
Chapter 16

Isometries, Local Isometries,
Riemannian Coverings and
Submersions, Killing Vector Fields

16.1 Isometries and Local Isometries

Recall that a local isometry between two Riemannian
manifolds M and N is a smooth map ' : M ! N so
that

h(d')p(u), (d'p)(v)i'(p) = hu, vip,

for all p 2 M and all u, v 2 TpM . An isometry is a
local isometry and a di↵eomorphism.

By the inverse function theorem, if ' : M ! N is a local
isometry, then for every p 2 M , there is some open subset
U ✓ M with p 2 U so that ' � U is an isometry between
U and '(U).
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Also recall that if ' : M ! N is a di↵eomorphism, then
for any vector field X on M , the vector field '⇤X on N
(called the push-forward of X) is given by

('⇤X)q = d''�1(q)X('�1(q)), for all q 2 N,

or equivalently, by

('⇤X)'(p) = d'pX(p), for all p 2 M.

For any smooth function h : N ! R, for any q 2 N , we
have

X⇤(h)q = X(h � ')'�1(q),

or

X⇤(h)'(p) = X(h � ')p.
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It is natural to expect that isometries preserve all “nat-
ural” Riemannian concepts and this is indeed the case.
We begin with the Levi-Civita connection.

Proposition 16.1. If ' : M ! N is an isometry,
then

'⇤(rXY ) = r'⇤X('⇤Y ), for all X, Y 2 X(M),

where rXY is the Levi-Civita connection induced by
the metric on M and similarly on N .

As a corollary of Proposition 16.1, the curvature induced
by the connection is preserved; that is

'⇤R(X, Y )Z = R('⇤X,'⇤Y )'⇤Z,

as well as the parallel transport, the covariant derivative
of a vector field along a curve, the exponential map, sec-
tional curvature, Ricci curvature and geodesics.
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Actually, all concepts that are local in nature are pre-
served by local di↵eomorphisms! So, except for the Levi-
Civita connection and the Riemann tensor on vectors, all
the above concepts are preserved under local di↵eomor-
phisms.

Proposition 16.2. If ' : M ! N is a local isometry,
then the following concepts are preserved:

(1) The covariant derivative of vector fields along a
curve �; that is

d'�(t)
DX

dt
=

D'⇤X

dt
,

for any vector field X along �, with ('⇤X)(t) =
d'�(t)Y (t), for all t.

(2) Parallel translation along a curve. If P� denotes
parallel transport along the curve � and if P'��
denotes parallel transport along the curve ' � �,
then

d'�(1) � P� = P'�� � d'�(0).
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(3) Geodesics. If � is a geodesic in M , then ' � � is a
geodesic in N . Thus, if �v is the unique geodesic
with �(0) = p and �0

v(0) = v, then

' � �v = �d'pv,

wherever both sides are defined. Note that the do-
main of �d'pv may be strictly larger than the do-
main of �v. For example, consider the inclusion of
an open disc into R2.

(4) Exponential maps. We have

' � expp = exp'(p) �d'p,

wherever both sides are defined.

(5) Riemannian curvature tensor. We have

d'pR(x, y)z = R(d'px, d'py)d'pz,

for all x, y, z 2 TpM.
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(6) Sectional, Ricci, and Scalar curvature. We have

K(d'px, d'py) = K(x, y)p,

for all linearly independent vectors x, y 2 TpM ;

Ric(d'px, d'py) = Ric(x, y)p

for all x, y 2 TpM ;

SM = SN � '.

where SM is the scalar curvature on M and SN is
the scalar curvature on N .

A useful property of local di↵eomorphisms is stated be-
low. For a proof, see O’Neill [44] (Chapter 3, Proposition
62):

Proposition 16.3. Let ', : M ! N be two local
isometries. If M is connected and if '(p) =  (p) and
d'p = d p for some p 2 M , then ' =  .
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16.2 Riemannian Covering Maps

The notion of covering map discussed in Section 7.3 (see
Definition 7.8) can be extended to Riemannian manifolds.

Definition 16.1. If M and N are two Riemannian man-
ifold, then a map ⇡ : M ! N is a Riemannian covering
i↵ the following conditions hold:

(1) The map ⇡ is a smooth covering map.

(2) The map ⇡ is a local isometry.

Recall from Section 7.3 that a covering map is a local
di↵eomorphism.

A way to obtain a metric on a manifold M is to pull-back
the metric g on a manifold N along a local di↵eomor-
phism ' : M ! N (see Section 11.2).
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If ' is a covering map, then it becomes a Riemannian
covering map.

Proposition 16.4. Let ⇡ : M ! N be a smooth cov-
ering map. For any Riemannian metric g on N , there
is a unique metric ⇡⇤g on M , so that ⇡ is a Rieman-
nian covering.

In general, if ⇡ : M ! N is a smooth covering map, a
metric on M does not induce a metric on N such that ⇡
is a Riemannian covering.

However, if N is obtained from M as a quotient by some
suitable group action (by a group G) on M , then the
projection ⇡ : M ! M/G is a Riemannian covering.
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Because a Riemannian covering map is a local isometry,
we have the following useful result.

Proposition 16.5. Let ⇡ : M ! N be a Riemannian
covering. Then, the geodesics of (M, g) are the pro-
jections of the geodesics of (N, h) (curves of the form
⇡ � �, where � is a geodesic in N), and the geodesics
of (N, h) are the liftings of the geodesics of (M, h)
(curves � in N such that ⇡�� is a geodesic of (M, h)).

As a corollary of Proposition 16.4 and Theorem 7.12, ev-
ery connected Riemannian manifold M has a simply con-
nected covering map ⇡ : fM ! M , where ⇡ is a Rieman-
nian covering.

Furthermore, if ⇡ : M ! N is a Riemannian covering
and ' : P ! N is a local isometry, it is easy to see that
its lift e' : P ! M is also a local isometry.
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In particular, the deck-transformations of a Riemannian
covering are isometries.

In general, a local isometry is not a Riemannian cover-
ing. However, this is the case when the source space is
complete.

Proposition 16.6. Let ⇡ : M ! N be a local isome-
try with N connected. If M is a complete manifold,
then ⇡ is a Riemannian covering map.



16.3. RIEMANNIAN SUBMERSIONS 753

16.3 Riemannian Submersions

Let ⇡ : M ! B be a surjective submersion between two
Riemannian manifolds (M, g) and (B, h).

For every b 2 B, the fibre ⇡�1(b) is a Riemannian sub-
manifold of M , and for every p 2 ⇡�1(b), the tangent
space Tp⇡�1(b) to ⇡�1(b) at p is Ker d⇡p.

The tangent space TpM to M at p splits into the two
components

TpM = Ker d⇡p � (Ker d⇡p)
?,

where Vp = Ker d⇡p is the vertical subspace of TpM
and Hp = (Ker d⇡p)? (the orthogonal complement of Vp

with respect to the metric gp on TpM) is the horizontal
subspace of TpM .
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Any tangent vector u 2 TpM can be written uniquely as

u = uH + uV ,

with uH 2 Hp and uV 2 Vp.

Because ⇡ is a submersion, d⇡p gives a linear isomorphism
between Hp and TbB.

If d⇡p is an isometry, then most of the di↵erential geom-
etry of B can be studied by “lifting” from B to M .

Definition 16.2. A map ⇡ : M ! B between two Rie-
mannian manifolds (M, g) and (B, h) is a Riemannian
submersion if the following properties hold:

(1) The map ⇡ is surjective and a smooth submersion.

(2) For every b 2 B and every p 2 ⇡�1(b), the map d⇡p

is an isometry between the horizontal subspace Hp of
TpM and TbB.
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We will see later that Riemannian submersions arise when
B is a reductive homogeneous space, or when B is ob-
tained from a free and proper action of a Lie group acting
by isometries on B.

Every vector field X on B has a unique horizontal lift
X on M , defined such that for every p 2 ⇡�1(b),

X(p) = (d⇡p)
�1X(b).

Since d⇡p is an isomorphism between Hp and TpB, the
above condition can be written

d⇡ � X = X � ⇡,

which means that X and X are ⇡-related (see Definition
6.5).

The following proposition is proved in O’Neill [44] (Chap-
ter 7, Lemma 45) and Gallot, Hulin, Lafontaine [23] (Chap-
ter 2, Proposition 2.109).
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Proposition 16.7. Let ⇡ : M ! B be a Rieman-
nian submersion between two Riemannian manifolds
(M, g) and (B, h).

(1) For any two vector fields X, Y 2 X(B), we have

(a) hX, Y i = hX, Y i � ⇡.
(b) [X, Y ]H = [X, Y ].

(c) (rXY )H = rXY , where r is the Levi–Civita
connection on M .

(2) If � is a geodesic in M such that �0(0) is a hori-
zontal vector, then � is horizontal geodesic in M
(which means that �0(t) is a horizontal vector for
all t), and c = ⇡ �� is a geodesic in B of the same
length than �.

(3) For every p 2 M , if c is a geodesic in B such that
c(0) = ⇡(p), then for some ✏ small enough, there
is a unique horizonal lift � of the restriction of c
to [�✏, ✏], and � is a geodesic of M .

(4) If M is complete, then B is also complete.
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An example of a Riemannian submersion is ⇡ : S2n+1 !
CPn, where S2n+1 has the canonical metric and CPn has
the Fubini–Study metric.

Remark: It shown in Petersen [45] (Chapter 3, Section
5), that the connection rXY on M is given by

rXY = rXY +
1

2
[X, Y ]V .
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16.4 Isometries and Killing Vector Fields ~

Recall from Section ?? that ifX is a vector field on a man-
ifoldM , then for any (0, q)-tensor S 2 �(M, (T ⇤)⌦q(M)),
the Lie derivative LXS of S with respect to X is defined
by

(LXS)p =
d

dt
(�⇤

tS)p

����
t=0

, 2 M,

where �t is the local one-parameter group associated with
X , and that by Proposition ??,

(LXS)(X1, . . . , Xq) = X(S(X1, . . . , Xq))

�
qX

i=1

S(X1, . . . , [X, Xi], . . . , Xq),

for all X1, . . . , Xq 2 X(M).
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In particular, if S = g (the metric tensor), we get

LXg(Y, Z) = X(hY, Zi) � h[X, Y ], Zi � hY, [X, Z]i,

where we write hX, Y i and g(X, Y ) interchangeably.

If �t is an isometry (on its domain), then �⇤
t (g) = g, so

LXg = 0.

In fact, we have the following result proved in O’Neill [44]
(Chapter 9, Proposition 23).

Proposition 16.8. For any vector field X on a Rie-
mannian manifold (M, g), the di↵eomorphisms �t in-
duced by the flow � of X are isometries (on their
domain) i↵ LXg = 0.
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Informally, Proposition 16.8 says that LXg measures how
much the vector field X changes the metric g.

Definition 16.3.Given a Riemannian manifold (M, g),
a vector field X is a Killing vector field i↵ the Lie deriva-
tive of the metric vanishes; that is, LXg = 0.

Recall from Section ?? (see Proposition ??) that the co-
variant derivative rXg of the Riemannian metric g on a
manifold M is given by

rX(g)(Y, Z) = X(hY, Zi) � hrXY, Zi � hY, rXZi,

for all X, Y, Z 2 X(M), and that the connection r on
M is compatible with g i↵ rX(g) = 0 for all X .
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Also, the covariant derivative rX of a vector field X is
the (1, 1)-tensor defined so that

(rX)(Y ) = rY X.

The above facts imply the following Proposition.

Proposition 16.9. Let (M, g) be a Riemannian man-
ifold and let r be the Levi–Civita connection on M
induced by g. For every vector field X on M , the
following conditions are equivalent:

(1) X is a Killing vector field; that is, LXg = 0.

(2) X(hY, Zi) = h[X, Y ], Zi+ hY, [X, Z]i for all Y, Z 2
X(M).

(3) hrY X, Zi + hrZX, Y i = 0 for all Y, Z 2 X(M);
that is, rX is skew-adjoint relative to g.

Condition (3) shows that any parallel vector field is a
Killing vector field.
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Remark: It can be shown that if � is any geodesic in
M , then the restriction X� of X to � is a Jacobi field (see
Section 14.5), and that hX, �0i is constant along � (see
O’Neill [44], Chapter 9, Lemma 26).

Since the Lie derivative LX is R-linear in X and since

[LX, LY ] = L[X,Y ],

the Killing vector fields on M form a Lie subalgebra
Ki(M) of the Lie algebra X(M) of vector fields on M .

However, unlike X(M), the Lie algebra Ki(M) is finite-
dimensional.

In fact, the Lie subalgebra cKi(M) of complete Killing
vector fields is anti-isomorphic to the Lie algebra i(M) of
the Lie group Isom(M) of isometries of M (see Section
11.2 for the definition of Isom(M)).
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The following result is proved in O’Neill [44] (Chapter 9,
Lemma 28) and Sakai [49] (Chapter III, Lemma 6.4 and
Proposition 6.5).

Proposition 16.10. Let (M, g) be a connected Rie-
mannian manifold of dimension n (equip-ped with the
Levi–Civita connection on M induced by g). The Lie
algebra Ki(M) of Killing vector fields on M has di-
mension at most n(n + 1)/2.

We also have the following result proved in O’Neill [44]
(Chapter 9, Proposition 30) and Sakai [49] (Chapter III,
Corollary 6.3).

Proposition 16.11. Let (M, g) be a Riemannian man-
ifold of dimension n (equipped with the Levi–Civita
connection on M induced by g). If M is complete,
then every Killing vector fields on M is complete.



764 CHAPTER 16. ISOMETRIES, SUBMERSIONS, KILLING VECTOR FIELDS

The relationship between the Lie algebra i(M) and Killing
vector fields is obtained as follows.

For every element X in the Lie algebra i(M) of Isom(M)
(viewed as a left-invariant vector field), define the vector
field X+ on M by

X+(p) =
d

dt
('t(p))

����
t=0

, p 2 M,

where t 7! 't = exp(tX) is the one-parameter group
associated with X .

Because 't is an isometry of M , the vector field X+ is a
Killing vector field, and it is also easy to show that ('t)
is the one-parameter group of X+.
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Since 't is defined for all t, the vector field X+ is com-
plete. The following result is shown in O’Neill [44] (Chap-
ter 9, Proposition 33).

Theorem 16.12. Let (M, g) be a Riemannian mani-
fold (equipped with the Levi–Civita connection on M
induced by g). The following properties hold:

(1) The set cKi(M) of complete Killing vector fields
on M is a Lie subalgebra of the Lie algebra Ki(M)
of Killing vector fields.

(2) The map X 7! X+ is a Lie anti-isomorphism be-
tween i(M) and cKi(M), which means that

[X+, Y +] = �[X, Y ]+, X, Y 2 i(M).

For more on Killing vector fields, see Sakai [49] (Chapter
III, Section 6).

In particular, complete Riemannian manifolds for which
i(M) has the maximum dimension n(n + 1)/2 are char-
acterized.
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