CIS 194: Homework 5
Due Monday, 18 February

¢ Files you should submit: Calc.hs, containing a module of the
same name.

As we saw in class, Haskell’s type classes provide ad-hoc polymor-
phism, that is, the ability to decide what to do based on the type of an
input. This homework explores one interesting use of type classes in
constructing domain-specific languages.

Expressions

On day one of your new job as a software engineer, you've been
asked to program the brains of the company’s new blockbuster prod-
uct: a calculator. But this isn’t just any calculator! Extensive focus
group analysis has revealed that what people really want out of their
calculator is something that can add and multiply integers. Anything
more just clutters the interface.

Your boss has already started by modeling the domain with the
following data type of arithmetic expressions:

data ExprT = Lit Integer
| Add ExprT ExprT
| Mul ExprT ExprT
deriving (Show, Eq)

This type is capable of representing expressions involving integer
constants, addition, and multiplication. For example, the expression
(2 +3) x 4 would be represented by the value

Mul (Add (Lit 2) (Lit 3)) (Lit 4).

Your boss has already provided the definition of ExprT in ExprT.hs,
so as usual you just need to add import ExprT to the top of your file.
However, this is where your boss got stuck.



Exercise 1
Write Version 1 of the calculator: an evaluator for ExprT, with the
signature

eval :: ExprT -> Integer

For example, eval (Mul (Add (Lit 2) (Lit 3)) (Lit 4)) == 26.

Exercise 2

The Ul department has internalized the focus group data and is
ready to synergize with you. They have developed the front-facing
user-interface: a parser that handles the textual representation of the
selected language. They have sent you the module Parser.hs, which
exports parseExp, a parser for arithmetic expressions. If you pass
the constructors of ExprT to it as arguments, it will convert Strings
representing arithmetic expressions into values of type ExprT. For
example:

*Calc> parseExp Lit Add Mul "(2+3)x4"
Just (Mul (Add (Lit 2) (Lit 3)) (Lit 4))
*Calc> parseExp Lit Add Mul "2+3x4"

Just (Add (Lit 2) (Mul (Lit 3) (Lit 4)))
*Calc> parseExp Lit Add Mul "2+3x"
Nothing

Leverage the assets of the Ul team to implement the value-added
function

evalStr :: String -> Maybe Integer

which evaluates arithmetic expressions given as a String, produc-
ing Nothing for inputs which are not well-formed expressions, and
Just n for well-formed inputs that evaluate to n.

Exercise 3

Good news! Early customer feedback indicates that people really
do love the interface! Unfortunately, there seems to be some disagree-
ment over exactly how the calculator should go about its calculating
business. The problem the software department (i.e. you) has is that
while ExprT is nice, it is also rather inflexible, which makes catering
to diverse demographics a bit clumsy. You decide to abstract away
the properties of ExprT with a type class.

Create a type class called Expr with three methods called 1it, add,
and mul which parallel the constructors of ExprT. Make an instance of
Expr for the ExprT type, in such a way that

CIS 194: HOMEWORK 5 2



mul (add (lit 2) (lit 3)) (lit 4) :: ExprT
== Mul (Add (Lit 2) (Lit 3)) (Lit 4)

Think carefully about what types 1it, add, and mul should have. It
may be helpful to consider the types of the ExprT constructors, which
you can find out by typing (for example)

xCalc> :t Lit
at the ghci prompt.
Remark. Take a look at the type of the foregoing example expression:

*Calc> :t mul (add (lit 2) (lit 3)) (lit 4)
Expr a => a

What does this mean? The expression mul (add (lit 2) (lit 3)) (lit 4)
has any type which is an instance of the Expr type class. So writing it
by itself is ambiguous: GHC doesn’t know what concrete type you
want to use, so it doesn’t know which implementations of mul, add,
and lit to pick.
One way to resolve the ambiguity is by giving an explicit type
signature, as in the above example. Another way is by using such an
expression as part of some larger expression so that the context in
which it is used determines the type. For example, we may write a
function reify as follows:

reify :: ExprT -> ExprT
reify = id

To the untrained eye it may look like reify does no actual work!
But its real purpose is to constrain the type of its argument to ExprT.
Now we can write things like

reify $ mul (add (lit 2) (lit 3)) (lit 4)

at the ghci prompt.

Exercise 4

The marketing department has gotten wind of just how flexible
the calculator project is and has promised custom calculators to some
big clients. As you noticed after the initial roll-out, everyone loves the
interface, but everyone seems to have their own opinion on what the
semantics should be. Remember when we wrote ExprT and thought
that addition and multiplication of integers was pretty cut and dried?
Well, it turns out that some big clients want customized calculators
with behaviors that they have decided are right for them.

The point of our Expr type class is that we can now write down
arithmetic expressions once and have them interpreted in various
ways just by using them at various types.

CIS 194: HOMEWORK 5 3



Make instances of Expr for each of the following types:

* Integer — works like the original calculator

e Bool — every literal value less than or equal to 0 is in-

terpreted as False, and all positive Integers

are interpreted as True; “addition” is logical o,

“multiplication” is logical and

e MinMax — “addition” is taken to be the max function, while

“multiplication” is the min function

* Mod7 — all values should be in the ranage 0...6, and

all arithmetic is done modulo 7; for example,
543=1.

The last two variants work with Integers internally, but in order

to provide different instances, we wrap those Integers in newtype

wrappers. These are used just like the data constructors we’ve seen

before.
newtype MinMax = MinMax Integer deriving (Eq, Show)
newtype Mod7 = Mod7 Integer deriving (Eq, Show)

Once done, the following code should demonstrate our family of

calculators:

testExp :: Expr a => Maybe a

testExp = parseExp lit add mul "(3 * -4) + 5"

testInteger = testExp ::
testBool = testExp ::
testMM = testExp ::
testSat = testExp ::

Maybe Integer
Maybe Bool
Maybe MinMax
Maybe Mod7

Try printing out each of those tests in ghci to see if things are

working. It’s great how easy it is for us to swap in new semantics for
the same syntactic expression!

You must complete at least one of the following two exercises:

Exercise 5 (do this OR exercise 6)
The folks down in hardware have finished our new custom CPU,

so we’d like to target that from now on. The catch is that a stack-

based architecture was chosen to save money. You need to write a

CIS 194: HOMEWORK 5 4



version of your calculator that will emit assembly language for the
New Processor.

The hardware group has provided you with StackVM.hs, which
is a software simulation of the custom CPU. The CPU supports six
operations, as embodied in the StackExp data type:

data StackExp = PushI Integer
| PushB Bool

| Add

| Mul

| And

| Or

deriving Show

type Program = [StackExp]

PushI and PushB push values onto the top of the stack, which can
store both Integer and Bool values. Add, Mul, And, and Or each pop
the top two items off the top of the stack, perform the appropriate
operation, and push the result back onto the top of the stack. For
example, executing the program

[PushB True, PushI 3, PushI 6, Mul]

will result in a stack holding True on the bottom, and 18 on top of
that.

If there are not enough operands on top of the stack, or if an op-
eration is performed on operands of the wrong type, the processor
will melt into a puddle of silicon goo. For a more precise specifica-
tion of the capabilities and behavior of the custom CPU, consult the
reference implementation provided in StackVM. hs.

Your task is to implement a compiler for arithmetic expressions.
Simply create an instance of the Expr type class for Program, so that
arithmetic expressions can be interpreted as compiled programs. For
any arithmetic expression exp :: Expr a => a it should be the case
that

stackVM exp == Right [IVal exp]

Note that in order to make an instance for Program (which is a
type synonym) you will need to enable the TypeSynonymInstances
language extension, which you can do by adding

{-# LANGUAGE TypeSynonymInstances #-}

as the first line in your file.
Finally, put together the pieces you have to create a function

CIS 194: HOMEWORK 5 5



compile :: String -> Maybe Program

which takes Strings representing arithmetic expressions and com-
piles them into programs that can be run on the custom CPU.

Exercise 6 (do this OR exercise 5)

Some users of your calculator have requested the ability to give
names to intermediate values and then reuse these stored values
later.

To enable this, you first need to give arithmetic expressions the
ability to contain variables. Create a new type class HasVars a which
contains a single method var :: String -> a. Thus, types which are
instances of HasVars have some notion of named variables.

Start out by creating a new data type VarExprT which is the same
as ExprT but with an extra constructor for variables. Make VarExprT
an instance of both Expr and HasVars. You should now be able to
write things like

*Calc> add (lit 3) (var "x") :: VarExprT

But we can’t stop there: we want to be able to interpret expres-
sions containing variables, given a suitable mapping from variables
to values. For storing mappings from variables to values, you should
use the Data.Map module. Add

import qualified Data.Map as M

at the top of your file. The qualified import means that you must
prefix M. whenever you refer to things from Data.Map. This is stan-
dard practice, since Data.Map exports quite a few functions with
names that overlap with names from the Prelude. Consult the
Data.Map documentation to read about the operations that are sup-
ported on Maps.

Implement the following instances:

instance HasVars (M.Map String Integer -> Maybe Integer)

instance Expr (M.Map String Integer -> Maybe Integer)

The first instance says that variables can be interpreted as func-
tions from a mapping of variables to Integer values to (possibly)
Integer values. It should work by looking up the variable in the
mapping.

The second instance says that these same functions can be inter-
preted as expressions (by passing along the mapping to subexpres-
sions and combining results appropriately).

CIS 194: HOMEWORK 5 6

http://hackage.haskell.org/
packages/archive/containers/latest/
doc/html/Data-Map.html

Note: to write these instances you will need to enable the FlexibleInstances

language extension by putting


http://hackage.haskell.org/packages/archive/containers/latest/doc/html/Data-Map.html
http://hackage.haskell.org/packages/archive/containers/latest/doc/html/Data-Map.html
http://hackage.haskell.org/packages/archive/containers/latest/doc/html/Data-Map.html

{-# LANGUAGE FlexibleInstances #-}

as the first line in your file.
Once you have created these instances, you should be able to test
them as follows:

withVars :: [(String, Integer)]
-> (M.Map String Integer -> Maybe Integer)
-> Maybe Integer

withVars vs exp = exp $ M.fromList vs

*Calc> :t add (lit 3) (var "x")
add (lit 3) (var "x") :: (Expr a, HasVars a) => a
*Calc> withVars [("x", 6)] $ add (lit 3) (var "x")
Just 9
*Expr> withVars [("x", 6)] $ add (lit 3) (var "y")
Nothing
*Calc> withVars [("x", 6), ("y", 3)]

$ mul (var "x") (add (var "y") (var "x"))
Just 54

CIS 194: HOMEWORK 5 7



	Expressions

