorphism.

A way to obtain a metric on a manifold M is to pull-back
the metric g on a manifold N along a local diffeomor-
phism ¢: M — N (see Section 11.2).
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If ¢ is a covering map, then it becomes a Riemannian
covering map.

Proposition 16.4. Let m: M — N be a smooth cov-
ering map. For any Riemannian metric g on N, there
1$ a unique metric ™ g on M, so that ™ is a Rieman-
nian covering.

In general, if m: M — N is a smooth covering map, a
metric on M does not induce a metric on NV such that 7
is a Riemannian covering.

However, if N is obtained from M as a quotient by some
suitable group action (by a group G) on M, then the
projection m: M — M /G is a Riemannian covering.
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Because a Riemannian covering map is a local isometry,
we have the following useful result.

Proposition 16.5. Let m: M — N be a Riemannian
covering. Then, the geodesics of (M, g) are the pro-
jections of the geodesics of (N, h) (curves of the form
7oy, where v is a geodesic in N ), and the geodesics
of (N,h) are the liftings of the geodesics of (M, h)
(curves v in N such that wo~y is a geodesic of (M, h)).

As a corollary of Proposition 16.4 and Theorem 7.12, ev-
ery connected Riemannian manifold M has a simply con-
nected covering map m: M — M, where 7 is a Rieman-
nian covering.

Furthermore, if m: M — N is a Riemannian covering
and ¢: P — N is a local isometry, it is easy to see that
its lift . P — M is also a local isometry.
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In particular, the deck-transformations of a Riemannian
covering are isometries.

In general, a local isometry is not a Riemannian cover-
ing. However, this is the case when the source space is
complete.

Proposition 16.6. Let m: M — N be a local isome-
try with N connected. If M is a complete manaifold,
then m 18 a Riemannian covering map.
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16.3 Riemannian Submersions

Let m: M — B be a surjective submersion between two
Riemannian manifolds (M, g) and (B, h).

For every b € B, the fibre 771(b) is a Riemannian sub-
manifold of M, and for every p € 7w 1(b), the tangent
space T,m 1 (b) to m1(b) at p is Ker dm,.

The tangent space T,M to M at p splits into the two
components

T,M = Kerdm, ® (Ker dm,)",

where V, = Kerdm, is the vertical subspace of T,M
and H, = (Kerdm,)* (the orthogonal complement of V,
with respect to the metric g, on T,M) is the horizontal
subspace ot T, M.
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Any tangent vector u € T, M can be written uniquely as
U = uy + Uy,

with uy € H, and uy € V),

Because 7 1s a submersion, dm, gives a linear isomorphism
between H, and T;,B.

If dm, is an isometry, then most of the differential geom-
etry of B can be studied by “lifting” from B to M.

Definition 16.2. A map m: M — B between two Rie-
mannian manifolds (M, g) and (B, h) is a Riemannian
submersion if the following properties hold:

(1) The map m is surjective and a smooth submersion.

(2) For every b € B and every p € 7w !(b), the map dm,

is an isometry between the horizontal subspace H,, of
T,M and T),B.
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We will see later that Riemannian submersions arise when
B is a reductive homogeneous space, or when B is ob-
tained from a free and proper action of a Lie group acting
by isometries on B.

Every vector field X on B has a unique horizontal lift
X on M, defined such that for every p € m1(b),

X(p) = (dmy) " X (b).

Since dm, is an isomorphism between H, and 7,B, the
above condition can be written

droX = X o,

which means that X and X are m-related (see Definition
6.5).

The following proposition is proved in O’Neill [44] (Chap-

ter 7, Lemma 45) and Gallot, Hulin, Lafontaine [23] (Chap-
ter 2, Proposition 2.109).
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Proposition 16.7. Let m: M — B be a Rieman-

nian submersion between two Riemannian manifolds
(M,g) and (B, h).

(1) For any two vector fields X,Y € X(B), we have
(a) (X,Y)=(XY)om

(c) (VY )y = VxY, where V is the Levi-Civita

connection on M.

(2) If v is a geodesic in M such that +'(0) is a hori-
zontal vector, then v s horizontal geodesic in M
(which means that ~'(t) is a horizontal vector for
allt), and c = wo~ is a geodesic in B of the same
length than .

(3) For every p € M, if ¢ is a geodesic in B such that
c(0) = m(p), then for some € small enough, there
1s a unitque horizonal lift v of the restriction of c
to [—e, €], and v is a geodesic of M.

(4) If M is complete, then B is also complete.
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An example of a Riemannian submersion is 7: S?"* —
CP", where S?"*! has the canonical metric and CP" has
the Fubini-Study metric.

Remark: [t shown in Petersen [45] (Chapter 3, Section
5), that the connection VY on M is given by

— ——— 1
VY = VXy+§[X,Y]V.



758 CHAPTER 16. ISOMETRIES, SUBMERSIONS, KILLING VECTOR FIELDS

16.4 Isometries and Killing Vector Fields ®

Recall from Section 7?7 that if X is a vector field on a man-

ifold M, then for any (0, g)-tensor S € I'(M, (T*)®1(M)),
the Lie derivative Lx.S of S with respect to X is defined
by

d
(LxS)y = %(Q?S)p , €M,
t=0

where P, is the local one-parameter group associated with
X, and that by Proposition 77,

(LxS)(Xy,....,X,) =X(S(X1,...,Xy))

_ ZS(Xh...,[XyXi]a"'7XQ>7
1=1

for all Xy,..., X, € X(M).



16.4. ISOMETRIES AND KILLING VECTOR FIELDS ® 759

In particular, if S = g (the metric tensor), we get
LXg<Y7 Z) — X<<Y7 Z>> o <[X7 Y]a Z> R <Y7 [Xv Z]>7

where we write (X, Y) and g(X,Y") interchangeably.

If &, is an isometry (on its domain), then ®}(g) = g, so
LXg = 0.

In fact, we have the following result proved in O'Neill [44]
(Chapter 9, Proposition 23).

Proposition 16.8. For any vector field X on a Rie-
mannian manifold (M, g), the diffeomorphisms ®; in-
duced by the flow ® of X are isometries (on their
domain) iff Lxg = 0.
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Informally, Proposition 16.8 says that L xg measures how
much the vector field X changes the metric g.

Definition 16.3. Given a Riemannian manifold (M, g),
a vector field X is a Killing vector field iff the Lie deriva-
tive of the metric vanishes; that is, Lxg = 0.

Recall from Section 77 (see Proposition ?7) that the co-
variant derivative V x g of the Riemannian metric g on a
manifold M is given by

Vx(g)Y, Z2) = X({Y, Z)) — (VxY, Z) = (Y, VxZ),

for all X,Y,Z € X(M), and that the connection V on
M is compatible with ¢ iff Vx(g) = 0 for all X.
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Also, the covariant derivative V.X of a vector field X is
the (1, 1)-tensor defined so that

(VX)(Y) = VyX.
The above facts imply the following Proposition.

Proposition 16.9. Let (M, g) be a Riemannian man-
ifold and let V be the Levi—Civita connection on M
induced by g. For every vector field X on M, the
following conditions are equivalent:

(1) X is a Killing vector field; that is, Lxg = 0.

(2) X((Y,2)) = ([X,Y], 2) + (Y, [X, Z]) for allY,Z €
x(M).

(3)(Vy X, Z)+(VzX,Y) =0 for all Y, Z € X(M);
that is, VX 1s skew-adjoint relative to g.

Condition (3) shows that any parallel vector field is a
Killing vector field.
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Remark: It can be shown that if v is any geodesic in
M , then the restriction X, of X to v is a Jacobi field (see
Section 14.5), and that (X, ') is constant along v (see
O'Neill [44], Chapter 9, Lemma 26).

Since the Lie derivative Ly is R-linear in X and since
[LXa LY] — L[X,Y]?

the Killing vector fields on M form a Lie subalgebra
JCi(M) of the Lie algebra X(M) of vector fields on M.

However, unlike X(M ), the Lie algebra KCi(M) is finite-

dimensional.

In fact, the Lie subalgebra cKi(M) of complete Killing
vector fields is anti-isomorphic to the Lie algebra i(M) of

the Lie group Isom(M) of isometries of M (see Section
11.2 for the definition of Isom(M)).
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The following result is proved in O’Neill [44] (Chapter 9,
Lemma 28) and Sakai [49] (Chapter III, Lemma 6.4 and
Proposition 6.5).

Proposition 16.10. Let (M, g) be a connected Rie-
mannian manifold of dimension n (equip-ped with the
Levi—Civita connection on M induced by g). The Lie
algebra KCi(M) of Killing vector fields on M has di-
mension at most n(n +1)/2.

We also have the following result proved in O’Neill [44]
(Chapter 9, Proposition 30) and Sakai [49] (Chapter III,
Corollary 6.3).

Proposition 16.11. Let (M, g) be a Riemannian man-
ifold of dimension n (equipped with the Levi—Clivita
connection on M induced by g). If M is complete,
then every Killing vector fields on M 1is complete.
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The relationship between the Lie algebra i( M) and Killing
vector fields is obtained as follows.

For every element X in the Lie algebra i(M) of Isom(M )
(viewed as a left-invariant vector field), define the vector

field X" on M by

d

X (p) = 2 @ulp) P e M,

where t +— ¢; = exp(tX) is the one-parameter group
associated with X.

Because ¢, is an isometry of M, the vector field X is a
Killing vector field, and it is also easy to show that ()
is the one-parameter group of X .
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Since ¢y is defined for all ¢, the vector field X is com-
plete. The following result is shown in O’Neill [44] (Chap-
ter 9, Proposition 33).

Theorem 16.12. Let (M, g) be a Riemannian mani-
fold (equipped with the Levi—Civita connection on M
induced by g). The following properties hold:

(1) The set cKi(M) of complete Killing vector fields
on M is a Lie subalgebra of the Lie algebra KCi(M)
of Killing vector fields.

(2) The map X — X7 is a Lie anti-isomorphism be-
tween \(M) and cICi(M), which means that

XY= —[X,Y]H, XY €i(M).

For more on Killing vector fields, see Sakai [49] (Chapter
[TI, Section 6).

In particular, complete Riemannian manifolds for which
i(M) has the maximum dimension n(n + 1)/2 are char-
acterized.
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