Single View Metrology

Slides taken from Steve Seitz, A. Efros

Applications of projective geometry

- Criminisi et al., "Single View Metrology", ICCV 1999
- Other methods
 - Horry et al., "Tour Into the Picture", SIGGRAPH 96
 - Shum et al., CVPR 98
 - ...

Measurements on planes

Approach: unwarp then measure

What kind of warp is this?

A Homography

Image rectification, and measurement

Our old friend – the homography

Need 4 reference points with world coordinates

$$p = (x,y)$$

 $p' = (X,Y,0)$

Vanishing points

- Vanishing point
 - projection of a point at infinity

Vanishing points (2D)

Vanishing points

Properties

- Any two parallel lines have the same vanishing point
- The ray from C through v point is parallel to the lines
- An image may have more than one vanishing point

Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the horizon line
 - also called vanishing line
 - Note that different planes define different vanishing lines

Computing vanishing lines

Properties

- I is intersection of horizontal plane through C with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as C project to I
- Provides way of comparing height of objects in the scene

Fun with vanishing points

Perspective cues

Perspective cues

Perspective cues

Comparing heights

Measuring height

Computing vanishing points (from lines)

• Intersect p_1q_1 with p_2q_2 $v = (p_1 \times q_1) \times (p_2 \times q_2)$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by <u>Bob Collins</u> for one good way of doing this:
 - http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Criminisi '99

Measuring height without a ruler

Compute Y from image measurements

Need more than vanishing points to do this

Measuring height

Measuring height

What if the point on the ground plane $\mathbf{b_0}$ is not known?

- Here the guy is standing on the box
- Use one side of the box to help find $\mathbf{b_0}$ as shown above

What if v_z is not infinity?

The cross ratio

- A Projective Invariant
 - Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

$$\frac{\|\mathbf{P}_{3} - \mathbf{P}_{1}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{3} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{1}\|}$$

$$\mathbf{P}_i = \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

Can permute the point ordering

$$\frac{\|\mathbf{P}_{1} - \mathbf{P}_{3}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{1} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{3}\|}$$

• 4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

Measuring height

$$\frac{\|\mathbf{T} - \mathbf{B}\| \|\infty - \mathbf{R}\|}{\|\mathbf{R} - \mathbf{B}\| \|\infty - \mathbf{T}\|} = \frac{H}{R}$$

scene cross ratio

$$\frac{\|\mathbf{t} - \mathbf{b}\| \|\mathbf{v}_Z - \mathbf{r}\|}{\|\mathbf{r} - \mathbf{b}\| \|\mathbf{v}_Z - \mathbf{t}\|} = \frac{H}{R}$$

image cross ratio

scene points represented as
$$P = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
 image

$$\begin{bmatrix} Y \\ Z \end{bmatrix}$$
 image points as $\mathbf{p} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

Measuring height

Measuring heights of people

Here we go!

Forensic Science: measuring heights of suspects

Assessing geometric accuracy

Are the heights of the 2 groups of people consistent with each other?

Flagellation,
Piero della Francesca

Estimated relative heights