
Understanding the Limitations of Using
Large Language Models for Text Generation

Daphne Ippolito
A DISSERTATION

in
Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in

Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2021

Supervisor of Dissertation
Chris Callison-Burch, Professor, Computer and Information Science
Douglas Eck, Senior Research Director, Google Research

Graduate Group Chairperson
Mayur Naik, Professor of Computer and Information Science

Dissertation Committee
Lyle Ungar, Professor, Computer and Information Science
Dan Roth, Professor, Computer and Information Science
Marianna Apidianaki, Professor, Computer and Information Science
David Grangier, Research Scientist, Google Brain



Understanding the Limitations of Using
Large Language Models for Text Generation
© COPYRIGHT
2021
Daphne Ippolito

This work is licensed under the
Creative Commons Attribution
NonCommercial-ShareAlike 3.0
License
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/


iii



A C K N O W L E D G E M E N T

I am deeply indebted to my advisors Chris Callison-Burch and Douglas Eck, who believed in me and
my ability to conduct worthwile research long before I believed in it myself, and who encouraged me to
pursue an unconventional PhD. I am also very thankful to committee members; I especially appreciate
Marianna Apidianaki for her astute feedback on paper drafts and presentations, David Grangier for our many
brainstorming conversations, Dan Roth for his insights into the field of NLP, and Lyle Ungar for convincing
me to try my hand at NLP research.

This dissertation would not have been possible without the support of my many friends and collegaues at
Penn, incuding but not limited to Alyssa Hwang, Arun Kiribarajan, Barry Slaff, Bryan Li, Caleb Stanford,
Clark Zhang, Harry Zhang, Joao Sedoc, Krzysztof Jordan, Liam Dugan, Luke Valenta, Marcella Hastings,
Maria Kustikova, Reno Kriz, Siddharth Mysore, Stephen Philips, and Veronica Qing Lyu. A special thanks to
Joao, whose class on dialog systems started me on the path to this dissertation, and to Alyssa for keeping me
on task while writing it. This dissertation would also not have been possible without my many collaborators,
mentors, and question-answerers at Google, including but not limited to Adam Roberts, Andy Coenen, Ann
Yuan, Anna Huang, Carey Radebaugh, Chiyuan Zhang, Daniel Duckworth, David Grangier, Emily Reif, Fjord
Hawthorne, Hugh Zhang, Ian Simons, Katherine Lee, Matthew Jagielski, Nicholas Carlini, Noah Constant,
Noah Fiedel, and Sehmon Burnam.

Finally, I would like to thank my friends and family who have supported me through the entire PhD process,
and in particular, Yun William Yu, who has helped me in every facet of becoming a successful and happy
researcher.

iv



Understanding the Limitations of Using
Large Language Models for Text Generation

A B S T R A C T

State-of-the-art neural language models are capable of generating incredibly fluent English text. This
success provides opportunities for novel forms of interaction, where human writers work collaboratively
with a natural-language generation system toward a set of goals. However, it also poses several challenges.
Evaluating and comparing the skill of different open-ended text generation systems is challenging, and
generated text can have negative societal impact if it proliferates and people are not able to detect it. In this
dissertation, I introduce a detection-based evaluation task that can be used to investigate the tradeoff between
generating high-quality and generating diverse text. I also show how large neural language models’ capability
of memorizing large swaths of their training data complicates our ability to evaluate their skill at generating
high-quality novel text. I also show how, despite these challenges, neural language models can be successfully
employed to support creative writing tasks. In particular, I describe methods for performing style transfer
into any user-provided style and for efficiently supporting fill-in-the-blank operations in addition to the more
standard continuation operation. Finally, I present an interactive writing tool we built which allows creative
writers to collaborate with a natural language generation system to craft stories. Users studies with both
novice and professional writers provide insights into the strengths and limitations of applying natural language
generation systems in real-world settings.
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1 I N T R O D U C T I O N

One of the oldest yet most elusive promises of AI is computers that can converse with humans, not just via
rigidly structured templates and programming languages, but in natural language. In 1950, Alan Turing, one
of the fathers of modern computing, framed this goal as an imitation game–computers ought to be able to
imitate real human interaction so well that “an average interrogator will not have more than 70 per cent,
chance of making the right identification after five minutes of questioning.” He expected that by 1950 this
game would be solved.

Natural Language Generation (NLG) is a critical component to solving the imitation game. NLG is the task
of writing novel text in a human language such as English. Improvements over the last half-decade have led
to natural language generation systems which are capable of producing incredibly fluent text. These systems
have been applied to practical domains such as machine translation and text summarization and simplification,
but they have also been applied to more fanciful ones, such as story generation, video games development,
and tooling for creating writing.

AI-assisted creative writing is a particularly interesting testbed for how far we have come toward achieving
Turing’s goal. Unlike in machine translation or summarization, where it is critical that the generated text is
factual and stays faithful to the source material, in creative domains, the "hallucinations" and unusual word
choices that are pervasive in modern NLG may be beneficial to a creative writer’s process. Indeed, ideation
tools, such as decks of cards which suggest writing topics, are commonplace in creative writing circles. The
creative writing domain allows us to evaluate whether NLG systems are useful for accomplishing real writing
tasks and whether systems can be easily controlled by non-technical users. This allows us to more holistically
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introduction 2

evaluate the strengths and limitations of machine-generated text than the narrowly targeted evaluation tasks
typically employed in the academic literature.

Before discussing the applications of assisted writing, this thesis first examines two important considerations
around the use of modern NLG systems. Modern NLG relies on neural language models, neural networks
trained on billions of words of text in order to represent human language. Chapter 2 gives an overview of how
these systems work. Understanding the limitations of these language models and the nature of the text they
are capable of generating is crucial to the ultimate use of these systems in real applications.
A significant limitation for creative applications like Wordcraft is the difficulty in generating text that is

diverse (containing uncommon and interesting words and phrases) and high quality (as perceived by human
readers). Very often, practitioners choose text generation startegies that err on the side of human-perceived
quality at the expense of lexical diversity. This decision leaves subtle signatures in the generated text which
make it easy for automatic classifiers to distinguish it from genuine human-written text.

Chapter 3 focuses on this challenge and its ramifications to the detectability of generated text. The prolifer-
ation of machine-generated text, especially when it lacks attribution, is of significant concern to the public,
and understanding detectability is also imperative because it gives us a proxy for how far along NLG systems
are at fooling humans and whether undesired use of machine-generated text can be mitigated. In this chapter,
I measure the ability of humans as well as automatic systems to detect machine-generated text, and show the
connection between detectability and the diversity-quality tradeoff in generated text.

One difficulty in studying human ability to detect machine-generated text is that it can be very difficult to
collect annotations. Many of the errors NLG systems make are subtle and require closely reading several
sentences of text to be able to identify. Common strategies for soliciting human annotators, such as paying
crowd workers a fixed dollar amount per annotation, do not tend to yield useful annotations since annotators
are not incentivized to spend the extra time to do a close read. In order to be able to study human detection
ability at scale, we built the Real or Fake Text game (RoFT), a website that gamifies the task of identifying
machine-generated text [40]. The RoFT platform allowed us to collect over 40,000 annotations of whether
players could correctly identify when a passage of text transitioned from being human-written to being



introduction 3

machine-generated . Chapter 3.3 presents a detailed analysis of the factors we found that most impacted
detectability.
Of course, machine-generated text is most undetectable when it looks exactly like its training data. Large

language models are worryingly capable of memorizing and regurgitating significant amounts of their training
data. For example, GPT-3, a popular model that has already been incorporated into several products, when
prompted with the first sentence of Harry Potter or Lord of the Rings will accurately generate the first several
paragraphs of each book. This behaviour is especially problematic for the domain of AI-assisted creative
writing, as writers using tools such as Wordcraft have the expectation that the generations they are being
shown are unique and not plagiarized. Memorization also makes the task of studying the detectability of
generated text more challenging. If an NLG system generates Chapter 1 of Harry Potter, should this text be
labeled as human-written or machine-generated? Chapter 4 focuses on this question of memorization. First, we
show how performing thorough deduplication of training data results in models that are less likely to exhibit
memorization. Then we conduct experiments showing how observable memorization scales with respect
to the number of times a sequence occurs in the training set, the model size, and the length of conditioning
prompt [22].
Finally, Chapter 5 describes my contributions to the field of AI-assisted creative writing. It discusses the

importance of introducing controllability into natural language generation systems–providing writers the
ability to dictate what kind of text gets generated and decide how it interfaces with what they might have
already written. In particular, we introduce methods for efficiently supporting a fill-in-the-blank paradigm,
where a writer can insert text into any position of their current text [66]. We also describe a simple recipe for
supporting style-transfer into any user-defined style without the need for costly training data acquisition and
test-specific model training. Both these approaches are incorporated into Wordcraft, an AI-augmented text
processor that provides several interfaces for writers to get feedback and suggestions from an NLG system.
In user studies with both amateur and skilled writers, we found Wordcraft to be a valuable assistive tool for
creative writing.
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1.1 thesis statement

In this thesis, I argue that we need to build a deeper understanding of neural network-powered language
generation systems before they are safe to deploy these systems widely. To thwart NLG systems being used in
ways that are detrimental to society, it is crucial to understand how machine-generated text differs from the
text a human would write given the same writing task. My research focuses on two such differences: (1) how
the word choices made by NLG systems cause generated text to be distinguishable from human-written text,
and (2) the tendency of NLG systems to plagiarize verbatim from their training data when asked to produce
novel content. Both of these issues make it difficult to evaluate machine-generated text. In the first case, the
tradeoff between generating high-quality versus generating lexically diverse text makes it challenging to
simultaneously optimize for text that is pleasing to human readers and text that is statistically indistinguishable
from human-written text. In the second case, memorization leads to us over-representing the strength of NLG
systems by attributing generalization ability to what is actually memorization ability. To this end, I argue that
we should be evaluating NLG systems holistically as part of larger tools meant to assist human writers in
tasks they wish to accomplish (in addition to evaluating on isolated individual tasks). I present a case study
evaluation of human-AI writing collaboration in the domain of creative writing.

1.2 publications presented

The work described in this thesis has been published in several conference papers. In all cases, the work was
completed jointly with collaborators at University of Pennsylvania and/or Google Research. At the end of
each chapter section, I include a summary of my primary contributions to the work.



1.2 publications presented 5

∙ Daphne Ippolito, Reno Kriz, João Sedoc, Maria Kustikova, and Chris Callison-Burch. “Comparison of
Diverse Decoding Methods from Conditional Language Models.” In: Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics. 2019, pp. 3752–3762

∙ Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. “Automatic Detection of
Generated Text is Easiest when Humans are Fooled.” In: Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics. 2020, pp. 1808–1822

∙ Liam Dugan, Daphne Ippolito, Arun Kirubarajan, and Chris Callison-Burch. “RoFT: A Tool for
Evaluating Human Detection of Machine-Generated Text.” In: Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: System Demonstrations. 2020, pp. 189–196

∙ Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. “Deduplicating Training Data Makes Language Models Better.” In: 2022

∙ Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. “QuantifyingMemorization across Neural LanguageModels.” In: arXiv preprint arXiv:2202.07646
(2022)

∙ Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen, Chris Callison-Burch, and Jason Wei. “A
Recipe for Arbitrary Text Style Transfer with Large Language Models.” In: Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics. 2022

∙ Andy Coenen, Luke Davis, Daphne Ippolito, Ann Yuan, and Emily Reif. “Wordcraft: a Human-AI
Collaborative Editor for Story Writing.” In: (2021)

∙ Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ippolito. “Wordcraft: Story Writing With Large
Language Models.” In: 27th International Conference on Intelligent User Interfaces. 2022, pp. 841–852



2 B A C KG R O U N D O N T E X T G E N E R AT I O N

Automatic text generation has been a goal of computer science researchers since the early days of computing.
In recent years, template-based, grammar-based, and statistical approaches have given way to neural language
models–neural networks trained to build representations of human language from millions or even billions
of documents. This chapter gives a brief overview of how modern text generation systems based on neural
language models generate text.

2.1 what is a language model?

A language model is any model that assigns probabilities to sequences of words. Given a sequence of words
w1,… , wn, a language model outputs the likelihood P (w1,… , wn) of this sequence. An ideal language model
would have high likelihood to natural-sounding text, like the sentences in this paragraph, and low likelihood
to gibberish. Most language models make the assumption that the likelihood of a word is dependent only on
the words that precede it. Thus, the chain rule applies:

P (w1,… , wn) = P (w1) ×…× P (wi|w1,… , wi−1) ×…× P (wn|w1,… , wn−1) (2.1)

Before the transition to neural network-based models, the most common form of language model was a
statistic language model called the n-gram model. Instead of trying to estimate the probability of a word

6
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given all preceding words, n-gram model make the Markov assumption that the probability of a word is
only dependent on a fixed n-1 preceding words. The n in n-gram refers to the number of words used in the
conditional probability distribution, and “gram” simply means “word.” For example, using a 3-gram model,
we would approximate each factor in Equation 2.1 as

P (wi|w1,… , wi−1) ≈ P (wi|wi−2, wi−1) (2.2)

An n-gram models can be constructed from a corpus of text by simply counting how many times each word
in the text is preceded by each possible n-gram. This is an advantage over grammar-based approaches to
language modeling–such as statistical parsers–which require explicitly labeled training data, such as the Penn
Tree Bank, in order to estimate probabilities.

There are several disadvantages to this n-gram based approach to language modelling. First, n-gram models
tend to be sparse. If a particular <n-gram, word> pair never occurs in the corpus, then the model will assign it
a probability of 0. As a result, smoothing techniques are often employed to prevent plausible but novel word
sequences from being assigned a probability of zero. Second, the complexity of storing an n-gram language
model grows exponentially with the choice of n. In practice, most n-gram models used n between 1 and 5,
which is insufficient for modelling long-term dependencies and coherence. Third, n-gram models do not
adequately represent words which are not present in their training data. Such words are typically replaced with
a special out-of-vocabulary identifier. Neural language models, described in the following sections, overcome
many of these limitations.

2.2 what is a neural language model?

Neural network-based language models replace the statistical models described in the previous section with a
learned function (the neural network) whose output can be used to predict the likelihood of a word sequence. In
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contrast to n-gram models, neural language models are capable of assigning non-zero probability to sequences
never seen in their training corpora, and thus they can be used to model longer sequences. State-of-the-art
neural language models can model sequences in the thousands of words.

One of the key advancements in neural language modeling was the transition from operating on sequences
of discrete words to operating on sequences of continuous vector representations. The sequence of words
w1,… , wn is mapped to a sequence of embedding vectors y1,… , yn. In early work on neural language
modeling, these vector representations were computed separately. Algorithms such as word2vec [102] and
GloVe [114] were employed to construct embedding matrices where each row corresponded to a word in the
vocabulary. In today’s neural language models, the embedding matrix is typically treated as part of the neural
language model, initialized randomly than optimized along with the reset of the network. Let E� be a learned
embedding matrix where each row correspond to the vector representation of one word in the vocabulary.

Typical neural language models emit ŷt, a predicted embedding for the tth position in the sequence given
the previous word embeddings in the sequence. This can be written as

ŷt = f�(y1,… , yt−1) (2.3)

where f� is the neural network and y1,… , yt−1 are the embeddings of the previous tokens in the sequence.
To produce a probability distribution for what the next word should be given the previous words, the

predicted embedding ŷt is multiplied by the embedding matrix E� to produce a score for each word in the
vocabulary. Then a softmax transformation is used to normalize these scores into a probability distribution.
Let Yt be a random variable representing the vocabulary item predicted for the tth position. We then have:

P (Yt = i|y1,… , yt−1) =
exp(Eŷt[i])

∑

j exp(Eŷt[j])
(2.4)

where i and j are indexes into the vocabulary.
The learned weights � are optimized using a log likelihood loss. More precisely, we can write the training

loss for a sequence y1,… , yn as:
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 = −
n
∑

t=1
logP (Yt = i∗|y1∶t−1) (2.5)

= −
n
∑

t=1
log

exp(E�ŷt[i∗])
∑

j exp(Eŷt[j])
(2.6)

= −
n
∑

t=1
E�ŷt[i∗] (2.7)

= −
n
∑

t=1
(E�f�(y1,… , yt−1)[i∗] (2.8)

In these equations, i∗ is the index of the groundtruth word at position t in the sequence. By taking the
dot product between the neural network’s predicted embedding and the embedding of the true word at each
position t (Eq. 2.7), we get a score for how correct the neural network’s prediction for this position is. Training
with an objective of maximizing the sum of these scores over every word position is equivalent to minimizing
the negative log likelihood (or maximizing the likelihood) of the sequence.

In some language modelling applications, it is common to have an additional sequence which the model is
conditioned on in addition to the tokens of the target sequence. This paradigm is known as an encoder-decoder
or sequence-to-sequence model, and the formulation above is modified to

ŷt = f�(y1,… , yt−1; x1,… , xn) (2.9)

where x1,… , xn is the additional input sequence. The most popular application of encoder-decoder models is
machine translation, where to convert some text from French to English, the language model predicts the
next word of the English sequence given the entirety of the French sequence and the preceding words of the
English sequence.
Most state-of-the-art neural language models uses a variant of the Transformer architecture [154] as

the neural network f�. Prior to the development of Transformers, recurrent neural architectures, typically
based on Long Short Term Memory units [60], were most commonly employed. Transformers have several
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advantages over their recurrent predecessors, most notably that operations are parallelized across all tokens in
the sequence. This immensely speeds up computation time during training, and computation time is no longer
dependent on the length of the sequence. Transformers also are much better than recurrent models at making
connections between information that may be very far apart in the sequence. Recurrent architectures keep
track of a “hidden state” which gets updated for every position in the sequence, which means it may no longer
encode much information about the beginning of the sequence by the time it arrives at the end. In contrast,
Trasnformers use an “attention mechanism” that allows any position in the input sequence to easily “attend”
to any other position.

2.3 encoding text into a vocabulary

For simplicity, the previous sections refer to the input to a language model as a sequence of words, but in
practice, neural language models use a variety of different techniques to construct vocabularies of varying
granularities. There is no single solution for forming the base units of language (referred to for the remainder
of this chapter as “tokens”), and techniques vary significantly across languages. In English, the simplest
vocabularies are character-level–each letter of the alphabet and punctuation mark becomes a token. Historically,
word-level vocabularies, where each token corresponds to a word in the dictionary, were most common.
Word-level vocabularies can be created by splitting a string on whitespace and punctuation. Since in most
languages, the number of fully inflected words is enormous, in practice only the most common tens or
hundreds of thousands of words are included in the vocabulary, and all other words are replaced with an
out-of-vocabulary (OOV) token.

In recent years, subword vocabularies, which eliminate the OOV problem, have become standard in neural
languagemodeling. Subword vocabularies are formed by choosing a budget (the desired size of the vocabulary),
then running an algorithm that joins letters together into larger units, such that the most common character
sequences end up as tokens in the vocabulary. While common words such as “cat” or “dog” end up as single
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tokens in the vocabulary, uncommon words such as hippopotamus end up bring broken into multiple tokens.
Several greedy algorithms have been proposed to approximate optimally breaking up a text corpus into
subwords, but byte-pair encoding (BPE) is currently the most popular [136]. Typical subword vocabulary
sizes are between 32,000 and 50,000 tokens. Table 2.1 shows a sentence under a few different tokenization
schemes.
Table 2.1: Examples of the string “A hippopotamus ate my homework." tokenized using three different vocabularies.

With the subword tokenizer, the rare word “hippopotamus" gets broken up into multiple tokens. For word-
level tokenizers, if the word “hippopotamus” occurred very infrequently in the corpus used to build the
vocabulary (or perhaps the writer of the sentenced misspelled it), it would typically get replaced with an
out-of-vocabulary token (row 4).

Vocab Type Example
character-level [’A’, ’ ’, ’h’, ’i’, ’p’, ’p’, ’o’, ’p’, ’o’, ’t’, ’a’, ’m’,

’u’, ’s’,’ ’, ’a’, ’t’, ’e’, ’ ’, ’m’, ’y’, ’ ’, ’h’, ’o’, ’m’,

’e’, ’w’, ’o’, ’r’, ’k’, ’.’]

subword-level [’A’, ’hip’, ’##pop’, ’##ota’, ’##mus’, ’ate’, ’my’, ’homework’,

’.’]

word-level [’A’, ’hippopotamus’, ’ate’, ’my’, ’homework’, ’.’]

word-level [’A’, ’[UNK]’, ’ate’, ’my’, ’homework’, ’.’]

For all of the types of vocabularies discussed, a decision must be made on whether to convert strings to
lowercase before vocabulary creation. Removing case allows for a more compact vocabulary, but it also
removes potentially useful information about the location of proper nouns.
Subword vocabularies were designed to be a compromise between the advantages and disadvantages of

word-level and character-level vocabularies. Character-level vocabularies are usually very small, no more than
a couple hundred tokens. However, the vocabulary can cover near every possible string a person could write.
Word-level vocabularies cannot feasibly contain the hundreds-of-thousands of words present in English text.
Realistically, only the most common words are kept, and less common ones are replaced with a special UNK
token. When text is tokenized with character-level vocabularies, the resulting sequences are very long, while
word-level tokenization yields shorter sequences since there is just one token per word. Lastly, word-level
representations learned by a neural net tend to be more meaningful than character-level representations since
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a word has semantics associated with it that are common across uses. Subword vocabularies adopt the best of
both worlds, using word-level tokens for common words but falling back to subword, or in the worst case,
character-level, tokenization for uncommon words. This approach eliminates the need for an out-of-vocabulary
token and results in tokenized sequence lengths which are somewhere between the two strategies.

2.4 generating text with a language model

Neural language models in themselves are capable of generating text. As described in the previous sections,
most language models provide a probability distribution for what the next token in the sequence could be,
given the previous tokens. To perform generation, an algorithm is needed that chooses which words to output
given the model’s predicted probability distributions. We refer to this family of algorithms as decoding
methods because they “decode” a sequence of discrete words from the model’s predictions. At each step of
decoding, the decoding algorithm performs a forward pass on the neural network using the existing prompt
text as input, selects a next token based on the neural network’s predictions, adds this token to the prompt,
and repeats until the desired number of tokens have been generated.

2.4.1 Greedy Approaches

The simplest strategies for generating text from a language model involve greedily choosing a token at each
step. The easiest way to do this is to take the argmax of the distribution, repeatedly picking the token with
the highest probability according to the model. This approach is simple but only allows a single generation to
be produced for any given prompt. Alternatively, one can randomly sample from the vocabulary, where each
vocabulary item has a chance of being picked that is proportional to the probability predicted for it by the
language model. This method allows for many different sequences to be generated from the same prompt.
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However, in practice, this strategy results in text that is perceived as nonsensical and otherwise low-quality.
This is because the probability distributions returned by neural language models tend to be very long tailed,
and the chance of sampling a rare/unusual word from this long tail is quite high. For example, if we sample
from the full distribution words that could follow The dog ate my, with low probability we might sample
brains, even though homework is much more probable.

Several strategies have been proposed to improve random sampling techniques by reducing the entropy of
the distribution before sampling. Introducing a temperature parameter � into the softmax computation allows
us to smoothly shift probability mass from low-scoring items in the vocabulary to high-scoring ones.

P (Yt = i|y1,… , yt−1) =
exp(Eŷt[i]∕�)

∑

j exp(Eŷt[j]∕�)
(2.10)

Alternatively, one can introduce sparsity intro the distribution by deliberately zeroing out low-likelihood
vocabulary items. Top-k random sampling accomplishes this by restricting sampling to only the k most
likely tokens at each step. Nucleus sampling, also referred to as top-p random sampling, accomplishes this
by restricting sampling at timestep t to the kt most likely tokens, where kt is selected such that these tokens
cover no more than p% of the probability mass. For all three of these techniques there is a parameter (�, k, or
p) which controls the amount of randomness we want to permit in the generation. Choosing a low value for
these parameters results in an increasingly peaky distribution, which, at its extreme, is the same as taking the
argmax. Choosing a high value for these parameters results in the distribution that looks closer and closer to
the original scores produced by the model.

2.4.2 Search-Based Approaches

Before the transition to Transformer-based architectures (Section 2.2), the standard convention for generation
was to try to generate the most likely overall sequence from the language model. This approach made a lot
of sense for the predominant use case of machine translation, where generating one correct translation was
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considered more important than generating several diverse translations. Since computing the overall most
likely output sequence is intractable, early work in neural machine translation found that beam search was an
effective strategy to heuristically sample sufficiently likely sequences from these probabilistic models [144].

Algorithm 1 gives an overview of the beam search algorithm. “SOS” is a start-of-sequence token and “EOS”
is an end-of-sequence token.
Algorithm 1 Beam Search Inference
1: procedure BEAM SEARCH
2: B ← {SOS}
3: k← BeamWidth
4: out← k-best output list
5: while |out| < k do
6: front← remove all nodes fromB
7: for w ∈ front do
8: succ ← w’s k-best successors
9: for s ∈ succ do
10: if s == EOS then
11: out← out ∪ {s}
12: else
13: B ← B ∪ {s}
14: end if
15: end for
16: end for
17: Sort B
18: if |B| > k then
19: Prune B to k-best successors
20: end if
21: end while

return out
22: end procedure

As neural language models came to be applied increasingly to open-ended tasks, such as chatbot dialog or
story generation, beam search was found to be ill-suited to generating a set of diverse candidate sequences
Since beam search only explores a limited portion of the overall search space, it tends to yield multiple variants
of the same high-likelihood sequence, sequences that often only differ in punctuation or minor morphological
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changes [87]. To try and solve this problem, many researchers proposed modification to beam search to
encourage it to produce more diverse sets of candidate generations. We summarize several of these here:

∙ Noisy Parallel Approximate Decoding. Introduced by Cho [28], NPAD is a technique than can
be applied to any decoding setting. The main idea is that diversity can be achieved more naturally
by taking advantage of the continuous manifold on which neural nets embed language. Instead of
encouraging diversity by manipulating the probabilities outputted from the model, diverse outputs are
instead produced by adding small amounts of noise to the hidden state of the decoder at each step.
The noise is randomly sampled from a normal distribution. The variance is gradually annealed from a
starting �0 to 0 as decoding progresses (that is �t = �0

t
) under the reasoning that uncertainty is greatest

at the beginning of decoding. NPAD can be used in conjunction with any decoding strategy, though the
paper in which it was introduced primarily showed its performance in conjunction with beam search.

∙ Top-g Capping. In beam search, it is often the case that one hypothesis ℎ is assigned a much higher
probability than all other hypotheses, causing all hypotheses in the next step to have ℎ as their parent. Li
et al. [87, 88] proposed adding an additional constraint to standard beam search to encourage the model
to choose options from diverse candidates. At each step t, current hypotheses are grouped according to
the parental hypothesis they come from. After grouping candidates, only the top g from each grouping
are considered. The resulting b × g candidates are ranked, and the top b are selected as hypotheses for
the next beam step.

∙ Hamming Diversity Reward. Vijayakumar et al. [157] proposed adding an additional diversity-
promoting term, �, to the sequence log-likelihoods before the reranking step of beam search. This
term measures how different a candidate hypothesis c(i)≤t is from the partial hypotheses selected in the
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previous step. Let t−1 = {c(1)≤t−1, . . . c(b)≤t−1} be these partial hypotheses. Then the beam search scoring
function for the ith candidate at timestep t becomes:

score(c(i)≤t) =
t

∑

j=1

(

logP (c(i)j |c(i)<j , x)
)

+��(c(i)≤t ,t−1)

where � is a tunable hyperparameter. Vijayakumar et al. [157] try a variety of definitions for �, including
embedding diversity and n-gram diversity, but they find that Hamming distance, the number of tokens
in the candidate sequence which exist in the previously selected partial hypotheses, is most effective.

∙ Iterative Beam Search. In an attempt to improve the size of the search space explored without
sacrificing runtime, Kulikov et al. [81] propose an iterative beam search method. Beam search is
run many times, where the states explored by subsequent beam searches are restricted based on the
intermediate states explored by previous iterations. Formally, they define the set of all partial hypotheses
for beam search instance i at time step t as (i)

t . From here, the search space explored by beam search
instance i can be expressed as Si = ∪Tt=1

(i)
t . The ith beam search is prevented from generating any

partial hypothesis that has previously been generated, that is, any hypothesis found in S<i = ∪i−1i′=0Si′ .

∙ Clustered Beam Search. Tam et al. [145] proposed a clustering-based beam search method to
help condense and remove meaningless responses from chatbots. Specifically, at each decoding step
t, this method initially considers the top 2 ∗ b candidates. From there, each candidate sequence is
embedded1, and the embeddings are clustered into c clusters using K-means. Finally, we take the top b

c

candidates from each cluster. Note that in the case any clusters have size less than b
c
, we then include

the highest-ranked candidates not found after clustering.

1 We follow Tam et al. [145] and used averaged GloVe word embeddings [114].
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2.4.3 Generation Diversity

For many tasks, especially open-ended ones like story generation or chitchat dialog, it is important for
generated text to be “diverse.” The term “diversity” has been used in the language model literature to
refer to a diverse set of properties. Some use it as a synonym for sentence interestingness or unlikeliness
[58]. Others consider diversity a measure of how different two or more sentences are from each other
[157, 53]. In some framings, diversity is measured across a set of generations coming from the same
prompt. Given a particular prompt or input, the goal is to measure the breadth of possible generations
the model will produce [100]. Diversity can also be measured as a corpus-level: given all the sentences
generated by the model for all prompts, what is the overall lexical diversity?
In my research, I use three definitions of diversity. First, when performing conditional generation, I
define diversity as the ability of a generative method to create a set of possible outputs that are each
valid given a particular input but vary as widely as possible in terms of word choice, topic, and meaning.
Second, when performing unconditioned generation using decoder-only language models, I instead
consider corpus-level diversity across all the model’s generations–how much lexical variety is there
over all the text the model generated? Finally, in some of my work, I ask human raters to evaluate
generation interestingness, which is a measure of human-perceived diversity.

2.4.4 Generation Quality

For all generation tasks, it is important for the output text to be high quality, though this property can
also be difficult to define. In some downstream applications, “quality” can be evaluated directly with
human raters by asking them questions like "how good is this text?" (though definitions of “good” vary
widely across the literature [82]). In others, it can be quantified as how many times a user interacts with
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the generative system (for example, the number of conversation turns with a dialog agent) before losing
interest.
To some extent, quality can also be measured automatically. In tasks with a clear goal, like machine
translation or summarization, one can compare the generation against a gold standard. Quality is
strongly associated with fluency, and it is generally true that the lower perplexity a language model
assigns some text, the more fluent the text is, and thus the higher quality. However, my collaborators and
I show that this relationship between quality and perplexity breaks down for extremely high-likelihood
generated text [177].
In some of my research, we evaluate quality by asking humans to assess generations in terms of
their fluency, adequacy, and interestingness. In Chapter 3, we propose a novel method for assessing
generation quality based on the premise that humans (or a trained discriminator) ought to have a hard
time distinguishing between real human-written text and model outputs when the model outputs text
that is high-quality.

2.4.5 The Diversity-Quality Tradeoff

The goal of generating high-quality text is often at odds with the goal of generating diverse text. In
experiments conducted with Reno Kriz [68], I found that none of the diversity-promoting search
methods accomplished their stated goal of improving diversity without significant penalty to generation
quality. In our experiments, we compared all of the diverse beam search methods described above
with standard beam search as well as several settings of random sampling with temperature. On an
open-ended dialog task, we showed that human-judged generation quality was inversely correlated with
three measures of diversity (Figure 2.1).
For each utterance in the dialog task validation set, we generate 10 candidate outputs using each
decoding method. To measure the diversity across the generated candidate sequences for a given input
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utterance, we compute Dist-k, the total number of distinct k-grams divided by the total number of
produced tokens in all of the candidate responses for a prompt [86]. We use k=2. A limitation of Dist-k
is that all k-grams that appear at least once are weighted the same, ignoring the fact that infrequent
k-grams contribute more to diversity than frequent ones. Therefore, we also report Zhang et al.’s [179]
proposed entropy metric, Ent-k, defined as:

Ent-k = −1
∑

w∈S F (w)

∑

w∈S
F (w) log

F (w)
∑

w′∈S F (w′)

where S is the set of all k-grams that appear in candidate responses for an example, and F (w) denotes
the frequency of w in the candidate responses. Finally, we report perplexity, averaged over all the top
10 outputs for each example.
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Figure 2.1: Each point corresponds to the outputs from one decoding strategy. The x-axes give the dist-2, ent-4,
and perplexity scores of the generated text. The y-axes give the human-judged fluency, coherence, and
interestingness of the outputs on a scale from 0 to 1. The Pearson Correlation coefficients between each
statistic and the average of fluency, coherence, and interestingness are shown in parentheses.

For all three diversity measures, we see what the decoding strategies which produce the most diverse
text also produce the least fluent and least adequate responses to the input utterances. For example,
given the prompt “Look, nobody knows we did it.,” random sampling generates the candidate
responses “We didn’t have a plan I engineered a policy.” and “Same time you pick us
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up at six and get we..” These are pretty interesting but don’t make much sense. In contrast, beam
search generates “I don’t know what to say,” which is neither interesting (as evaluated by human
raters) nor diverse (many generated responses started with I don’t know). However, it is a reasonable
response to the prompt.
One important ramification of the diversity-quality tradeoff is how detectable the generated text is to
humans and automatic discriminators. The relationship between detectability and the lexical diversity
of model generations is described in detail in Chapter 3.2.

2.5 language generation tasks in this dissertation

My dissertation addresses several different tasks in language generation. A brief summary of each task,
as well is the means by which performance on it is evaluated, is provided here.

continuation An NLG system is asked to generate a continuation for a prompt. It is then
evaluated on how close the generated continuation is to the true continuation. Automatic evaluation
can either be performed using word overlap metrics such as BLEU [112], or by measuring fluency
(computing the perplexity of a model on the generated continuation). Human evaluation usually involves
showing a rater the prompt and generation and asking them to make some decision about it. In Chapter
3.2, the decision is to try and distinguish whether the presented text was machine-generated or not.

fill-in-the-blank The fill-in-the-blank or infilling task is similar to continuation, except that
the system also has access to the text which should occur after the generation. Evaluation is similar to
evaluating continuation. Chapter 5.2 describes this task in detail.
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chitchat dialog Chitchat dialog is the task of predicting the next utterance in a conversation
given the previous turns. As describes in the previous section, we evaluate how choice of decoding
strategy impacts the ability of an NLG system to produce an utterance that is both high quality and
diverse. In addition to conducting automatic evaluation with BLEU and perplexity, human evaluation
can be performed by asking raters to evaluate each generated utterance in terms of fluency, adequacy,
and interestingness.

textual style transfer and rewriting Textual style transfer is the task of taking an
input passage of text and a desired style and rewriting the input text to be in that style. Typical tasks
include sentiment transfer (for example, rewrite a negative restaurant review to have positive sentiment)
and formality transfer (rewrite informal language to be formal). In my work, I am broadly interested
in the task of rewriting input text to fulfill a user-specified writing objective. These rewriting tasks
are a superset of style transfer; for example a user may ask for text to be “rewritten to include the
word balloon” or to “have a cliffhanger at the end.” Such rewriting could change both the content and
the style. We evaluate rewriting using automatic metrics, such as measuring how often an automatic
classifier identifies the rewritten task as having fulfilled the rewriting goal. We can also use metrics
like BLEU score to compare against both the input sentence and a human-written groundtruth, though
word-overlap metrics break down the more open-ended and transformational the rewriting task is.
Finally, human raters can be used to assess quality of the rewrite.

story ideation and brainstorming For many writers, the process of writing is collabora-
tive. They may use an ideation tool such as a deck of trigger cards to come up with initial ideas, or they
may share their in-progress draft with readers to get feedback. One of the goals of my research is to be
able to use neural language models to provide an alternative collaboration source for creative writers.
This includes a suite of user-defined tasks centered around allowing writers to make requests such as
“what should happen next in my story” or “help me write a description of the old man introduced in the
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first sentence.” Because the goals here are so broad, evaluation is best done holistically–by conducting
user studies to evaluate whether NLG outputs are useful to human writers in their writing goals.

2.6 controllability and task-specific generation

In the early days of neural language modeling, it was common to train a separate neural language
model for each NLG task of interest. For example, if one wanted a system capable of producing chatbot
dialog, one would train their neural language model on a dialog dataset (or close approximate) such as
OpenSubtitles [158]. If one wanted a system able to perform text summarization, one would likewise
train a model from scratch on a dataset such as the CNN/Daily Mail corpus [107, 134]. At the time, the
neural networks being used for these sorts of tasks were relatively small, and training and maintaining
one model per task, was mostly feasible.
In 2018, Howard and Ruder [62] and Radford et al. [117] concurrently proposed the idea of pre-training
a single universal task-agnostic language model. To accomplish any specific language task of interest,
that model could subsequently be trained for extra steps on the training data of the desired task, a
process known as finetuning. The idea of finetuning a more general model for a specific task had already
taken off in computer vision, where researchers had shown a convolutional neural network pre-trained
on the ImageNet task of classifying the contents of images could be finetuned for tasks ranging from
image segmentation to cancer detection.
General-purpose language models intended for generation tasks tend to be pre-trained on massive
datasets scraped from the internet (Table 2.2). It is common to use both decoder-only models trained
only to predict the next token given the previous ones [118], as well as encoder-decoder architectures
trained with a de-noising loss, where the input is a corrupted version of the text, and the task is to
recover the uncorrupted text [119, 85]. Table 2.3 gives examples of several pre-training objectives that
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Table 2.2: A survey of datasets which have been used to train large general-purpose neural language models.

Dataset Size Public? Language Models trained on it
C4 [119] 365M examples, Yes Most English T5
mC4 [170] 8.5B examples Yes 101 languages mT5
The Pile [50] 825 GiB Yes Mostly English GPT-Neo, Megatron-Turing
RealNews Yes
PanGu-� train set 1.1TB No Chinese PanGu-�
WebText 40 GiB No Mostly English GPT-2
GPT-3 train set 500B tokens No Mostly English GPT-3

have been employed by popularly-used pre-trained models. Each of these models has been finetuned
for a large diversity of downstream tasks.
Finetuning such models has yielded immense success in tasks across the field of natural language
processing. Chapter 5.2 focuses on the feasibility of finetuning for the fill-in-the-blank task. There are
however several limitations to the paradigm of pre-training followed by finetuning. As state-of-the-art
neural language models increase in number of parameters, the computational expense of finetuning
is becoming increasingly prohibitive. Furthermore, the need to store (potentially in GPU memory)
one set of model weights per task makes it very difficult to build downstream applications which need
to perform several different tasks. In addition, finetuning only works where there is enough data to
fine-tune on. Overfitting is a significant challenge when training or finetuning in low-resource settings,
where there may only be a handful of training examples.
For these reasons, various approach have been proposed for replacing the finetuning step with methods
which require either no or minimal weight training. Brown et al. [20] introduce the technique of few-
shot prompting. By constructing a textual prompt which contains several examplars of the goal task, a
general-purpose language model can be made to perform the task. Lester et al. [84] introduce prompt
tuning as an improvement over few-shot prompting that trains a small neural network to produce an
optimal prompt in embedding-space for the goal task.
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Table 2.3: Examples of pre-training objectives used in popular general-purpose models. In these examples, the original
training sequence is “The hippopotamus ate my homework. It made me very mad.”

Model Input Objective
BERT [36] [cls] The hippopotamus

[mask] my homework. [SEP]
It made me very [mask] .
[sep]

Predict tokens for [mask] positions
and predict whether the two sen-
tences are in the correct order.

T5 [119] The hippopotamus [x] made me
[y] mad.

Predict missing sequences.

BART It _ me very mad. The
hippopotamus my _.

Predict the original uncorrupted se-
quence from a version that has been
noised (token masking/deletion, text
infilling, document rotation, sentence
shuffling).

GPT [118, 20] The hippopotamus ate Predict the next token given the pre-
vious tokens.

In this dissertation, I explore both finetuning and few-shot prompting. Chapter 5.1 uses prompting techniques
for the task of textual style transfer, while Chapter 5.3 shows how they can be used for a variety of story
editing operations. Chapter 5.2 focuses on fill in the blank, a task where finetuning outperforms other more
training-efficient methods.
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D E T E C T I N G M A C H I N E - G E N E R AT E D

T E X T

3.1 motivation

State-of-the-art generative language models are now capable of producing multi-paragraph excerpts that at a
surface level are virtually indistinguishable from human-written content [174, 118, 2]. Often, only subtle
logical fallacies or idiosyncrasies of language give away the text as machine-generated. These errors can be
difficult for humans to detect because they require a close reading and/or domain knowledge.
Deceptive text, whether human- or machine-generated, has entered the sphere of public concern [32]. It

propogates quickly [159], sets political agendas [152], influences elections [5], and undermines user trust
[161, 141]. Recently, Adelani et al. [2] have shown that automatically generated reviews are perceived to
be as fluent as human-written ones. As generative technology matures, authors, well-meaning or otherwise,
will increasingly employ it to augment and accelerate their own writing. In the initial year following the
release of GPT-2, a model whose authors claimed was so impressive that “malicious applications of the
technology” were a significant concern [118], there was relatively little inquiry into the textual properties that
cause humans to give generated text high human-like ratings compared to those that cause automatic systems
to rate it highly.

This task of trying to guess whether text is coming from a robot or a fellow human was made famous by the
Turing Test [151]. It has been a standard challenge for evaluating chatbot systems [96, 35] but has not been
adopted more generally for evaluating natural language generation systems. The related (but not identical)
task of asking human raters to judge the quality of machine-generated excerpts remains the gold-standard for
evaluating open-domain generation systems [82]. However, using detection as a method for evaluating NLG

25
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systems has several advantages over asking for quality ratings. First, text quality–i.e., the properties that make
one passage of text “better” than another can be inherently subjective to define. The detection task offers a
mostly objective definition; we can precisely measure what fraction of examples are correctly identified as
machine-generated or human-written. Second, detection can be framed both as an automatic evaluation task
and a human evaluation one. Valuable insights can be garnered by looking at text sequences that automatic
detection systems label incorrectly but humans label correctly, and vice versa. Third, studying detection allows
us to evaluate the real risk of NLG systems to the public. Thus, in the research presented in this chapter, I
show how the detection task is an effective means of evaluating progress in NLG and determining the relative
strengths of different NLG systems.
In Section 3.2, I explore the relationship between choice of decoding strategy and the detectability of

generated text.When using a decoding strategy that samples from a languagemodel’s full predicted distribution,
systems end up frequently choosing words from the long tail of the distribution. Choosing one of these words
can lead to odd or contradictory phrases and semantic errors. Humans readers are quick to notice these types
of errors. If we instead use a decoding startegy that reduces the entropy of the distribution before sampling,
the result is improved generation quality at the cost of diversity. We show that humans have a hard type
identifying that text is machine-generated when sampling is heavily restricted to only high-likelihood words,
but automatic dection systems easily pick up on the resulting lexical anamolies. In other words, humans are
foolled where text classifiers are not, and vice versa.
In Section 3.3, I conduct a large-scale study of the detectability of generated text by human annoators,

expanding upon the pilot human evaluation experiments described in Section 3.2. I show how factors such as
model size and text genre impact detecability, and I introduce ways to gamify the detection task.

3.1.1 Detection as a Task

There are many ways one could frame the detection task. The simplest is to treat it as binary classification:
given an excerpt of text, label it as either human-written or machine-generated. The excerpt is either entirely
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human-written or contains some amount of machine-generated text. This is the definition I use in Section 3.2
where the positive examples of machine-generated text contain at most one initial word of human text.

One limitation with this definition is that it is not realistic. Most users of NLG systems prompt the language
model with much more than one word when they ask it to generate text. Therefore, in Section 3.3, we instead
formulate the task as one of boundary detection. Given a passage that starts off with a variable number of
human-written sentences which are followed by a generated continuation, the goal is to identify the point of
transition between human and generated.
Others have studied different variations of the detection task. GROVER was designed to not only generate

convincing news excerpts but to also identify them using a fine-tuned version of the generative model itself
[174]. GLTR, expecting attackers to use sampling methods that favor high-likelihood tokens, aims to make
machine-generated text detectable by computing histograms over per-token log likelihoods [52]. Bakhtin et al.
[8] frame human-text detection as a ranking task and evaluate their models’ cross-domain and cross-model
generalization, finding significant loss in quality when training on one domain and evaluating on another.
Schuster et al. [133] argue that the language distributional features implicitly or explicitly employed by these
detectors are insufficient; instead, one should look to explicit fact-verification models. Finally, discriminators
for whether text is machine-generated are a promising research direction in adversarial training [92, 89] and
in automatic evaluation of generative model quality [111, 74, 96].

3.2 impact of decoding strategy on the detectability of machine-

generated text

Even when the language model used for generation is fixed, choice of decoding strategy has a huge impact on
the detectability of generated text. Using top-k random sampling, a decoding method where only the selection
of high-likelihood words is permetted, means the system is less likely to make a poor choice and create the type
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of mistakes that are easy for humans to detect. Since humans are not proficient at identifying when a model
subtly favors some utterances more often than a human author would, they don’t notice the over-representation
of high-likelihood words in the generated text. In contrast, automatic detection systems excel at identifying
statistical anomalies and struggle to build deeper semantic understanding. Top-k in particular creates text that
is easy for machines to detect but very hard for humans. Thus, we observe the general trend: as the number
of unlikely words available to be chosen is increased, humans get better at detecting fakes while automatic
systems get worse.
In this section, I present a study of three popular random decoding strategies—top-k, nucleus, and full

random sampling—applied to GPT-2 [118]. As described in Chapter 2, a challenge with random sampling
is that predicted probability distributions often contain a long tail of vocabulary items that are individually
low-probability but cumulatively comprise a substantial amount of probability mass. Holtzman et al. [61]
observe that choosing tokens from this tail often leads to incoherent generations. Top-k sampling, nucleus
sampling, and (in the extreme) beam search have all been proposed to heuristically promote samples with
higher per-token likelihoods. Top-k and nucleus sampling both do so by setting the likelihood of tokens in the
tail of the distribution to zero. Top-k restricts the distribution to all but the k most likely tokens, where k is a
constant [42]. Nucleus sampling, also called top-p, truncates the distribution at each decoding step t to the
kt-most-likely next tokens such that the cumulative likelihood of these tokens is no greater than a constant p
[61].
I draw a large number of excerpts generated by each strategy and train a family of BERT-based [36]

binary classifiers to label text excerpts as human-written or machine-generated. I find large differences in
human rater and classifier accuracy depending on the decoding strategy employed and length of the generated
sequences. Regardless of strategy, we find human raters achieve significantly lower accuracy than the automatic
discriminators. I also show that when a decoding strategy severely modifies the unigram token distribution,
as top-k does, humans have trouble detecting the resultant generated text, but automatic classifiers find it
the easiest to discriminate. Worryingly, I further find that classifiers are brittle; they generalize poorly when
trained to discriminate samples from one strategy and then evaluated on samples from another.
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3.2.1 Dataset Construction

To study detectability, I formed datasets that probe how excerpt length and decoding strategy impact detection
performance. Each daatset is approximately balanced between positive examples of machine-generated text
and negative examples of human-written text. While they all share the same human-written examples, each
dataset contains a different set of machine-generated examples sampled using one particular decoding strategy.
I also built additional datasets by truncating all of the examples to a particular sequence length, testing out
sequence lengths between 2 and 192 tokens long.
By training a separate classifier on each dataset, we are able to answer questions about which decoding

strategy results in text that is the easiest to automatically disambiguate from human-written text. We are
also able to answer questions about how the length of the examples in the training set impacts our ability to
automatically classify excerpts of that same length as either human-written or machine-generated.
All of our generated text samples are drawn from GPT-2, a state-of-the-art Transformer-based generative

language model that was trained on text from popular web pages [118]. While we use the GPT-2 LARGE

model with 774M parameters, we found that similar trends to those reported here hold in experiments with
smaller language models. GPT-2 was state-of-the art at the time these experiments were conducted; it has
subsequently been surpassed by other larger LMs.
I consider three different decoding strategy settings:
∙ Sample from the untruncated distribution
∙ Top-k, choosing k=40 [118].
∙ Nucleus sampling (aka top-p), choosing p=0.96 [174].
In addition, I form “negative" examples of human-written text by taking excerpts of web text that come

from the same distribution as GPT-2’s training data. By picking text that resembles GPT-2’s training data, we
ensure that our classifiers can’t simply take advantage of stylistic differences between the human-written text
corpus and the kind of text GPT-2 was trained to generate.
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Table 3.1: The number of excerpts used for training, validation, and testing. Three deecoding strategies–top-k with
k=40, nucleus sampling with p=0.96, and full random sampling (p=1.0)–were employed. The language
model was either prompted with a single word (1wordcond) or used without any prompt sequence (nocond).

Model Decoding Method Prompt # train # valid # test

large-744M k40 1wordcond 211148 4226 4191
large-744M k40 nocond 218825 4362 4360
large-744M p0.96 1wordcond 210587 4248 4208
large-744M p0.96 nocond 209390 4174 4185
large-744M p1.0 1wordcond 209334 4169 4173
large-744M p1.0 nocond 208219 4187 4168
human-written n/a n/a 201344 4031 4030

For each decoding method, I construct a training dataset by pairing 250,000 generated samples with 250,000
excerpts of web text. 5,000 additional paired samples are kept aside for validation and test datasets. Lastly, I
filter out excerpts with fewer than 192 WordPiece tokens [167] (excerpts might be quite short if the model
produces an end-of-text token early on). The final dataset sizes are shown in Table 3.1.
A crucial question when generating text with a language model is whether or not to provide a priming

sequence which the language model should continue. Unconditioned samples, where no prompt text is
provided, in conjunction with top-k sampling, lead to pathological behavior for discriminators as the first
token of the generated text will always be one of k possible options. On the other hand, if long sequences
of human text are used as a prompt, the space of possible generated sequences is larger, but the detection
problem shifts from one of “how human-like is the generated text?" to “how well does the generated text
follow the prompt sequence?".

Since in this study I am interested in the former simpler question, I create two datasets, one with no priming,
and one with the minimum amount of prompting possible: a single token of web text. This means that for
every excerpt of web text in the training set, there is an excerpt of machine-generated text that starts with the
same token. I find that the ability of automatic detectors can be strongly impacted by even this short prompt.
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Table 3.2: Performance (accuracy and AUC) of the fine-tuned BERT classifier and several simple baselines on detecting
length-192 sequences generated with one word of priming (1worccond). Note that p1.0 refers to untruncated
random sampling, where we sample from 100% of the probability mass. The last column shows human
performance on the same task where accuracy with a 50% baseline is computed by randomly pairing samples
from each decoding strategy with a human-written sample.

BERT BagOfWords HistGLTR Hist50Buckets TotalProb Human
Method acc AUC acc AUC acc AUC acc AUC acc acc
k40-1wordcond 0.88 0.99 0.79 0.87 0.52 0.52 0.69 0.76 0.61 0.64
p0.96-1wordcond 0.81 0.89 0.60 0.65 0.53 0.56 0.54 0.56 0.63 0.77
p1.0-1wordcond 0.79 0.92 0.59 0.62 0.53 0.55 0.54 0.55 0.65 0.71

To study the effect of generation length, I construct variations of the above datasets by truncating all
excerpts to ten possible lengths ranging from 2 to 192 WordPiece tokens [167]. In total, we obtain sixty
dataset variations: one per sampling method, truncation length, and choice of priming or no priming.

3.2.2 Methods for Automatic Detection

The primary discriminator we employ is a fine-tuned BERT classifier [36]. We fine-tune one instance of
BERT per dataset variation described above. For the longest sequence length, n=192, we compare BERT’s
performance with several simple baselines that have been proposed in other work.

fine-tuned bert We fine-tune BERT-LARGE (cased) on the task of labeling a sentence as human- or
machine- generated. The models are trained for 15 epochs, with checkpoints saved every 1000 steps, and a
batch size of 256. All results are reported on the test set using the checkpoint for which validation accuracy
was highest.

bag-of-words For each sequence, we compute a bag-of-words embedding where each dimension
corresponds to a token in GPT-2’s 50,000 token BPE vocabulary [136], and we count how many times that
token appears in the text sequence. We then train a logistic regression binary classifier to predict human- or
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machine-written given this 50,000-dimensional embedding. We experimented with truncating embedding
size by removing entries for infrequent vocabulary words, but this did not improve performance.

histogram-of-likelihood ranks Following GLTR [52], we compute the probability distribution
of the next word given the previous words in a text sequence according to a trained language model (in
our case the same GPT-2 model that was used for generation). At each sequence position, we rerank the
vocabulary words by likelihood, and record the rank of the ground-truth next word within this list. These
ranks are then binned. GLTR uses four bins, counting (1) the number of times the top 1 word is seen, (2) the
number of times words ranked 2 through 5 are seen, (3) words ranked 6-100, and (4) words ranked >100.
However, we observe higher accuracy when 50 bins are spread uniformly over the possible rankings. This
means that since there are 50,000 vocabulary words, the first bin counts the number of times the actual next
word was within the 1,000 mostly likely next words, the second bin counts the 1,001-2,000th, and so on.
We then train logistic regression binary classifiers to predict human- or machine-written given either the
4-dimensional histograms or 50-dimensional histograms as input.

total probability Solaiman et al. [140] propose a very simple baseline consisting of a threshold
on the total probability of the text sequence. An excerpt is predicted as machine-generated if its likelihood
according to GPT-2 is closer to the mean likelihood over all machine-generated sequences than to the mean
of human-written ones.

3.2.3 Method for Human Detection

The human evaluation task is framed similarly to the automatic one. We ask the raters to decide whether a
passage of text was written by a human or by a computer algorithm. Figure 3.1 shows screenshots of the
instructions and user interface for the annotation task. Raters are allowed to choose between four options:
“definitely" or “possibly" machine-generated and “definitely" or “possibly" human-written. They are first



3.2 impact of decoding strategy on the detectability of machine-generated text 33

Figure 3.1: The interface of the task used for human evaluation. Each time the user presses next, the passage’s length
is doubled. On the left, we show the first step of evaluation, on the right, the second to last.

shown an excerpt of length 16 WordPiece tokens. After they make a guess, the length of the excerpt is doubled,
and they are asked the same question again. This continues until the entire passage of length 192 tokens is
shown. Passages are equally likely to be human-written or machine-generated, with the machine-generated
excerpts being evenly split between the three sampling strategies considered in this paper.

Initially, Amazon Mechanical Turk (AMT) raters were employed for this task, but rater accuracy was poor
with over 70% of the “definitely” votes cast for “human” despite the classes being balanced. Accuracy, even for
the longest sequences, hovered around 50%, indicating random guessing. The same study was then performed
with university students who were first walked through ten examples (Table 3.4) as a group. Afterward, they
were asked to complete the same tasks that had been sent to the AMT workers. No additional guidance or
direction was given to them after the initial walk-through. We will refer to this group as the “expert raters.”
Among them, 52.1% of “definitely” votes were cast for human, and accuracy on the longest excerpt length
was over 70%.

The human evaluation dataset consisted of 150 excerpts of web text and 50 excerpts each from the three
decoding strategies. Each question was shown to at most three raters, leading to 900 total annotations from
the untrained workers and 475 from the expert raters. A more detailed breakdown can be found in Table 3.3.
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Figure 3.2: For some of the questions, the text "Dear AMT Worker: to show you’re reading, please select definitely
[X] for this one." was inserted into the last text segment, and "Did you read carefully?" was appended to
the end.

Table 3.3: The number of human annotations collected. In total, there were 50 examples from each sampling strategy
and 150 examples of web text. Each example was shown to at most three raters.

# Annotations Expert Raters AMTWorkers

webtext 239 450
k0-1wordcond 87 150
k40-1wordcond 75 150
p0.96-1wordcond 74 150
total machine 236 450
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Human I recently got the chance to try the new Oil Essentials line. With six potent blends to choose from–at $13 each–these cute little bottles offer a great, affordable way to
partake in the skin and hair care oil craze.
I tested each product in the line, massaging them onto my face every night before bed and running any leftover oil through my hair to tame frizziness. You could also add
a few drops to your bath, favorite moisturizer, or even your shampoo and conditioner.
Here’s a quick rundown of each oil.
Revitalize: Omega 3, 6, 9 & Evening Primrose
This was the first one I tried (I went in ROYGBIV order to keep things straight) and my first impression was that it smells lovely but a little strong. The fragrance smells
genuinely like flowers.

Machine Red Lanterns, the lead exposure to a movie starring the Batman solo movie alum Margot Robbie taken under Wonder Woman’s wing have reignited that rivalry with
their whispery premiere. They played it as much as they possibly could, even though people who didn’t ever watch Justice League or might have missed it waiting in line
for the theater were still talking about as I spilled coffee.
The gist? An overextended (OK, a sore) Adam West films set up a Legion of Super-Heroes situation. How aggro? Super laws and paramilitary groups watch over the
world’s superheroes, which is a mix of that schtick ending, Planet Of The Apes II bit, and the Batman/Venom bit of last appeared in The Seventh Seal when Chris
O’Donnell infiltrated one of the teams at some point, also wearing Staff.

Machine He is considered to be the most terrifying man on the planet and people stay away from him. A guy asks him to do something and he says, "My girlfriend’s so important
to me... I don’t need to fight her any more." And then, boom, there’s some in a corner crying inappropriately.
Men: It’s gone in five minutes. Why do I have to be so sad? It’s cute," says female member, who asks to remain anonymous. "It’s what grew up to drive me crazy when I
was a kid, seeing these women become the nurturing, wealthy things they are in this professional world I truly love."
And it’s nothing to do with her success. These men still actively fear being around the idea of a woman who might win Oscars, make movies or be audacious drivers.

Human Dropbox and Google Drive are very different services that appeal to different users. While Drive is connected to the entire Google Apps (now known as G Suite)
ecosystem, Dropbox is a lightweight, simple alternative for file storage. While both are useful, users need to look beyond features, and make sure the service they choose
can adequately protect their data. Here’s how Dropbox encryption and Google Drive encryption stack up.
Dropbox and Google Drive Encryption
To their credit, both Dropbox and Google Drive protect user files with encryption. Both also allow users to enable two-step verification, which requires an extra code
texted to the user’s phone to access the account, making it harder for hackers to access a user’s data.

Human EVE Isk Per Hour(Eveiph) is hands down the best tool I’ve ever used to make isk in New Eden. It is a market helper program that is able to do a great deal of the work
that is typically done by a traders spreadsheet. I’ve used it to go from a 200m/month trading income to 3b/month on my main trading character.
Above you can see the blueprint manufacturing page which is located on the first tab of Eveiph. Here you can see the components required to make an item, the settings
for the blueprint, and a brief market analysis of what you can expect to make manufacturing the item and selling it at the market you’ve selected. You can enter the
amount of runs you want to make, the ME and PE of your blueprint and click add to shopping list, and it will be added to a list of items to purchase when you are next at
a trade hub.

Machine So, not only was the speech a thoroughly mediocre diatribe about what he now thinks we should do for the next 45 minutes, but also how much credit we should give to
Mumford and Sons for bringing Obama to the campaign trail. Behold:
At the DNC, we drew strength from something even more powerful than the power of words. We drew strength from the power of families in this country. We drew
strength from the power of family values. We drew strength from the power of a common purpose–We drew strength from our shared commitment to fighting against
everything that undermines our potential in this country and our freedom. It is with that same conviction that we launch this campaign today and we urge every American
in America to join us tonight.
To allow the same attempt to succeed in this election.

Machine The year is twenty-eight, and the boy is Harry, the sixth year at Hogwarts School of Witchcraft and Wizardry. He can’t walk without spells covering his feet (or in his
case, his feet are so badly burned that he, for practical purposes, can’t even walk for that long without them) and he’s just starting to feel more secure about things. This
is a pretty dull aspect of the book, I’d say. They probably spent way too much time on the fact that he can’t use the stick of silver from his wand, despite his friends
bewitching all the knives they had.
Harry had been having some difficulty getting to sleep until Hermione pulled him out of his state of near-death-conversation. Thanks to Hermione’s meddling, he’s
gotten some sleep for the past two days. They also learnt a fair amount about getting used to his new surroundings.

Machine Coincidentally, just a few days after the first tweet came out, a fellow named Kevin McReynolds sent out an interview with GQ to promote their upcoming issue.
McReynolds describes himself as "a conservative Catholic" who "cannot fathom this guy being a real person and should be ashamed that he was able to be elected
president."
It’s true. If you believe Hillary Clinton gave away 20 percent of the American Uranium to Russia, then you should be ashamed that you voted for Trump. No one should
be able to give or receive anything that’s not supposed to, so long as they have a warrant. If you’ve been in a relationship for more than six months with a person who’s
also convicted of being a felon (or convicted of stealing), that’s just stupid, especially as a married man. If you’re married to someone convicted of a crime, and they go
on their honeymoon with you, that’s a felony, not a honeymoon.

Human CHIP DESIGNER Texas Instruments unveiled a family of system on chip (SoC) processors aimed at automakers today, which are designed for use in self-driving cars.
Named the TDA2x, the SoC family integrates safety features, such as aiding auto designers to create advanced driver assistance systems (ADAS), which in turn help
"reduce the number of collisions on the road and enable autonomous driving experiences".
"TDA2x device family combines an optimal mix of high performance, vision analytics, video, graphics and general purpose processing cores in a low power envelope,
enabling a broad range of ADAS applications including front camera, surround view and sensor fusion," Texas Instruments said in its release.

Machine Description
This classic blend of coffee, cream, and sugar is the perfect drink! It is a smooth and creamy coffee with hints of cream and sweet sugar that can be enjoyed even after a
full day of work or playing! The sugar provides a wonderful texture to the coffee beans, so that it can be scooped out into a cup.
Available in four flavours: vanilla cream, caramel cream, coffee creme, and chocolate cream.
Note: Coffee can be prepared in less than 120 minutes. Note: Serves one.

Table 3.4: The 10 examples that “expert" raters were guided through before they were asked to perform the detection
task. These are hand-selected to showcase the spectrum of generated text and human-written text.
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3.2.4 Results

simple baselines Table 3.2 shows the performance of the baseline discriminators on length-192
sequences, as compared with fine-tuned BERT. Reassuringly, BERT far surpasses all simple baselines,
indicating that it is not fully possible to solve the detection problem without complex sequence-based
understanding. The simplest baseline, TotalProb, which makes a decision based on the likelihood of the
sequence, performs surprisingly well (over 60% accuracy for all sampling methods) relative to the methods
which involve training logistic regression models.

Logistic regression on bag-of-words is the best of the baselines, beating out the histogram-based methods.
While Gehrmann et al. [52] report an AUC of 0.87 on classifying text as real or generated using logistic
regression on the four buckets of the GLTR system, we report AUC between 0.52 and 0.56 for this task. The
discrepancy is likely due to the fact that the human-written text in our discriminator training set comes from
the same distribution as the text used to train the language model, while in GLTR the human text comes
from children’s books, scientific abstracts, and newspaper articles. The selection of training data for learned
detection systems is crucial. In real-world applications, the choice ought to reflect the genres that builders of
text-generation systems are trying to impersonate.

fine-tuned bert In Figure 3.5a, we see that discriminator accuracy as a function of excerpt length
and sampling method. As can be intuitively expected, as sequence length increases, so too does accuracy.
For unconditioned text decoded with nucleus (p0.96) and untruncated (p1.0) random sampling, we find
discriminator accuracy increases from 55%, near random, to about 81% for the longest sequences tested. In
contrast, discriminators trained and evaluated on top-k achieve over 80% accuracy even on short 16-token
excerpts.

Why are top-k’s samples so easy to detect? It is because there are only a small number of word sequences
that can start a generation when we limit to only ever choosing the 40 most likely tokens at each generation step.
In Figure 3.3b, we see the percentage of probability mass concentrated in the k most common token types for
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Figure 3.3: In (a), the average (over sequences in the test set) k chosen at each step during generating with nucleus
sampling is plotted. Adding a single word of priming strongly impacts the ks chosen for the first few
positions, but this difference quickly dissipates. In (b), we consider the first token generated in each
sequence by top-k, and plot what fraction of these are captured by the k most common unique tokens from
the vocabulary. Overall, at its first step, top-k concentrates 80% of its probability mass in the 500 most
common tokens from the vocabulary.

each sampling method. While random sampling and nucleus sampling are very similar to human-written texts,
we see top-k concentrating up to 80% of its mass in the first 500 most common tokens. The other sampling
methods as well as human-written texts require at least 1,100 token types for the same. It is clear that top-k’s
distribution over unigrams strongly diverges from human-written texts–an easy feature for discriminators to
exploit. In fact, See et al. [135] note that it takes setting k to 1000 to achieve about the same amount of rare
word usage and fraction of non-stopword text as as human writing.2 This makes it very easy for the model to
pick out machine-generated text based on these distributional differences.
Instead of unconditioned generation, which in actuality means conditioning always on the same thing

(an empty sequence), we can instead prompt with human-written text that the NLG system then extends.
Doing so causes more rare words to be incorporated into the top-k of the unigram distribution. Adding even a
single human word of priming significantly reduces the performance of detectors trained with top-k random
sampling. Without priming, a discriminator trained on sequences of length 2 can classify with ∼90% accuracy

2 when decoding from the GPT-2 small model with 117M parameters.
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Figure 3.4: (a) and (b) show human rater accuracy of correctly identifying an excerpt as human-written or machine-
written, shown with 80% confidence internals, in (a), broken up by decoding strategy and in (b), overall.
Accuracy increases as raters observe more tokens. (c) shows that for short excerpts, most rater mistakes
are them incorrectly thinking machine-generated text is human written. The two errors types become more
balanced at longer lengths.

the provenance of the text (Figure 3.5a). By adding even just a single token prompt, accuracy drops to ∼65%.
Even on the longest 192-length sequences, top-k discriminator accuracy is 6% lower on the primed dataset
than the unprimed one.

When generating with nucleus or untruncated random sampling, adding a priming token is not as impactful,
as these methods are already sampling from a large fraction (or all) of the probability distribution. This is
seen in Figure 3.3a where at the very first step of unprimed generation, nucleus sampling selects from 3075
possible vocabulary words, and at later positions selects from on average more than 500. Untruncated random
sampling always selects from the entire 50,000 word vocabulary, whereas top-k only selects from k.

transferability In Table 3.5, we show how discriminators trained with samples from one decoding
strategy can transfer at test time to detecting samples generated using a different decoding strategy. Unsurpris-
ingly a discriminator trained on top-k generalizes poorly to other sampling methods: accuracy drops to as
low as 42.5%, worse than chance. Conversely, training the discriminator with sequences sampled from the
untruncated distribution leads to little transferability to detecting top-k samples. Only the discriminator trained
with nucleus sampling (a compromise between unmodified sampling and top-k) was able to detect sequences



3.2 impact of decoding strategy on the detectability of machine-generated text 39

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 32 64 96 128 160 192

A
cc

ur
ac

y

Sequence length in tokens

Accuracy of BERT Fine-tuned Discriminator

k40-1wordcond k40-nowordcond
p0.96-1wordcond p0.96-nowordcond
p1.0-1wordcond p1.0-nowordcond

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 4 8 16 32 64 96 128 160 192
Sequence length in tokens

Fraction of BERT Discriminator Errors that are 
Machine-generated Labeled as Human-written

k40-1wordcond p0.96-1wordcond p1.0-1wordcond

(b)

Figure 3.5: In (a), accuracy increases as the length of the sequences used to train the discriminator is increased. In
(b), we see that the BERT fine-tuned discriminator predicts about the same number of false-positives as
false-negatives when trained with samples generated using top-p sampling. However, for top-k, it more
often mistakes machine-generated text to be human-written, while for untruncated random sampling the
opposite is the case.

from the other sampling strategies without too much of a hit to accuracy. As expected, a discriminator trained
on an equal portion of data from each decoding method does reasonably at detecting all three.

Perhaps this lack of transferability is related to each discriminator’s calibration. Indeed, the degree to which
a discriminator’s average prediction deviates from 50% is a direct indicator of its accuracy. In Table 3.6, we
observe that of the three BERT discriminators, only that trained on top-p samples predicts ‘machine-generated’
on approximately 50% of in-domain examples as expected. This same discriminator’s behavior holds on
datasets generated by other sampling strategies as well. In contrast, we observe that discriminators trained on
top-k and untruncated random samples severely underestimate the percentage of machine-generated excerpts
in out-of-domain datasets. Even within domain (Figure 3.5b), we find both discriminators heavily favor a
single class, increasingly so as the number of tokens increases.
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Table 3.5: Accuracy of BERT fine-tuned discriminator when trained on samples from one strategy (rows) and evaluated
on another (columns). Trained on samples with 192 tokens. The ‘mixed’ dataset is one containing an equal
portion of samples from each strategy.

Eval
top-k nucleus random

Tra
in top-k 90.1 57.1 43.8

nucleus 79.1 81.3 78.4
random 47.8 63.7 81.7
mixed 88.7 74.2 72.2

Table 3.6: Average probability of ‘machine-generated’ according to each length-192 discriminator. The expected
in-domain probability is 0.5. One token of conditioning.

Eval
top-k nucleus random

Tra
in top-k 60.9 27.9 14.5

nucleus 49.2 51.7 48.9
random 7.3 22.6 38.3

human accuracy Overall human performance across all sampling methods is shown in Figure 3.4b.
Even with the multi-paragraph 192-length excerpts, human performance is only at 71.4%, indicating that even
trained humans struggle to correctly identify machine-generated text over a quarter a time. However, it is
worth noting that our best raters achieved accuracy of 85% or higher, suggesting that it is possible for humans
to do very well at this task. Further investigation is needed into how educational background, comfort with
English, participation in more extensive training, and other factors can impact rater performance.
To break up the accuracies by sampling method in a way that is comparable to the results shown for the

automatic discriminators, we pair each machine-generated example with a randomly selected one of webtext
to create a balanced dataset for each sampling strategy. Performance is shown in Figure 3.4a. Top-k produces
the text that is hardest for raters to correctly distinguish, but as shown in Section 3.2.4, it is the easiest for our
automatic detection systems. Samples from untruncated random sampling and nucleus sampling with p=0.96
are equivalently difficult for raters to classify as machine-generated. Our human evaluation results suggest
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Truth Raters p1.0 k40 p0.96 Truth Raters p1.0 k40 p0.96
H M H H M H H M M M
EDIT:OKAY!, I guess that’ll work for now. >_ http://www.teamfortress.com/ and then
go buy the game and experience some of the best online gaming I have ever played.
^__^Both girls had a really fun time and I had a GREAT time making both of these
costumes. Everything was altered even a little bit(dying the pants a darker grey and
painting the boots and shirts) But my piece de resistance would have to be my eldest’s
Medi-Gun.If you have any questions about the costumes, I would be happy to assist
you!Oh and here’s a video of my daughter before the costume was completed.Thanks!

Image copyright Getty Images Image caption Women mourn over the coffin of one of the
victim’s of Sunday’s bombing in Ankara ¶Who’d be in Turkey’s shoes right now? ¶Since
July last year, hundreds of soldiers and civilians have been killed in terrorist attacks. Suicide
bombs have torn into crowds of demonstrators and tourists. Military convoys have been
targeted in the heart of the capital. ¶A long-running Kurdish insurgency, once thought to
be close to resolution after years of painstaking efforts to build bridges, has erupted once
more. ¶The country is awash with Syrian and other refugees. The government has been under
pressure to stop them moving on into Europe and prevent would-be jihadis travelling the
other way. ¶How dangerous is Turkey’s unrest? ¶Tears and destruction amid PKK crackdown
¶Turkey v Islamic State v the Kurds

Truth Raters p1.0 k40 p0.96 Truth Raters p1.0 k40 p0.96
M M H - - M M - - H
First off, this thread has done a pretty good job of describing in detail yet another broken
touchscreen. That’s the difference between a smartphone and a PC with no prying eyes
having to snap shots for the police to find. ¶What I would like to address is the mindset
that generally surrounds Chrome OS users. To me this is analogous to saying that Apple
does“hate their Windows", or that HP does“hate their Macs" as if http://twitter.com/) (and
that quote is from two years ago), that anyone who covers smartphones and tablets from
a “PC" perspective is just jealous. ¶Chrome OS is for browsing the web, PC processors
can do stronger things in that regard, Windows is a juggernaut on those fronts. This is
how I see it. Yes, it can be slow. And yes, you need a fast CPU

FOR ALABAMA, GOOD WEEKS ¶AND A TOUR OF CAIRO ¶THE ALABAMA COM-
MITTEE ON THE STUDY OF THE AMERICAN SECURITY AGENDA, ¶America’s
future has been mapped out in carved stone. Metro Atlanta’s last US congressman, Bill Posey,
was a inextricable integral element of the Citadel project as it became another metaphor for
Atlanta’s transformation from an industry backwater into the finance and information hub
of the nation’s capital. Meanwhile, Cobb County – Atlanta’s geode of change – is home to
some of the largest industrial parks in the South, a regional cultural center, a 100-year-old
manufacturing town and a potent symbol of the former city’s cherished Georgian past. The
gentry still live there, the defunct industrial landscapes carry the names of

Truth Raters p1.0 k40 p0.96 Truth Raters p1.0 k40 p0.96
M H - - M M H - M -
Exidentia at Eurnari, is an upcoming Cryptopia event which is currently still in devel-
opment. Be a part of the first live stream of this year’s event on 15-16 January 2016!
¶Since the release of v1.22, Exidentia has received a fair amount of user feedback. This
event takes place in the underwater Cryptopia they have built. During this event, you will
learn about the ocean and areas around it, and be reached by a treasure hunter that helps
you explore the different areas. ¶There will be six different levels in this event that you
will become acquainted with: thought Polar Lava, Ocean Seared Cones and Celestine
Floors, Sea Damaged Aerie Bricks, coast Puddle (congipit stopping at red water), Shaikh
Swamp and Bugmite. At rotating points, you will learn how to access various types of
creatures

Ever since the opening of the North American College of Art Education in 1990, the demand
for art education in America has grown steadily, and in recent years we have seen the rise
of students that pursue art education not in the classroom but at art academies. This year
saw another 50 percent increase in the number of art academies in the United States offering
courses – with an additional 10 percent of students in 2017 taking art. ¶Some major changes
have occurred in recent years with regard to the art curriculum and the way students learn,
and we will explore each of these in coming months as we look at the various forms of
art education. There is no one-size-fits-all approach for this or any other field of study, and
students who begin a course in art education may change their plans based on what they see
that course, including what lessons they have completed and the resources available, to create
meaningful experiences of artistic creation. ¶One important area

Table 3.7: Some 192-token examples where at least two expert raters agreed with each other, but were not in agreement
with the automatic discriminators. The first row shows examples where the ground-truth was human-written,
the second shows machine-generated examples where the corresponding discriminator guessed incorrectly,
and the third shows machine-generated examples where the discriminator was correct, but raters got it
wrong.
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that much lower p-values than the 0.92 to 0.98 range proposed in Zellers et al. [174] might be necessary in
order to generate text that is considered significantly more human-like to human raters than the text produced
by using the untruncated distribution.

Table 3.7 gives several examples where human raters and our BERT-based discriminators disagreed. When
raters incorrectly labeled human-written text as machine-generated, often the excerpts contained formatting
failures introduced when the HTML was stripped out. In the middle two examples, topic drift and falsehoods
such as Atlanta being the “information hub of the nation’s capital" allowed humans to correctly detect the
generated content. However, in the bottom two examples, the high level of fluency left human raters fooled.
Overall we find that human raters—even “expert" trained ones—have consistently worse accuracy than

automatic discriminators for all decoding methods and excerpt lengths. In our experiments, randomly-selected
pairs of raters agree with each other on a mere 59% of excerpts on average. (In comparison, raters and
discriminators agree on 61% to 70% of excerpts depending on the discriminator considered). We surmise that
the gap between human and machine performance will only grow as researchers inevitably train bigger, better
detection models on larger amounts of training data. While improved detection models are inevitible, it is
unclear how to go about improving human performance. GLTR proposes providing visual aids to humans
to improve their performance at detecting generated-text, but it is unlikely that their histogram-based color-
coding will continue to be effective as generative methods get better at producing high-quality text that lacks
statistical anomalies.

3.3 roft: a largescale study of human detection ability

Our pilot study in Section 3.2 showed how choice of decoding strategy impacts human ability to detect
machine-generated text. However, there are many other factors which influence detectability that we were not
able to include in this study, including the domain of the text being used for evaluation and the architecture
and manner in which the underlying language model was trained. In addition, we were interested in studying
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the annoators themselves–how do annotator background as well as the incentive structure set up for soliciting
annotations impact performance on the detection task? We therefore saw the necessity of designing a platform
for conducting large-scale studies of the detection task.

Previous studies, including our pilot, focused on the binary classification task–given a text example that is
either entirely human-written or entirely machine-generated (aside from an initial prompt), annotators must
predict whether it is human-written or machine-generated. For example, Clark et al. [29] demonstrated that
annotators are able to distinguish GPT-2 XL generations with at best 62% accuracy, but they perform no
better than random chance on GPT-3 outputs [20]. Even after training evaluators to improve their detection
abilities, detection accuracy on GPT-3 was only able to converge to around 55%. An older study by Brown
et al. [20] reported similarly low performance (52%) on the detection of machine-generated news articles.
For our large-scale study, we instead framed detection as a boundary-detection task: given a document

that starts off as human-written and at some point transitions to machine-generated, can annotators detect the
transition point? The boundary detection setting is more informative than the classification setting because
it better aligns with how LMs are used to generate text in practice; in typical usage, a generative system is
provided with a prompt and asked to produce a continuation. By measuring human skill at the boundary
detection task, we were able to evaluate the relative performance of different generative systems, build a
better understanding of how incentive structure influences the quality of the annotations acquired, and make
progress toward quantifying the risks associated with large language model goals.. Furthermore, because
the annotation platform we built was public, we could achieve these research goals while simultaneously
educating the public about how to spot generated text.

In total, we collected over 20,000 annotations with the goal of answering the following research questions:
∙ How do model size, decoding strategy, and prompt genre impact dectability?
∙ What kinds of errors and textual properties do humans associate with machine-generated text?
∙ Do annotators who take longer per annotation or spend more time on the task do better?
∙ Are their external factors (such as knowledge of NLG) which make some annotators better at the task?
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Figure 3.6: In the boundary detection task, players see one sentence as a time and try to guess when they transition
from human-written to machine-generated.

3.3.1 The Real or Fake Text Game

Our study uses data collected through the “Real or Fake Text” (ROFT) annotation platform [40]. ROFT is a
turn-based game where a player first selects a domain of text (news articles, recipes, short stories, or speeches).
The player then plays a series of game rounds. Figure 3.6 shows a screenshot from a game round. In each round,
the player is shown a starting sentence which they are told comes from a real human-written document. They
are then shown subsequent sentences, one at a time. Each subsequent sentence may be the true continuation
of the document, or it may be text generated by a language model. Once the sentences transition to being
machine-generated, they will stay so for the rest of the 10-sentence passage.
After being shown each sentence, the player must guess whether that sentence was machine-generated or

human-written. If the user selects “human-written,” another sentence is displayed. If the player deems the
current sentence to be written by a machine, the game round ends and the true author (machine or human)
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for each sentence is revealed, potneitally allowing the player to improve their intuitions over time. Before
submitting their selection, the player is able to select a reason to explain their choice of sentence. They may
select from a pre-defined set of reasons (Table 3.14) or else write a custom reason. Thus, the player’s goal in
ROFT is to correctly identify the sentence at which a passage transitions from being human written to being
generated by a language model. This setting is considerably more realistic than prior work, since in the real
world, generating with a prompt is the standard way to achieve controllability, and malicious actors will not
reveal what portion of a generation is the human-written prompt.
In total we collected over 20,000 annotations. We found that players vary substantially in their detection

ability, and that factors such as the amount of time taken to complete a game round and total number of game
rounds played sometimes correlate with success. Furthermore, we examine some of the the trends and errors
which distinguish real from generated text and look at whether annotators could pick up on these trends.
Finally, we discuss the difficulty in incentivizing players to improve in their ability over time.

3.3.2 Experimental Design

Datasets

In order to answer questions of how textual genre and writing style affect detectability of machine-generated
text, we selected four diverse categories of prompts. For each category, documents were sentence-segmented,
and only documents with 11 or more sentences were retained. For each document, the first ℎ sentences were
used as the prompt, where ℎ is a uniform random number between 1 and 10 (inclusive). The remaining
10 − ℎ sentences of each 10-sentence game round were a machine-generated continuation. Our four genres of
prompts are as follows:

news articles. Documents were drawn from the New York Times Annotated Corpus [130], which
contains 1.8 million articles published by the Times between 1987 and 2007. Our hypothesis was that this
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domain would be challenging for models since news requires factual accuracy, which state of the art models
have been shown to struggle with [106, 93].

presidential speeches. Documents were drawn from the presidential speech corpus [16], which
contains 963 speeches given by presidents of the United States, with dates ranging from 1789 to 2015. Our
hypothesis was that the sort of first-person rhetoric found in these speeches would be easy for models to
impersonate since political speech and first-person speech are plentiful in web-based training data.

stories. Fictional stories were selected from the Reddit Writing Prompts dataset [42], a corpus of
amateur short stories scraped from the r/WritingPrompts sub-Reddit. We hypothesized that this domain would
be challenging for players since the writing quality of the stories is not especially high (which lowers the bar
for the model generation quality), and factuality is not as important in a fictional domain.

recipes. Recipes were extracted from the Recipe1M+ dataset [99]. Recipes were parsed slightly
differently than the other domains. We set the “first sentence” of each document as the name of the recipe and
the ingredient list, and each subsequent “sentence” was a step in the recipe. Some recipe steps were more
than one sentence. We hypothesized that this dataset would be difficult for models due to the closed-ended
nature of the task and the reliance on common sense.

Awarding Points

In each game round, the player is awarded points based on how close their selection was to the true boundary3.
Players were awarded 5 points for correctly choosing the boundary sentence and max(5 − n, 0) points for a
guess n sentences after the boundary. Players were not awarded points for guessing a sentence before the
boundary. Players were able to see how many points they earned in each category on their profile page and
compare their performance with fellow players on the leaderboard page. In the Findings section (Section

3 For our purposes, the “boundary” sentence is considered to be the first machine-generated sentence in the passage
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3.3.3), we report mean score earned as the predominant evaluation metric. Table 3.10 shows the correlation
between mean score and other sensible metrics. We see that mean score is strongly positively correlated
with both perfect guess accuracy and correct side of boundary. Mean score is only weakly correlated with
distance after boundary due to the harsh scaling of points; only guesses within five sentences to the right of
the boundary receive any points. While imperfect, this harsh scaling is by design, as without it later sentences
will give significantly more points in expectation.

Player Recruitment and Annotation Filtering

Players were recruited from two sections of an Artificial Intelligence course for Master’s students and senior
undergraduates at the University of Pennsylvania. We only analyze fully anonymized data from students who
consented to having their annotations used for research purposes.

The first section (Group A) was asked to play 30 minutes of the ROFT annotation game for a fixed amount
of points of class credit. Students in this section were not given any instructions beyond how to create an
account. The second section (Group B) was explicitly told they would be awarded to 2 points of extra credit
toward their final grade. The amount awarded was min(2p∕250, 2) where p was the number of points the
student earned on the ROFT leaderboard. Students in Group B were given detailed instructions and examples
of signs to look out for that text was machine-generated. Table 3.9 gives statistics on the annotations collected
from each class.
We note that university students taking an advanced artificial intelligence course are not reflective of the

global population of English speakers, and the results presented in this paper may not reflect the general
population’s ability to detect machine-generated text.
In total, we collected 42,165 annotations over 7,895 different game rounds. The annotations were then

filtered in the following ways. If a player guessed the same boundary position for a series of 5 or more rounds
in a row, we removed all the annotations in the series because the player was likely no longer actually playing
the game as designed. We also removed annotations from the two players cheated by exploiting Javascript
vulnerabilities. Finally, for the recipes genre, a bug during dataset curation resulted in an over-representation
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Table 3.8: Statistics on the annotation tasks (game rounds) available in our system. The second column shows the
number of game rounds available for each system. The discrepancies in number of annotations per dataset is
partially due to the fact that players were able to choose which domain they performed annotations in.

# # Annotations Avg
Genre Rounds Raw Final Ann/Gen Systems Decoding Strategies
News 1,838 7,806 4,488 2.97
Stories 9,864 8,007 4,614 2.53
Recipes 7,258 17,978 7,709 2.13
Speeches 297 8,374 4,835 16.28

Table 3.9: Statistics on the students who were invited to complete annotations on ROFT. “Avg Ann / Part” is the average
number of annotations per participating student, while “Avg Score / Part” is the average score. “Avg Time”
is the average time it took a participant to read one sentence. Standard error is shown.

# Avg Annotations Avg Score Avg Time /
Class # Participants # Annotations / Participant / Participant Annotation (s)
Group A 141 6,527 46 1.966 5.651
Group B 102 15,119 148 2.134 6.443
Overall 241 21,646 90 2.083 6.338

of “all-human” game rounds played; for better balance during analysis, we randomly removed a portion of
these annotations. Our final filtered dataset consisted of 21,646 annotations over 7,257 game rounds. For
News, Stories, and Recipes, we had on average over 2 annotations per game round, while for Speeches, a
smaller dataset, we had on average 16. Table 3.8 gives a detailed breakdown of the dataset across genres and
generation systems.

Continuation Sources

In order to answer questions related to how model attributes affect generated text we employed different
methods of text generation for each category. For Recipes, New York Times, and Stories, we generated
continuations with GPT-2 XL using nucleus sampling [holtzmanetal2020] with p = 0.4 and a repetition
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Metric �

(a) Correct side of boundary 0.74
(b) Perfect guess 0.88

(c) Distance after boundary 0.31
Table 3.10: Average points earned is the main metric reported in the Results section. This table shows the Spearman’s

rank correlation between average points per user and several other possible metrics: (a) the fraction of
times the user correctly guessed on or after the boundary; (b) the fraction of times the user guessed exactly
on the boundary; and (c) the average number of sentences after the boundary of the user’s guess (giving
new score for guesses before the boundary).

penalty of 1.2 [77]. For Recipes, we additionally generated continuations with a GPT-2 XL model finetuned
on recipes.
For New York Times and Stories, we experimented with varying the p used for decoding, testing out

p = 0.0 (argmax) and p = 1.0 (sampling directly from the model’s predicted distribution). As an additional
sanity check on annotator skill, we also included 100 game rounds in the News domain where instead of
transitioning to an LM-generated continuation, the passage transitioned to a completely different news article
selected at random. We expected these game rounds to be trivial for players.
For Stories, we experimented with different model sizes, generating continuations with both GPT-2

Small (117M Parameters) and GPT-2 XL (1.5B Parameters). Lastly, for Presidential Speeches, we generated
continuations using the CTRL model [77] rather than GPT-2. CTRL has the option to specify a control code
indicating what domain to generate text in. For half of the generations, we used the “[Politics]” control code
while for the other half we randomly selected a control code each time. We expected use of the politics control
code to result in generations which more on topic.
Table 3.8 gives the statistics of the game rounds included in ROFT. Overall, {TODO: }% of game rounds

were exclusively human-written.
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3.3.3 Results

The collected annotations allow us to investigate several questions. Error bars on all figures and tables are
95% confidence intervals.

Can humans detect generated text?

Players correctly guessed exactly on the boundary sentence 23.4% of the time. For game rounds which
contained at least one generated sentence, players were able to eventually guess machine-generated 72.3%
of the time, even if they missed the exact boundary. Players incorrectly identified 61.3% of all-human game
rounds as containing machine-generated text.
The average number of points (§3.3.2) received per round by our players was 2.08, well above random

chance. For comparison, if a player uniform randomly guessed every round, their expected per-round score
would be 1.31, and if they always guessed the last sentence, their expected per-round score would be 1.5.4 For
the remaining analyses, we will use average points earned as the primary measure of detection ability. This
measure correlates with other possible metrics (Table 3.10).
Out of the 214 annotations we collected on the “sanity check” game rounds, the mean score was 2.75,

significantly higher than any of the true LM-backed systems. Also, for these annotations, the error type
“irrelevant” was selected about twice as often as all other error types combined, validating that players were
paying attention to the task at hand.

How much does player ability vary?

There was a large variance in the skill of individual players. Out of the 116 players who completed 50 game
rounds, 19 earned a total score of 70 or fewer points (one std below the mean score) in their first 50 rounds,

4 These expectations assume that the true boundary position is equally likely to be at any position. Figure 3.7 shows the true distribution
of boundaries, which was not quite uniform.
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Figure 3.7: The distribution of boundary sentence positions over all game rounds available on RoFt (top), all game
rounds that received annotations (middle), and all game rounds included in this paper’s analysis after
filtering out problematic annotations (bottom).
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Figure 3.8: (left) Comparison of mean player score across different genres with GPT-2 XL p=0.4 (and CTRL p=0.4
for speeches). (right) Comparison of mean player score across different values of p for nucleus sampling
(GPT-2 XL), as well as a “sanity-check” baseline.

while 15 earned a total score 127 or greater points (one standard deviation above the mean score). Four of
these raters scored two standard deviations above the mean score.
We also found that under the right conditions, players can improve over time. There was no correlation

between number of rounds played and player score for GroupA. However, Group B, whowere given extra credit
proportional to their game score, did show slight improvement (Table 3.12). There was also lower variance in
points earned among students in Group B (Figure 3.10), possibly because they were more incentivized to do
well at the task.

We can also measure inter-annotator agreement with the Krippendorff’s alpha co-efficient. This statistic
measures how much disagreement there is between players compared to the amount of disagreement one
would expect by chance. Two players are considered to have agreed if they both guessed “machine-generated”
on any sentence after the true boundary or if they both guessed the entire passage was human-written.
Over all annotations, we found �=-0.25, indicating there was less agreement than could be expected from
random guessing, suggesting different annotators were better at identifying different kinds of problems with
LM-generated text. However, among our top 25% of players (measured by mean score), there was high
inter-annotator agreement, with �=0.44, suggesting that good annotators made similar errors.
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Figure 3.9: (left) For Stories, as model size increases (using p=0.4), detection becomes harder. (middle) For Recipes,
extra finetuning does not significantly impact detectability. (right) For Speeches, using a “[Politics]” control
code (with the CTRL model) has no impact on detectability compared to using a random control code.

3.3.4 Analysis

Are some genres easier to detect?

We found that generated text was easier to identify in the recipes and speeches genres than in the stories and
news genres. Figure 3.8 (left) shows the average points received on each genre for game rounds that used
comparable LMs, while Table 3.11 gives a more detailed breakdown across models.

For recipes, we expect that the task was made easier by the fact that the first human-written "sentence" in
each game round was a semi-structured ingredients list, making it easy for players to check for contradictions—
a step saying to mix in cream is probably generated if there is no cream ingredient. In addition, recipes often
assume implicit unwritten knowledge, which language models struggle to get right—a step saying to crack
eggs into a bowl must precede a step saying to whisk the eggs. Indeed, if we look at the reasons given by our
players for saying “machine-generated,” recipes had a much larger percentage of “common_sense” errors
(26%) than did either News (10%) or Stories (10%). It is worth noting that this result slightly contradicts
the one reported by Clark et al. [29] who reported that generated recipes were more difficult to detect than
news or stories; more targeted research is necessary to fully understand the relationship between domain and
generation performance.
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Dataset p n Mean Score
News 0.4 1,197 1.793±0.109
Stories 0.4 468 1.645±0.168

Speeches* 0.4 4,252 2.171±0.062
Recipes 0.4 1,811 2.004±0.098

Table 3.11: The mean scores for each domain on annotations involving XL-sized models for p=0.4. Asterisk denotes
generation by CTRL. Interval is � = 0.95 confidence.

We believe the speech genre was easier for players not because speeches are intrinsically more difficult to
generate but because we struggled to get the CTRL model to produce high-quality, non-repetitive generations,
even though it is about the same size model as GPT-2 XL. It was necessary to incorporate repetition penalties
during generation with CTRL, which helped but did not solve the quality issues.

Does model size make a difference?

Previous work has shown that language model performance scales with number of parameters [75], so we
expected players to be worse at detecting generations from larger models. Indeed, we found that players scored
significantly higher when generations came from GPT-2 small (117M parameters) than when they came from
GPT-2 XL (1.5B parameters) (Figure 3.9.).

Are diverse generations easier to detect?

Choice of decoding strategy is known to have significant impact on text quality [177] and detectability [65].
Choosing a lower value of p when generating with a nucleus sampling [61] decoding strategy produces less
diverse but also less noisy text than choosing a higher value of p. In our experiments, we did not find statistically
significant differences in player skill between p=0.0 (greedy) and p=0.4 sampling (Figure 3.8). However,
players were significantly better at p=1 (pure random sampling) than the lower values, validating claims from
earlier papers that LMs struggle to generate high-quality text with similar diversity to human-written text.
Interestingly, generations from GPT-XL using p=1.0 were easier for players to detect than generations from
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GPT-2 small using p=0.4. This highlights the importance of decoding, as improper selection of decoding
strategy may cause a language model to perform worse than one that is one tenth its size.

Do control codes affect detectability?

CTRL is a 1.6B parameter LM trained with controllability in mind. At inference time, one can pass in a control
code, such as “[Politics]” or “[Horror]” to include the style of the generated text. We investigated the efficacy
of these control codes on the genre of presidential speeches by using “[Politics]” for half the generations and
randomly selecting control codes for the remaining half. We found that use of the politics control code did not
significantly affect players’ ability to distinguish real from fake text. This is not to say that control codes do
not affect generation; however, it does suggest that the cues used by players to detect generations may not be
related to genre-specific details, as least not within the genre of political speeches. Further work is needed to
investigate whether control codes could have influenced detectability in other genres.

Does finetuning affect detectability?

We had expected that finetuning on in-domain text would result in a model that was better able to fool humans.
Counter to expectations, there was a small increase in player detection ability when generations came from
GPT-2 finetuned on recipes compared with generations from pre-trained GPT-2. This is despite the fact that
the finetuned model had close to half the perplexity of the pre-trained model on a held out test set of 50,000
recipes (4.781 vs. 8.979). While we can only speculate as to the amount of recipe knowledge present in the
pre-trained model (GPT-2’s training data is not publicly available), it is possible the pre-trained model already
contained enough understanding of recipe-like text that it was not critical to do the extra-finetuning. Perhaps
finetuning would have had more impact in a specialized or jargon-laden domain (e.g. legal, medical).

How much time did game rounds take?

To understand how much time game rounds took, we logged how many seconds players spent on each sentence
decision. We controlled for instances of players leaving a game open mid-annotation by applying min(120, t)
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Figure 3.10: Performance over time for the two player groups (§3.3.2). Players in Group B, who were given extra
instruction and incentives, improved over time while those in Group A did not.

Group k n Spearman �
A 50 22 -0.03
A 100 13 -0.06
B 50 88 0.29
B 100 81 0.42

Table 3.12: The Spearman’s rank correlation coefficient between the number of annotations performed before the
current annotation and the score on the current annotation, for all n players who have performed k or more
annotations. Players in Group B, who were given extra instruction and incentives, improved over time
while those in Group A did not.

to all recorded times t. We computed total time per annotation by summing the times for each sentence-level
decision. We found players took longer on annotations where they ended up receiving more points, and players
gradually got faster over time (Figure 3.13). While one might expect longer sentences to take more time to
read and make decisions on, we found no correlation between time taken and length of sentence (�=-0.10),
indicating that players take time to think about the task beyond just reading the sentence.

What sentence-level features could be used to detect generated text?

It has been well-studied how generated text differs in basic, measurable ways from human-written text,
often due to the choice of decoding strategy. In particular, we measured how sentence length, part-of-speech
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Figure 3.11: Violin plots showing results of our mandatory exit survey. A violin plot is a box plot that also provides a
density estimation. Results shown are filtered to only include players who did at least 20 rounds. We see
that reading the help guide, being a native English speaker, and providing a custom response for your
familiarity with NLG all contribute to a higher mean score while high domain expertise does not seem
have an affect (except in the case of short stories, where variance is lower for domain experts).
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Figure 3.12: We see that human sentences tended to have a different number of named entities than generated sentences.
Players picked up on the correct trend in Stories, but not in News or Speeches.

distribution, and presence of named entities and novel words differed between the generated and human-written
sentences in our dataset, and whether players were able to pick up on these differences. Figure 3.12 shows
the results for named entities, where novel named entities are ones which occured in the current sentence
but not in any previous sentences. We found surprisingly different trends across different genres. On News
and Recipes, the generated sentences tended to have fewer named entities than in human-written sentences.
Annotators did not pick up on these trends, though they may have picked up on the fact that for Stories, the
generated sentences tended to have slightly more named entities.
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Figure 3.13: (left) Histogram showing the relationship between points earned and the number of seconds an annotation
took. Annotators tended to earn more points on annotations they spent longer on. (right) Among players
who completed at least 100 annotations, average annotation speed decreased with increased experience at
the task.

In News and Speeches, machine-generated sentences tended to be shorter than human-written ones, a
trend players did not pick up on. However, for Stories, the generated sentences were on average longer than
the human ones, and annotators tended to select longer sentences as the boundary. Additionally in Stories,
generated sentences has on average a greater proportion of adjectives and adverbs, but annotators did not pick
up on this trend.

Does familiarity affect detectability?

All participating players filled out an exit survey after completing their annotations. The questions on this
survey are in Table 3.13. Figure 3.11 shows some of the results. First, there was not much difference in
performance between participants who reported they had never heard of GPT-2/3 and those who reported
having considerable familiarity with them. Interestingly, participants who answered “other” and wrote custom
responses did end up being better at the task. (For example, we released the extra credit assignment a week
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after a prominent NLG researcher gave a colloquium talk, and a couple responses we received references
hearing about them in her talk.) Second, participants who admitted that they did not read the help guide
tended to perform poorly; all the best players did read the guide. Third, there was not much difference in
ability between native and non-native English speakers. The very strongest players were not native English
speakers. Finally, we did not observe any correlation between self-reported familiarity with a given genre and
detection skill on that genre.

What are the most reliable errors to look for when detecting generated text?

Each time a player specified a sentence was machine-generated, they had the option to specify why they made
this decision, selecting from a set of pre-defined options (Table 3.14) or else writing down a custom reason.
Table 3.15 shows for each reason, the average number of points earned when that reason was specified. Like
Clark et al. [29], we see that conditioning on bad grammar is by far the least reliable way to detect generated
text. In addition, we see that over 30% of all reasons given for thinking generated text was generated was
because the text was “irrelevant or unrelated to the previous sentences.” This result stayed consistent across
all models and domains. We note that the three most reliable reasons given (“common_sense,” “irrelevant,”
and “contradicts_sentence”) were also the three most common, indicating that improving these attributes will
lead to the biggest improvements in generation performance.

Figure 3.14 shows the full text of the reasons players could choose between for their boundary decisions, as
well as some “other” responses we received. Figure 3.14 hows a more detailed breakdown of the percentage
of errors made by different models. We see that using p = 1.0 results in a higher percentage of “irrelevant”
errors (36%) than p = 0.0 (31%) and p = 0.4 (28%) while models decoded using p = 0.0 in turn have a higher
percentage of “generic” errors. We also see that smaller models tend to make more “irrelevant” errors than
larger models (39% vs. 28%). More research is necessary to understand not only the distribution of the types
of errors made by certain generative models but also the ways in which that distribution changes given factors
such as domain, model size, and decoding strategy.
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Question Response Type
What did you (or what are you planning to) major/minor
in?

Free Text

Are you a native English speaker? Yes/No
How often do you consult a recipe when preparing food? Daily (5)

Once to a few times per week (4)
Once to a few times per month (3)
Once to a few times per year (2)
Never (1)

How often do you read news from credible news pub-
lishers (Wall Street Journal, New York Times, etc.)?

Daily (5)

Once to a few times per week (4)
Once to a few times per month (3)
Once to a few times per year (2)
Never (1)

How often do you read fiction on the internet (fan fiction,
creative writing sub-reddits, ebooks, etc.)?

Daily (5)

Once to a few times per week (4)
Once to a few times per month (3)
Once to a few times per year (2)
Never (1)

What is your familiarity with GPT-2 and GPT-3? I’ve used them before (OpenAI API, HuggingFace, etc.) (4)
I’ve been excitedly following them. (3)
I’ve read about them in the news or a blog post. (2)
I’ve never heard of them. (1)

Did you read the RoFTGuide before you tried the game? Yes/No
Do you agree for the data being collected on this form
along with any annotations you make to be used in an
anonymized, aggregated way for research on students’
ability to detect machine-generated text? Your answer
on this question will not affect your grade.

Yes/No

Table 3.13: The text of the exit survey questions given to players after completing their annotations
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Reason Description
grammar is not grammatical
repetition substantially repeats previous text or itself
irrelevant is irrelevant or unrelated to the previous sentences
contradicts_sentence contradicts the previous sentences
contradicts_knowledge contradicts your understanding of the people, events, or concepts involved
common_sense contains common-sense or basic logical errors
coreference mixes up characters’ names or other attributes
generic contains language that is generic or uninteresting
other ▻Bacon is not sauted

▻Mr. vs President Clinton
▻navel and sternum seem like very unusual word choices
▻It’s unlikely that President Nixon will be quoting a one-month old report
when he talks about progress made to date
▻lemon, zest of some things dont sound right? 34 cups of splenda and 14
cups of vinegar?
▻doesn’t rhyme like rest
▻Grammar substantially improves from the previous sentences

Table 3.14: (top) The possible reasons players could select for why text was machine generated, and (bottom) several
examples of custom reasons players wrote.

3.3.5 Discussion

In the ROFT user study, we demonstrated the viability of the boundary detection task as a framework for
soliciting human evaluation of natural-language generation systems. We conducted the largest study of
generated text detectability to date and, in the process, replicated many previous major results in the field,
such as the improved performance of bigger models [75] and the difficulty in incentivizing annotators to
improve over time [29]. We confirmed the result from Section 3.2 showing that less random decoding strategy
settings result in generated text that is harder for humans to detect. While this trend was true in both domains
we tested it in, the impact of deoding strategy was more stark in the Stories domain than the News domain. In
addition, we have provided new insights into the ways in which humans interact with partially-generated text.
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Figure 3.14: The reasons provided by players as to why a given example was generated broken up per model that
generated the text

Future work could build off out study by testing a larger set of models, genres, and other experimental
conditions ((finetuning, topic control, decoding strategy, etc.). In addition, our study was limited in that we
assumed continuations always happened on the sentence boundary, but that is not always necessarily the case.
Future work could look at continuations that do not happen exactly on the boundary between sentences. We
also believe that more investigation is needed into exactly what annotators are thinking when they make their
decisions and how we can give annotators the right tools to explain their thought processes.
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Reason n Mean Score
common_sense 2,432 2.566 ± 0.086
irrelevant 4,259 2.530 ± 0.064
contradicts_sentence 1,606 2.527 ± 0.105
contradicts_knowledge 1,411 2.262 ± 0.111
coreference 542 2.249 ± 0.176
repetition 728 2.128 ± 0.154
other 75 2.040 ± 0.483
generic 1,546 1.920 ± 0.101
grammar 1,539 1.780 ± 0.105

Table 3.15: The number of times each reason was given for text being machine-generated, and the mean score over
those annotations. We see that when players select reasons like “grammar” or “generic,” they are much
less likely to be correct than when selecting “common_sense” or “irrelevant.”

Finally, we expect our released dataset of generations and annotations to be of broad use to those studying
detection. It would be worthwhile to study how well automatic systems perform at the detection task, and
whether we can predict when generated text will be especially difficult for human annotators to recognize.

3.3.6 Study Limitations

Work on the detectability of machine-generated text sits at an interesting balancing point. On one hand,
gamifying and publicizing the detection task may help to raise the public’s awareness of their susceptibility to
machine-generated text, and work such as ours paves the way for future research on techniques for helping
the public to improve at detection. On the other hand, we show that the detection task is a viable method for
evaluating generation systems. For researchers aiming to build better generative language models, decreasing
human detection ability might a very reasonable goal to optimize for. As much as our project seeks to better
understand and improve human detection, our results can just as easily be used to make generative models
even less detectable than they already are. Despite this drawback, we nonetheless believe it is important to
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study detection as a means of assessing the risks that language models pose and protecting against future
harm.
One significant limitation in our work is in our choice of participants. We acknowledge that university

students (many of whom have studied computer science) may not be representative of the larger population. It
will be important for future work to take on a broader user study conducted with a more diverse population
with the goal of understanding how the unique backgrounds of different annotators contribute to their ability
to detect generated text.
Another limitation in our study was in the incentives given to participants to perform well. Many of the

students given extra credit proportional to the amount of points they scored learned they could exploit the
point system by always picking one of the later sentences as the boundary. They found that rapidly guessing
Sentence 9 as the boundary on every game round was a more effective strategy for maximizing earned points
per time spent than taking the time to carefully read the text in each round. One alternative system which
could reduce this bias would be to show all ten sentences in the passage at once rather than show them one at
a time. The player would get a certain number of tries to guess the index of the boundary sentence and would
be scored based on the number of tries this takes. This would resolve the bug in our current system that some
sentence positions have a high point value in expectation.

3.4 conclusion

In this chapter, I introduce the task of detecting when text is machine-generated. This task can either be a
human evaluation task (asking annotators to identify when text is generated) or an automatic one (building
discriminators which can identify it). In Section 3.2 I conduct a preliminary study of how humans and
finetuned BERT classifiers perform on this task. I show that decoding strategies which result in generated text
that tends to fool humans lead to text that is likely to fool automatic detection systems. However, the results
in this section are limited in that they don’t break down detection by text genre, don’t investigate passages
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which are partially human-written and partially generated, and assume the automatic classifiers have access
to training data from the same generative model we are aiming to detect samples from.
Section 3.3 aims to fill in several of these gaps by conducting a lage-scale user study of human detection

ability. In the ROFT user study, I demonstrate the viability of a boundary detection task as a framework for
soliciting human evaluation of natural-language generation systems. I conduct the largest study of generated
text detectability to date and, in the process, replicate many previous major results in the field, such as the
improved performance of bigger models [75] and the difficulty in incentivizing annotators to improve over
time [29]. We confirmed the result from Section 3.2 showing that less random decoding strategy settings
result in generated text that is harder for humans to detect. While this trend was true in both domains we
tested it in, the impact of decoding strategy was more stark in the Stories domain than the News domain. In
addition, we have provided new insights into the ways in which humans interact with partially-generated text.
Future work could build off our study by testing a larger set of models, genres, and other experimental

conditions ((finetuning, topic control, decoding strategy, etc.). In addition, our study was limited in that we
assumed continuations always happened on the sentence boundary, but that is not always necessarily the case.
Future work could look at continuations that do not happen exactly on the boundary between sentences. We
also believe that more investigation is needed into exactly what annotators are thinking when they make their
decisions and how we can give annotators the right tools to explain their thought processes.

3.5 summary of contributions

My initial research on the detection task was published as “Automatic Detection of Generated Text is Easiest
when Humans are Fooled” in the 2020 Proceedings of the Association of Computational Linguistics [65].
The work was performed with in conjunction with Daniel Duckworth, with the mentorship of Douglas Eck
and Chris Callison-Burch. I proposed the initial idea of studying detection, and Daniel and I both worked on
designing and implementing the experiments and analyzing the results.
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The Real or Fake Text annotation platform was introduced as a system demonstration at the 2020 Conference
on Empirical Methods in Natural Language Processing [40]. The RoFT website was implemented by Arun
Kirubarajan, Liam Dugan, and myself, with the assistance of Run Shi, and the mentorship or Chris Callison-
Burch. The user study using annotations from RoFt was designed and run, and its results analyzed, by Liam
and myself.



4 M E M O R I Z AT I O N O F T R A I N I N G DATA

4.1 motivation

Machine-generated text is most undetectable when it looks exactly like its training data. In fact, the log-
likelihood loss used during training explicitly encourages models to be able to exactly reproduce their training
data. The result is models that are capable of exactly reproducing multi-paragraph sequences verbatim from
their training data. As models have grown from millions to trillions of parameters [43], with their training
sets similarly growing from millions to trillions of tokens, they are at increased risk of memorizing their
training data. The problem is made worse by the fact that these enormous datasets are only minimally curated.
For example, Carlini et al. [24] found that while most instances of memorization are innocuous, such as
news articles or religious text, models are also capable of memorizing things like contact information or the
names of real individuals (referenced outside of news contexts). This sort of memorization is harmful if it
breaches expectations of privacy or content ownership from those whose data is included in the train set.
Memorizaiton also reduces generalizability if models are biased toward examples that are not representative
of the underlying distribution of natural language.
In this chapter, we quantify the properties which raise the risk of memorization, notably the size of the

model and the number of times a document occured during training. We also show how passing in a long
prompt to the model increases the chance we will extract memorized content. Finally, we describe one
actionable step–thorough dataset deduplication–which can be employed before training to diminish the risk
of memorization.

67
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4.1.1 Definitions of Memorization

Memorization is an intuitive concept. When presented with two passages of text, humans are able to make
judgement calls over whether they are similar to each other. In order to systematically study memorization, it
is necessary to develop definitions which attempt, imperfectly, to capture this intution. In this chapter, we
employ several different imperfect measurements of memorization, each capturing a slightly different notion
of what it means for a language model to memorize.

There is extensive prior work that qualitatively studies memorization in neural language models. Much of
this work has defined memorized as extraction, the ability to extract training data examples from a trained
model. These works have demonstrated that it possible to recover various forms of memorized data including
URLs, phone numbers, or other forms of personal information [24, 184], or in other work, synthetically
injected “canaries” [23, 59, 147, 148]. However, extraction attacks typically aim to demonstrate the existence of
extractable data, rather than precisely quantifying how much models memorize. For example, the unprompted
memorization evaluation of Carlini et al. [24] found just 600 examples of memorization in GPT-2.

In contrast, in Section 4.2, our goal is to establish tight approximations to the fraction of a dataset that can
be adversarially extracted from a language model. We use the following definition for memorization:
Definition 1. A string s is extractable with k tokens of context from a model f if there exists a (length-k)
string p, such that the concatenation [p ∣∣ s] is contained in the training data for f , and f produces s when
prompted with p using greedy decoding.
For example, if a model’s training dataset contains the sequence “My phone number is 555-6789”, and

given the length k = 4 prefix “My phone number is”, the most likely output is “555-6789”, then we call
this sequence extractable (with 4 words of context). We choose greedy decoding because it is a cheap to run
(compared to beam search), and we found that memorization is correlated with generated sequences being
assigned very high likelihood.
In Section 4.3, we use a slightly different definition of “extractable”. Instead of generating with greedy

decoding, we use top-k=50 random sampling, and instead of checking if the generation verbatim matches the
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true continuation, we check if the edit similarity between the generation and the true continuation is above a
chosen threshold. Section 4.3 also measures memorization in unconditioned generation. We generate 100,000
sequences each of 512 tokens, and then counted the fraction of generated tokens which are part of 50-token
long substrings that occur in the train set.
All of these definitions are inspired by the broad literature on privacy attacks in machine learning. For

example, membership inference attacks [139, 172] allow an adversary to detect the presence of a given
example in a model’s training dataset, and other forms of data leakage permit an adversary to learn dataset
properties [48, 45]. We focus on extraction attacks due to their relevance for language modeling—extraction
demonstrates significant leakage from a model, and grows with data duplication [83], a common feature of
large-scale text datasets.

Various formulations of memorization in deep neural networks have been studied in previous papers [23, 24,
44, 176, 109]. One leading general memorization definition is differential privacy [41], which is formulated
around the idea that removing any user’s data from the training set should not change the trained model
significantly. However, while differential privacy protects a single user’s private information, it is ineffective for
memorization of duplicated data and does not capture the complexity of linguistic data [17]. Also, differentially
private deep learning algorithms [1] generally suffer from expensive computation, slow convergence, and
poor model utility, despite recent advances [6].

4.2 quantifying the factors that influence memorization

It is important to quantify factors that lead to increased memorization of a model’s training set. Indeed, recent
work has shown that training data extraction attacks are a practical threat for current language models [24].
In a training data extraction attack, an adversary “attacks” a trained neural network by interacting with it with
the goal of establushing whether an item was in the training data. While current attacks are effective, they only
represent a lower bound on how much memorization occurs in existing models. For example, by querying the
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GPT-2 language model, Carlini et al. [24] (manually) identified just 600 memorized training examples out
of a 40GB training dataset. This attack establishes a (loose) lower bound that at least 0.00000015% of the
dataset is memorized. In contrast, we are able to show that the 6 billion parameter GPT-J model [12, 160]
memorized at least 1% of its training dataset, The Pile ([50]) (see Section 4.2.2).

In addition to these loose estimates of models’ memorization capabilities, there is a limited understanding
of how memorization varies across different neural language models and datasets of different scales. Prior
studies of memorization in language models either focus on models or datasets of a fixed size [23, 176, 147]
or identify a narrow memorization-versus-scale relationship [24, 83]. McCoy et al. [101] broadly study the
extent to which language models memorize, but their focus is on how to avoid the problem and ensure novelty
of model outputs, rather than on studying model risk through identifying maximum memorization.
The research presented in this section addresses both of the above open questions by comprehensively

quantifying memorization across three families of neural language models and their associated datasets. We
leverage access to each model’s original training set to provide order-of-magnitude more precise bounds on
the amount of extractable data than in prior works.

To construct a set of prompts from the model’s training set, we feed varying-length prefixes of the training
data back into the trained model, and verify whether the model has the ability to complete the rest of the
example verbatim.

This allows us to measure memorization across models, datasets, and prompts of varying sizes. We identify
three properties that significantly impact memorization:

1. Model scale:Within a model family, larger models memorize 2-5× more data than smaller models.
2. Data duplication: Examples repeated more often in a model’s training set are more likely to be

extractable.
3. Context: It is orders of magnitude easier to extract sequences when given a longer prompt.

Our analysis suggests that future research on neural language modeling will need to take steps to prevent
future (larger) models from memorizing their training datasets.
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4.2.1 Selection of Evaluation Data

Having chosen a definition, we next describe our evaluation procedure. Ideally, we would consider every
sequence x = [p ∣∣ s] contained in the model’s training dataset (where x has been split into a length-k prefix p
and a suffix s). For each sequence, we would report if the model exactly reproduces s when prompted with p,
following Definition 1. Unfortunately, performing this test on every sequence in the training data would be
prohibitively expensive. For example, the largest 6 billion parameter GPT-Neo model has a throughput of
roughly one 100-token generation per second on a V100 GPU. Extrapolating to the 800GB training dataset,
this would require over 30 GPU-years of compute.
Instead, we query on a small subset of the training data. This subset should be small enough that it is

feasible to test for extraction, but also large enough that it gives statistical confidence. In our experiments, we
choose subsets of roughly 50,000 sequences. The primary criteria when choosing a subset of the training data
is to obtain a representative sample that allows us to draw meaningful conclusions from the data. Yet, naively
sampling from the data independently at random to construct a representative subset of the data distribution is
not the best approach. Indeed, prior work has identified that one of the most important factors that contributes
to training data memorization is how often that data has been duplicated (i.e., how often the same sequence is
repeated either exactly or approximately-exactly). Because the frequency of training data duplication follows
an exponential distribution [83], a fully random sample of only 50,000 sequences (accounting for ≤ 0.02%

of the dataset) is unlikely to contain any signal that would allow us to accurately measure the tail of this
distribution.

Instead, we construct a duplication-normalized subset. For each sequence lengthl ∈ {50, 100, 150,… , 500},
and integer n, we select 1,000 sequences of length l that are contained in the training dataset between 2n∕4

and 2(n+1)∕4 times. We do this until we reach an n for which 1,000 sequences are not available. This gives
us 1000 sequences that repeat between 6 and 8 times (≈ 211∕4 and ≈ 212∕4) and also 1000 sequences that
repeat between 724 and 861 times (≈ 238∕4 and ≈ 239∕4). This biased sampling allows us to more accurately
measure memorization as a function of a sample’s duplication factor, without querying the entire dataset.
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Note that constructing this duplicate-normalized data subset requires some work, as efficiently identifying
duplicate substrings in an 800GB training dataset is computationally challenging. We make use of the suffix
array construction from Lee et al. [83] to identify sequences which are present in the training set a specific
number of times.
For each sequence length between 50 and 500 tokens, this collection process gives us roughly 50, 000

examples duplicated varying numbers of times, totaling roughly 500,000 sequences. For each length l
sequence, we prompt the model with the first l −50 tokens and report the sequence as “extractable” if the next
50 tokens emitted by the model exactly match the 50 token suffix of this sequence. Fifty tokens corresponds
to an average of 127 characters or 25 words5, well over the length of a typical English sentence. Finally, we
compute the average probability that a sequence is extractable by averaging over all lengths l.

4.2.2 Experiments

Model and Dataset

We primarily study the GPT-Neo model family [12, 160] trained on the Pile dataset [50]. The GPT-Neo
models are decoder-only language models trained with the objective of predicting the next token in a sequence
given the previous ones. They come in four sizes: 125 million, 1.3 billion, 2.7 billion and 6 billion parameters.
The Pile is a dataset containing text collected from various sources (e.g., books, Web crawls, open source
code) that totals 825GB. At the time this research was completed, the largest GPT-Neo model was the largest
language model available for public download, and The Pile is the largest public text dataset available.

Bigger Models Memorize More

We begin by considering the impact of model size on memorization, expanding on prior studies which
qualitatively established a relationship between the size of GPT-2 models and their ability to memorize <30

5 As measured by spaCy on the GPT-Neo training set.

https://spacy.io/
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URLs [24]. In contrast, we study a million model generations in order to describe how model scale relates to
memorization.
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Figure 4.1: We prompt various sizes of GPT-Neo models (green) with data from their training set—The Pile. As a
baseline (yellow), we also prompt the GPT-2 family of models with the same Pile-derived prompts, even
though they were trained on WebText, a different dataset. Larger models memorize a larger fraction of
their training dataset, following a log-linear relationship. This is not just a result of better generalization, as
shown by the lack of growth for the GPT-2 baseline models. The dark shaded region is one std away from
the mean, and the lighter shaded region represents the min and max over all document lengths.

results. The results of this experiment are given in Figure 4.1. The y-axis reports the fraction of
generations which exactly reproduce the true suffix for their prompt, averaged over all prompt and sequence
lengths we experimented on. We find that larger models memorize significantly more than smaller models do,
with a near-perfect log-linear fit (R2 of 99.8%): a ten fold increase in model size corresponds to an increase
in memorization of 19 percentage points.6
To confirm that larger models are indeed memorizing more data, and not simply generalizing better, we

also perform the same analysis with the GPT-2 model family as a baseline. The GPT-2 family of models are
similarly sized, and also trained on Internet-scraped data. If our result that larger models memorize more was
due to the general predictive strength of larger models, and not the memorization of specific training data, we
would expect a similar relationship between comparably sized GPT-2 models trained on similar data. Put
differently, this baseline allows to establish what fraction of the training data is sufficiently “easy” that any

6 This trend cannot continue indefinitely; the maximum percentage is 100%. We do not address these complications as our results max
out at ∼60%, but future work may need to handle these additional difficulties when extrapolating to even larger models.
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language model could correctly predict the 50-token suffix, even if the example had never been seen before
during training. For example, a language model that has seen multiple examples of number sequences during
training could learn to correctly complete other number sequences that were not seen in training.
We find that approximately 6% of the examples in our evaluation dataset can be correctly completed by

GPT-2, compared to 40% for a similarly sized 1.3B parameter GPT-Neo model. A qualitative analysis (see
examples in Appendix Figure 4.12) suggests that examples “memorized” by GPT-2 are largely uninteresting
sequences (e.g., number sequences, repetitions of the same few tokens, or common phrases). Therefore, we
conclude that when larger models have a higher fraction of extractable training data, it is because they have
memorized the data; it is not simply because the larger models are generally more accurate.

Repeated Strings are Memorized More Often

Prior work has provided preliminary evidence that memorization in languagemodels increases with the number
of times sequences are repeated in the training set [24, 83]. We expand on this observation and systematically
measure the effect number of repetitions has on memorization. Using our experimental methodology, we
measure the fraction of sequences which are extractable, for sequences in each bucket of duplicate counts,
varied between 2 duplicates and 900 duplicates. Each bucket consists of 1,000 distinct sentences, and we
compute the average amount of memorization for each bucket.

results. Figure 4.2 shows an analysis of our results, aggregated over all sequence lengths. We find a
clear log-linear trend in memorization. While the model struggles to regurgitate strings which are repeated
just a handful of times, this probability increases dramatically as strings have more repetitions. These small
memorization values at low numbers of repetitions corroborate the impact of training dataset deduplication
on memorization observed by Lee et al. [83]. However, we find that memorization does still happen, even
with just a few duplicates—thus, deduplication will not perfectly prevent leakage. While this relationship is
perhaps obvious, and has been corroborated for specific training examples in prior work [23, 24], our results
show that it holds across the entire training set.
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Figure 4.2: We prompt various sizes of GPT-Neo models (green) with data from their training set—The Pile. As a
baseline (yellow), we also prompt the GPT-2 family of models with the same Pile-derived prompts, even
though they were trained on WebText, a different dataset. Examples that are repeated more often in the
training set are more likely to be extractable, again following a log-linear trend (baseline is GPT-2 XL).

Longer Context Discovers More Memorization

The previous two questions evaluated how data collection and model training decisions impact the leakage of
a model’s training data when it is provided a fixed number of tokens from a sequence as context. As a result,
those experiments suggest particular actions that could be taken to mitigate memorization (by reducing model
size, or limiting the number of duplicate examples).
However, even when the model is fixed, it is possible to vary the amount of extractable training data by

controlling the length of the prefix passed to the model. By studying how the number of tokens of context
impacts extractability, we demonstrate the difficulty of discovering memorization—language models may
only exhibit their memorization under favorable conditions.

results. In Figure 4.3, we observe that the fraction of extractable sequences increases log-linearly with
the number of tokens of context. For example, 33% of training sequences are extractable from the 6B model
at 50 tokens of context, compared to 65% with 450 tokens of context.
We call this the discoverability phenomenon: some memorization only becomes apparent under certain

conditions, such as when the model is prompted with a sufficiently long context. This makes “discovering”
memorization difficult.
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Figure 4.3: We prompt various sizes of GPT-Neo models (green) with data from their training set—The Pile. As a
baseline (yellow), we also prompt the GPT-2 family of models with the same Pile-derived prompts, even
though they were trained on WebText, a different dataset. As the number of tokens of context available
increases, so does our ability to extract memorized text.

The discoverability phenomenon may seem natural: conditioning a model on 100 tokens of context is more
specific than conditioning the model on 50 tokens of context, and it is natural that the model would estimate
the probability of the training data as higher in this situation. However, the result is that some strings are
“hidden” in the model and require more knowledge than others to be extractable.

From one point of view, it is good that some memorization is difficult to discover. This makes it harder for
attackers to perform training data extraction attacks [24], or otherwise exploit memorization. Indeed, if an
exact 100 token prompt is required to make the model output a given string, then, in practice, an adversary will
likely be unable to perform the attack. The difficulty in discovering memorization also reduces the likelihood
of non-adversarial training data regurgitation. For example, the GitHub CoPilot model [26] reportedly rarely
emits memorized code in benign situations, and most memorization occurs only when the model has been
prompted with long code excerpts that are very similar to the training data [184]. Practitioners building
language generation APIs could (until stronger attacks are developed) significantly reduce extraction risk by
restricting the maximum prompt length available to users.

Viewed differently, however, the difficulty of discovering memorization can also harm our ability to audit
privacy in machine learning models. Because existing approaches for provably-correct privacy-preserving
training of machine learning are applied only rarely in practice [1, 147, 120], it is common to attempt post-hoc
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privacy auditing [71, 70, 108]. Our results suggest that correctly auditing large language models will likely
require prompting the model with training data, as there are currently no known techniques to identify the tail
of memorized data without conditioning the model with a large context. Improving upon this limitation is an
interesting problem for future work.

Alternate Experimental Setting: Random Dataset Sampling
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Figure 4.4: Percentage of sequences extracted as a function of model scale where we sample randomly from the
training set.

The experiments presented thus far use subsets of the training data that were explicitly sampled according
to how many duplicates of the example exist in the datas. We now explore what would happen if we instead
choose a truly random subset of the training data, where each sequence is sampled uniformly. Specifically,
we randomly sample 100, 000 sequences from The Pile dataset of length 100, 200, 500, and 1000; prompt
the model with the first N − 50 tokens; and then test for memorization by verifying if the model can emit
the remaining 50 tokens perfectly. We explore the result of this analysis in Figure 4.4 and Figure 4.5. We
again vary the size of the models we train and the context length we provide to understand how this impacts
memorization—but this time through prompting the models with randomly sampled training sequences. As
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Figure 4.5: Percentage of sequences extracted as we vary the length of the prompt. For each sequence length n, n-50
tokens are used as the prefix, and we check for extraction of the remaining 50 tokens.

expected, the absolute probability of memorization is much lower than in Figure 1 where we prompted models
with training data from the sampled duplication-normalized subset.

As before, we observe similar trends with model scale and context length. Larger models memorize more
training examples than smaller models—and much more than the baseline GPT-2 model that was not trained on
The Pile. Similarly, providing more context to a model increases the likelihood we can discover memorization.
In Figure 4.5, we prompt models with: prompt length = sequence length−50. We see that the longer prompts
are easier to predict correctly than shorter prompts. The baseline GPT-2 model is nearly twice as accurate on
sequences of length 1000 (prompt length = 950) compared to sequences of length 100 (prompt length = 50).
We can extract the last 50 tokens of a length-1000 sequence with nearly 7% probability for the largest

GPT-J 6B model compared to 4% probability for the smallest 125M GPT-Neo model. (And both of these are
much larger than the 2% probability of extraction for the 1.5B parameter GPT2-XL model.) These results
taken together allow us to establish an estimated lower bound that there is 1% of The Pile dataset that is
extractable by the 6B GPT-J model, but not by GPT-2 XL.
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Alternate Experimental Setting: Beam Search Decoding

We previously defined memorization as the ability of a model to generate the exact true continuation when
the most likely token is chosen at every step of decoding. However, using greedy decoding strategy does not
produce the overall most likely sequence. Many language model applications use other decoding strategies,
such as beam search (an algorithm for efficiently searching over the exponential space of sequences that could
possibly be generated) to find the one with highest possible likelihood. To understand how our choice of
decoding strategy affects the amount of memorization we measure, we compare greedy decoding with beam
search in Figure 4.7(c).
We find that using beam search (with b = 100) results in only slightly more extracted memorization. The

average difference in fraction of extractable memorization is just under 2 percentage points on average, with a
maximum of 5.6. Interestingly, beam search and greedy decoding generated the same output 45% of the time.

The most common decoding strategy employed by modern LMs is random sampling, where the next token
is selected at random according to a probability distribution derived from the model’s predictions. McCoy
et al. [101] found that random sampling resulted in generated text with a greater number of novel n-grams.
Since the goal of our study is to maximize discoverability—an antithetical goal to maximizing linguistic
novelty—we do not present experiments that use random sampling.

Alternate Definition of Extractability

Our main experiments report a sequence as “extractable” if the model’s generated continuation is identical to
the true suffix within that training example. This method is a loose lower bound on memorization. Consider
two sequences x1, x2 both contained in the training dataset. Suppose these two sequences share the same
prefix, and differ only in the final suffix; that is, x1 = [p||s1] and x2 = [p||s2]. When we select x1 and prompt
the model on the prefix p, we will report “success” only if the output equals s1, but not if the output is s2,
even though this is also a form of memorization.
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Prompt Continuation (== 6B) 2.7B 1.3B 125M

Gallery "Though defensive violence 
will always be 'a sad necessity' in 
the eyes of men of principle, it 
would be still more unfortunate if 
wrongdoers should dominate just 
men."- St. Augustine "A new idea is 
first

condemned as ridiculous, and then 
dismissed as trivial, until finally it 
becomes what everybody knows." - 
William James "This is the real task 
before us: to reassert our commitment 
as a nation to a law higher than our 
own,

condemned as ridiculous, and then 
dismissed as trivial, before being 
accepted as the most important thing 
in the world."- George Bernard 
Shaw “The ultimate measure of a man 
is not where he stands in moments of 
comfort and convenience, but where

tried in the mind of a child, 
and then it is tried in the 
mind of a man."- Thomas 
Paine "The only thing 
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of evil is for good men to do 
nothing."- Edmund Burke "
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his fellow man. It is a duty to 
be a man of principle, and 
to be a man of 
principle, and to be a man of 
principle, and to be a man of 
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_GPL(crypto_unregister_alg); int 
crypto_register_template(struct 
crypto_template *tmpl) { struct 
crypto_template *q; int err = 
-EEXIST;

down_write(&crypto_alg_sem); 
list_for_each_entry(q, 
&crypto_template_list, list) { if (q == 
tmpl)

list_for_each_entry(q, 
&crypto_alg_list, list) { if (tmpl-
>name && tmpl->name!= q-
>alg.cra_name)

q = kzalloc(sizeof(*q), 
GFP_KERNEL); if (!q) 
goto out; q->alg = tmpl-
>alg; q->base

struct crypto_template *tmpl 
= crypto_template_new(tmpl)
; if (err) return err; tmpl-
>tmpl = q; tmpl->tmpl->tm
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Figure 4.6: Text examples that are memorized by the 6B model, but not by smaller models. Text highlighted in green
matches the ground truth continuation, while text in red indicates incorrect (novel) generation.

We now consider how our results would change if we instead checked that the generation [p||f (p)]

from a prompt p was contained anywhere in the training dataset. This gives a strictly larger measurement
of memorization. By comparing these two methods (checking for memorization within the ground truth
continuation, and within the entire dataset), we can understand how the choice of measurement affects the
results in our experiments.
Searching within the entire dataset finds more memorized content than comparing with the ground truth

(Figure 4.7). For examples at 100 repetitions 32.6% of outputs are contained somewhere in the dataset but
just 15.8% match the ground truth continuation. This difference becomes more pronounced as the number of
repetitions increases. The maximum difference between these approaches is 28.4%, at 2,200 repetitions.

We refrain from using this approach for our main experiments, because this definition requires substantially
larger computation resources; it requires querying whether hundreds of thousands of sequences are contained
in an 800GB training dataset. Therefore, to promote reproducability, the remainder of this section continues
with testing the generated suffix against the single expected training suffix.
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Figure 4.7: (left) Using beam search with b=100 slightly increases the data extracted. (right)We observe considerably
more memorization when checking whether the generated sequence occurs anywhere in the entire training
set (Section 4.2.2). However, this approach is very computationally expensive so we do not use it for
experiments.

Qualitative Examples of Memorization

We now turn to inspect the training sequences memorized by the models.7 Figure 4.8 in the appendix shows
examples of sequences that are memorized by all the models. We found most of these universally-memorized
sequences to be “unconventional” texts such as code snippets or highly duplicated texts such as open source
licenses.

More interestingly, Table 4.1 summarizes the total number of sequences that are memorized by one model
but not another. Increasing model size leads to large numbers of nonoverlapping memorized sequences,
although every model has some amount of memorization not shared by each other model. (Even the 125M
model memorizes a few sequences the 6B model does not.)

In Figure 4.6, we present qualitative examples that are only memorized by the largest (6B) model. In these
examples, the 50-token generations of the 6B model match the groundtruth continuations exactly, but the

7 For these results we sample 50-token prompts, 50-token continuations, and randomly sample across duplication counts.
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Not Memorized By
Model Memorized 125M 1.3B 2.7B 6B
125M 4,812 - 328 295 293
1.3B 10,391 5,907 - 1,205 1,001
2.7B 12,148 7,631 2,962 - 1,426
6B 14,792 10,273 5,402 4,070 -

Table 4.1: The number of sequences memorized by one model, and not memorized by another. Not all sequences
memorized by a small model are also memorized by a larger model. As a model gets larger, it memorizes
more unique sequences.

generations from the smaller models match neither the groundtruth continuations of the prompted examples
nor any other training examples with the same prompts. We highlight some interesting patterns in these
sequences: while the generations from the smaller models do not match the training data, they are generally
thematically-relevant and locally consistent. However, a closer inspection reveals that those generations are
syntactically sound but semantically incorrect. Figure 4.8 lists examples that are memorized by models of all
sizes, in the sense that the 50-token generations match the groundtruth continuations of the prompts.

In Figure 4.9 we show examples that are only memorized by the smallest model, using similar criterion as
when we filter examples that are only memorized by the largest model. There are significantly fewer examples
that are only memorized by the smallest model (35) than only memorized by the largest model (2860). The first
row of Figure 4.9 is particularly interesting: the groundtruth continuation contains a typo due to formatting
cutoff. While the smallest model memorized the typo, larger models try to fix the typo.
In Figure 4.10 and Figure 4.11 we show examples that are memorized but not heavily duplicated in the

training set, and examples that are heavily duplicated but not memorized, respectively. Finally, we show
examples that are memorized by GPT2-XL in Figure 4.12.
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Prompt Continuation (== 6B == 2.7B == 1.3B == 125M)

use this file except in compliance with the License. * You 
may obtain a copy of the License at * http://
www.apache.org/licenses/LICENSE-2.0 * Unless required by 
applicable law or agreed

to in writing, software * distributed under the License is 
distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR 
CONDITIONS OF ANY KIND, either express or implied. * See 
the License for the specific language

* * This program is free software; you can redistribute it 
and/or modify * it under the terms of the GNU General 
Public License version 2 and * only version 2 as published 
by the Free Software Foundation. * *

This program is distributed in the hope that it will be useful, 
* but WITHOUT ANY WARRANTY; without even the implied 
warranty of * MERCHANTABILITY or FITNESS FOR A 
PARTICULAR PURPOSE. See the *

Privacy & Cookies Policy Privacy Overview This website 
uses cookies to improve your experience while you 
navigate through the website. Out of these cookies, the 
cookies that are categorized as necessary are stored on 
your browser as they are essential for the working

of basic functionalities of the website. We also use third-
party cookies that help us analyze and understand how you 
use this website. These cookies will be stored in your 
browser only with your consent. You also have the option to 
opt-out of

\end{document}$ in front of $\documentclass[12pt]
{minimal} \usepackage{amsmath}

\usepackage{wasysym} \usepackage{amsfonts}

Len int for shift := uint(0); ; shift += 7 { if shift >= 64 { return 
ErrIntOverflowRaft

} if iNdEx >= l { return io.ErrUnexpectedEOF } b := dAtA[

</object> <nil key="sourceID"/> <int key="maxID">18</int> 
</object> <object class="IBClassDescriber" key="

IBDocument.Classes"> <object class="NSMutableArray" 
key="referencedPartialClassDescriptions"> <bool 
key="EncodedWithXMLCoder">YES</bool

Figure 4.8: Text examples that are memorized by all the models: given 50-token prompts on the left, the next 50 tokens
generated by all the models match the groundtruth continuation.

Prompt 6B 2.7B 1.3B 125M (== Continuation)

2018 Annual Polis 
Conference 'Innovation in 
transport for sustainable 
cities and regions' will 
take place on 22 and 23 
November in Manchester 
United Old Trafford 
Stadium, Manchester, 
United Kingdo... The 2018 
Annual Polis Conference 
'Innovation

in transport for sustainable 
cities and regions' will take 
place on 22 and 23 November 
in Manchester United Old 
Trafford Stadium, Manchester, 
United 
Kingdom. The conference will 
bring together over 1,000 
delegates from across the 
world to discuss the latest 
developments in transport and

in transport for sustainable 
cities and regions' will take place 
on 22 and 23 November in 
Manchester United Old Trafford 
Stadium, Manchester, United 
Kingdom. The conference will 
bring together transport and 
urban planning experts, policy 
makers, academics, practitioners 
and students to 

in transport for sustainable cities 
and regions' will take place on 22 
and 23 November in Manchester 
United Old Trafford Stadium, 
Manchester, United Kingdon... The 
2018 Annual Polis Conference 
'Innovation in transport for 
sustainable cities and regions' 
will

in transport for sustainable cities 
and regions' will take place on 22 
and 23 November in Manchester 
United Old Trafford Stadium, 
Manchester, United Kingdo... The 
2018 Annual Polis Conference 
'Innovation in transport for 
sustainable cities and regions' will 

Comment: The 125M model memorized the typo 'Kingdo...'; the 1.3B model fixed the typo but to a (semantically) wrong word. The 2.7B and 
6B models fix this word correctly.
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Comment: the smallest model memorized the code, while the larger models try to generate some GUIDs.

NOT LIMITED TO, 
PROCUREMENT OF 
SUBSTITUTE GOODS OR 
SERVICES; * LOSS OF USE, 
DATA, OR PROFITS; OR 
BUSINESS INTERRUPTION) 
* HOWEVER CA

USED AND ON ANY THEORY OF 
LIABILITY, WHETHER 
IN CONTRACT, * STRICT 
LIABILITY, OR TORT (INCLUDING 
NEGLIGENCE OR 
OTHERWISE) * ARIS

USED AND ON ANY THEORY OF 
LIABILITY, WHETHER 
IN CONTRACT, * STRICT LIABILITY, 
OR TORT (INCLUDING 
NEGLIGENCE OR 
OTHERWISE) * ARIS

USED AND ON ANY THEORY OF 
LIABILITY, WHETHER 
IN CONTRACT, * STRICT LIABILITY, 
OR TORT (INCLUDING 
NEGLIGENCE OR 
OTHERWISE) * ARIS

USED AND ON ANY THEORY OF 
LIABILITY, WHETHER IN * CONTRACT, 
STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE * OR 
OTHERWISE) ARIS

Comment: the larger models generate a slight variation of the license text. Our suffix array search did not find an exact match for this text in the 
training set.

Figure 4.9: Text examples that are memorized by the 125M model (according to true-continuation match), but not
memorized by larger models (the generated texts do not match the true continuation, nor any other training
examples). The first column shows the prompt. The last column shows the prediction from the 125Mmodel,
which matches the groundtruth continuation exactly.
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Frequency Prompt Continuation ( == 6B)

2 L_LONG_LONG */ __STL_TEMPLATE_NULL struct 
__type_traits<float> { typedef __true_type 
has_trivial_default_

constructor; typedef __true_type has_trivial_copy_constructor; 
typedef __true_type has_trivial_assignment_operator;

2 "groupby4_map", "groupby4_map_skew", 
"groupby4_noskew", "groupby5",

"groupby5_map", "groupby5_map_skew", "groupby5_noskew", 
"groupby6",

2 pair<K12>(_12), fusion::make_pair<K13>(_13), 
fusion::make_pair<K14>(_14), fusion::make_pair<K15>(_15));

} namespace result_of { template < typename K0, typename K1, 
typename K

2 _GLSL_400)) list += QLatin1String("dmat2"); if (variant & 
(Lexer::Variant_GLSL_400)) list += QLatin

1String("dmat3"); if (variant & (Lexer::Variant_GLSL_400)) list += 
QLatin1String("dmat4"); if (variant & (

3 disabled. BCG.com will work better for you if you enable 
JavaScript or switch to a JavaScript supported browser. 
Boston Consulting Group is an Equal Opportunity Employer. 
All qualified applicants will receive consideration for 
employment without regard to race, color,

age, religion, sex, sexual orientation, gender identity / 
expression, national origin, protected veteran status, or any 
other characteristic protected under federal, state or local law, 
where applicable, and those with criminal histories will be 
considered in a manner consistent with

Figure 4.10: Text examples that are memorized but are not heavily duplicated in the training set. Many of these have a
simple sequential structure (the middle three), may be boilerplate code (the first), or starts out with unique
text, and completes with frequently repeated text (the last example). Overall, these are easily completed
sequences.

Frequency Prompt Continuation 6B

5526 contributors. All rights reserved. // // Licensed 
under the Apache License, Version 2.0 (the 
"License"); // you may not use this file except 
in compliance with the License. // You may 
obtain a copy of the

License at // http://www.apache.org/
licenses/LICENSE-2.0 // // Unless required 
by applicable law or agreed to in writing, 
software // distributed under the License is 
distributed on an "AS

License at // // http://www.apache.org/licenses/
LICENSE-2.0 // // Unless required by applicable law or 
agreed to in writing, software // distributed under 
the License

5652 ators are Standing By Our Dumpster Specialists 
are waiting by the phone to help you get 
started. However, there is some important 
information we need before we can give you a 
price quote and delivery time. Some things we 
need to know

: What size dumpster you will need What 
you plan on putting in your dumpster When 
you need us to drop your roll off container 
off How long you plan on keeping your roll-
off City &

include: What size dumpster do you need? 
What type of waste do you have? How much waste 
do you have? What is the delivery time? 
What is the pickup time? What

4323 a copy of the License at # # http://
www.apache.org/licenses/LICENSE-2.0 # # 
Unless required by applicable law

or agreed to in writing, software # 
distributed under the License is distributed 
on an "AS IS" BASIS, WITHOUT # 
WARRANTIES OR CONDITIONS OF ANY 
KIND, either express or implied. See

or agreed to in writing, software # distributed under 
the License is distributed on an "AS IS" 
BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF 
ANY KIND, either express or implied.

3556 date_default_timezone_set() function. In case 
you used any of those methods and you are 
still getting this warning, you most likely 
misspelled the timezone identifier. We selected 
the timezone 'UTC' for now, but please

set date.timezone to select your timezone. 
in /home/erlypro/public_html/natural/datas/
persobanner_center.php on line 17 
Deprecated: Function eregi_replace

set date.timezone to select your timezone. in /home/
notes/public_html/wp-includes/functions.php on 
line 3812 Warning: date() [function.date]: It is not 
safe to rely

3920 |&nbsp;&nbsp; [⼿把⼿翻墙教程](https://
github.com/gfw-breaker/guides/wiki) &nbsp;&

nbsp;|&nbsp;&nbsp; [禁闻聚合安卓版]
(https://github.com/gfw-breaker/bn-android) 
&nbsp;&n

nbsp; [⽹⻔安卓版](https://github.com/gfw-
breaker/webpack-interpreter) &nbsp;&nbsp; [神州
正道

3675 * / __| | | | |_) | | * | (__| |_| | _ <| |___ * | (__| |_| | _ | | *

3030 1775, "date": "1775\u20131851", "displayOrder": 
1, "fc": "Joseph Mallord William

Turner", "gender": "Male", "id": 558, "mda": 
"Turner, Joseph Mallord William",

Turner", "gender": "Male", "id": 604, "mda": "Turner, 
Joseph Mallord William",

Figure 4.11: Text examples that are heavily replicated in the training set but not memorized. We find many examples
which have slight differences with no semantic (English) meaning. This includes comment characters
in code, non-English characters, template values, error messages, and meaningless symbols. We also
surprisingly find a large number of slightly different but heavily repeated documents about dumpsters.
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Prompt Continuation (== GPT2-XL)
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the councils of government, we must guard against the 
acquisition of unwarranted influence, whether sought or 
unsought, by the militaryindustrial complex. The potential 
for the disastrous rise of misplaced power exists and will 
persist. We must never let the weight

of this combination endanger our liberties or democratic 
processes. We should take nothing for granted. Only an 
alert and knowledgeable citizenry can compel the proper 
meshing of the huge industrial and military machinery of 
defense with our peaceful methods and goals, so that 
security and

full spreadsheet NEW! Buy our book • Facts are Sacred: the 
power of data (on Kindle) More open data Data journalism 
and data visualisations from the Guardian World 
government data • Search the

world's government data with our gateway Development 
and aid data • Search the world's global development data 
with our gateway Can you do something with this data? • 
Flickr Please post your visualisations and mash-ups on

Original press release Get ahead of the crowd by signing up 
for 420 Investor, the largest & most comprehensive 
premium subscription service for cannabis traders and 
investors since 2013. Published by NCV Newswire The NCV 
Newswire

by New Cannabis Ventures aims to curate high quality 
content and information about leading cannabis companies 
to help our readers filter out the noise and to stay on top of 
the most important cannabis business news. The NCV 
Newswire is hand-curated by

of sole responsibility of the author(s). The Centre for 
Research on Globalization will not be responsible for any 
inaccurate or incorrect statement in this article. The Centre 
of Research on Globalization grants permission to cross-
post Global Research articles on community internet sites

as long the source and copyright are acknowledged 
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Figure 4.12: Text examples that are from The Pile and memorized by GPT2-XL. The first two examples have a natural
sequential structure, while the others appear to represent an overlap in GPT2-XL’s training set and The
Pile.
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Figure 4.13: (a) Masked language model objective: Larger models have a higher fraction of sequences extractable
on T5; with one standard deviation of variance shaded in dark and the minimum and maximum shaded
light. (b) Masked language model objective: Relationship between number of repetitions and extractable
tokens on T5. (c) Causal language model objective: Relationship between number of repetitions and
memorization on language models trained with deduplicated data.

4.2.3 Replication Study–T5

The above analysis presents convincing evidence that memorization scales in a log-linear relationships
with model size, data duplicates, and context length. We now replicate this analysis for different language
model families trained on different datasets and with different training objectives, and performed the same
memorization analysis on

We expected our results to cleanly generalize across settings—and this was indeed the case for model scale.
Yet, we found the situation to be more complicated when considering training data duplication.

The T5 v1.1 models are masked encoder-decoder models trained to reproduce spans that were randomly
deleted from an input sequence. The models vary in size from between 77M and 11B billion parameters.
These models were trained on C4, a cleaned and filtered version of the English web pages from the Common
Crawl, which totals 806 GB in size. At 11 billion parameters, the largest T5 model is the largest publicly
available masked language model, making these T5 models a good candidate for studying how memorization
scales with model size.

We must first define what is meant by “extractable data” for the masked language modeling task. T5 models
are trained by removing a random 15% of tokens from each training sequence (i.i.d), and the model must
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then “fill in the blanks” to restore the tokens that were dropped from the input. As a result of this different
training objective, Definition 1 is not directly applicable because the model does not operate on a prefix and
output a suffix. We instead define a sequence as memorized if the model perfectly solves the masked language
modeling task on that sequence. For example, we call a 200-token sequence memorized if the model can
use the 170 (= 200 ⋅ 0.85)) tokens of context to perfectly predict the remaining 30 tokens (= 200 ⋅ 0.15).
Because this token-dropping procedure is stochastic, it is possible that one set of dropped tokens might yield
an output of “memorized” and another might not. For simplicity, we inspect only one set of masked tokens
per sequence; because we are already averaging over 50, 000 sequences this additional randomness does not
harm the results of our analysis.

We are able to reproduce the model scaling effect shown in Figure 4.1 for the T5 model family; Figure 4.13a
presents these results. Increasing the number of parameters in the model similarly increases the ability of the
model to perfectly solve the masked prediction task.

Surprisingly, while the overall scaling trend holds true here, we discover an order of magnitude less data in
masked models than in a comparably sized decoder-only language model. For example, the 3B parameter
T5-XL model memorizes just 3.5% of sequences repeated 100 times, compared to the 53.6% of sequences
repeated 100 times memorized by GPT-Neo 2.7B (with a context length of 150). We believe (without evidence)
that this difference can be explained because the choice of tokens to mask at training-time varies for each
duplicate of a training example, while decoder-only language models are always provided the same prediction
task each time an example and its duplicates are seen during training.
Next, we turn to reproducing the analysis on the effect of duplicate examples in the models’ training data

on memorization. The situation here becomes significantly less clear. As we can see in Figure 4.13b, while
sequences that have been duplicated more often are easier to memorize, there is not an obvious log-linear
scaling relationship to be found. In particular, compared to the smooth curves we observe in the case of
GPT-Neo evaluated on The Pile, there is significant variance in the results for T5 models trained on C4. Even
more surprising is that this variance is statistically significant: sequences repeated between 159 and 196
times are memorized with probability no more than 5.1% with 99.7% confidence (three standard deviations
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of variance), however sequences repeated between 138 and 158 (that is, less often) are memorized with
probability at least 6.2% with 99.7% confidence. That is, for some reason, sequences that occur ∼140 times
are more likely to be memorized, despite occurring less often, even if we assume a three-sigma error in both
measurements simultaneously.

In order to explain this counter-intuitive phenomenon, we qualitatively study each of these two buckets of
examples to understand why there is a pronounced difference. Surprisingly, we find that most of the duplicate
examples contained in the 138-158 repeat bucket are mostly whitespace tokens, making these sequences much
easier to predict correctly than sequences found at other repeat counts. This effect, to a lesser extent, can be
found in other buckets which contain many approximately near duplicates.

4.2.4 Replication Study–Language Models Trained on Deduplicated Data

We further attempt replication with a family of 1.5B parameter decoder-only language models trained on
deduplicated versions of C4. Described in detail in Section 4.3, this model family consists of one model trained
on C4 (the same dataset as T5), one model trained on a version of C4 that was deduplicated by removing
all documents which were near-duplicates of other documents, and one model trained on a version of C4
that was deduplicated by deleting any string of length-50 tokens that occurred more than once. We were
most interested in whether models trained on deduplicated data would still exhibit increased memorization of
examples which were repeated frequently in the original, non-deduplicated C4 dataset. Figure 4.13c plots this
fraction of sequences memorized by each of the three models. We draw two interesting conclusions from this
data.

First, we find that models trained on deduplicated datasets memorize less data than models trained without
deduplicated datasets. For example, for sequences repeated below 35 times, the exact deduplicated model
memorizes an average of 1.2% of sequences, compared to 3.6% without deduplication, a statistically significant
(p < 10−15) increase by a factor of 3. Second, while deduplication does help for sequences repeated up to
∼100 times, it does not help for sequences repeated more than this. We observe a spike beginning at 408
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repeats: the extractability of the smallest spike is larger than any value before the spike (largest is at 265
repeats, p < 10−20). We hypothesize that this is due to the fact that any deduplication strategy is necessarily
imperfect in order to efficiently scale to hundreds of gigabytes of training data. Thus, while it may be possible
to removemost instances of duplicate data, different and valid definitions of duplicates can mean deduplication
is not exhaustive.

4.3 deduplicating training data reduces memorization

As described in the previous section, the present of duplicate strings in training data is a significant source of
memorization in neural language models. For the most part, duplicates exist not because we want them there,
but because it is tricky to remove them, especially as training datasets have grown from single gigabytes to as
much as a terabyte over the past few years [25, 170, 54, 20]. In this section we document the pervasiveness of
duplicate content in the training data for large language models; we find that 10% of the sequences in several
common NLP datasets are repeated multiple times. While naive deduplication is straightforward (and the
datasets we consider already perform some naive form of deduplication), performing thorough deduplication
at scale is both computationally challenging and requires sophisticated techniques.
The simplest technique to find duplicate examples would be to perform exact string matching between

all example pairs, but we show this is insufficient since the web containing many docments which are
near-duplicates of eacho ther. This, we introduce two complementary, scalable methods for performing
deduplication on documnets which have substantial overlap but may not be identical.

∙ Exact substring matching identifies strings that are repeated verbatim in the train set multiple times.
This allows us to identify cases where only part of a training example is duplicated (§4.3.3). Using a
suffix array [98], we are able to remove duplicate substrings from the dataset if they occur verbatim in
more than one example.
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∙ Approximate full document matching uses MinHash [15], an efficient algorithm for estimating the
n-gram similarity between all pairs of examples in a corpus, to remove entire examples from the dataset
if they have high n-gram overlap with any other example (§4.3.4).

We identify four distinct advantages to training on datasets that have been thoroughly deduplicated.
1. Over 1% of tokens emitted unprompted from a model trained on standard datasets (e.g., C4) are part of

a memorized sequence (See §4.3.5)—even though the 1.5 billion parameter model is much smaller than
the 350GB dataset it was trained on. By deduplicating the training dataset we reduce the rate of emitting
memorized training data by a factor of 10×.

2. Train-test overlap is common in non-deduplicated datasets. For example, we find a 61-word sequence8

in C4 [119] that is repeated 61,036 times verbatim in the training dataset and 61 times in the validation
set (0.02% of the samples in each dataset). This train-test set overlap not only causes researchers to
over-estimate model accuracy, but also biases model selection towards models and hyperparameters that
intentionally overfit their training datasets.

3. Training models on deduplicated datasets is more efficient. Processing a dataset with our framework
requires a CPU-only linear-time algorithm. And so because these datasets are up to 19% smaller, even
including the deduplication runtime itself, training on deduplicated datasets directly reduces the training
cost in terms of time, dollar, and the environment [11, 142, 113].

4. Deduplicating training data does not hurt perplexity: models trained on deduplicated datasets have
no worse perplexity compared to baseline models trained on the original datasets. In some cases
deduplication reduces perplexity by up to 10%. Further, because recent LMs are typically limited to
training for just a few epochs [118, 119], by training on higher quality data the models can reach higher
accuracy faster.

8 “by combining fantastic ideas, interesting arrangements, and follow the current trends in the field of that make you more inspired and
give artistic touches. We’d be honored if you can apply some or all of these design in your wedding. believe me, brilliant ideas would
be perfect if it can be applied in real and make the people around you amazed!”
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To summarize, data duplication offers significant advantages and no observed disadvantages. In the remainder
of this section, we present our text deduplication framework and study the extent of duplicate content in
common NLP datasets (e.g., C4, Wiki-40B, and LM1B). We then examine the impact of deduplication on test
perplexity and on the frequency of emitting memorized content. Finally, we analyze to what extent perplexity
on existing, released models are skewed as a result of overlap between the train and test/validation splits.

4.3.1 Large Language Model Datasets

While we believe our results are independent of model architecture, we perform our analysis on Transformer-
based decoder-only language models [154] trained for open-ended text generation. These current state-of-
the-art models are trained on internet text. For example, the GPT-2 family of models Radford et al. [118] is
trained on WebText, a dataset of web documents highly ranked on Reddit—however this dataset was not made
available publicly. A common dataset starting point is CommonCrawl, an index of public webpages. Among
the models trained on CommonCrawl include GPT-3 [20] with the addition of book datasets, GROVER
[174] on a restricted subset filtered to news domains called RealNews, and T5 [119] on a cleaned version
of common crawl called C4. Other models are trained on more curated Internet sources—for example Guo
et al. [56] used high quality processed Wikipedia text from 40 different languages to train monolingual
141.4M parameter language models. Non-English models necessarily use different datasets; Zeng et al. [175]
for instance introduced PANGU-�, a family of models with up to 200B parameters that were trained on
a non-public corpus of cleaned and filtered Chinese-language documents from CommonCrawl and other
sources. Since many of these datasets are not public, we deduplicate three that are: Wiki-40B, C4, and
RealNews–as well as the One Billion Word Language Model Benchmark [25], a smaller dataset commonly
used for evaluation.

Others have observed that popular datasets contain problematic duplicate content. Bandy et al. [9] observe
that the Book Corpus [182], which was used to train popular models such as BERT, has a substantial amount
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of exact-duplicate documents according to. Allamanis et al. Allamanis [4] show that duplicate examples in
code datasets cause worsened performance on code understanding tasks.
When models are trained on datasets constructed by crawling the Internet, it is possible the model will

train on the test set of downstream target tasks. For example, Radford et al. [118, §4] performed a post-hoc
analysis to identify 8-gram overlaps between GPT-2’s training set and datasets used for evaluation, and Dodge
et al. [37] analyzed C4 and found that up to 14.4% of test examples for various standard tasks were found
verbatim (normalizing for capitalization and punctuation) in the dataset. A more proactive approach removes
contaminated data. Trinh and Le [150, Appendix B] removed documents from their CommonCrawl-based
train set that overlapped substantially with the commonsense reasoning used for evaluation. And GPT-3 [20,
§5] did the reverse and removed downstream evaluation examples from their training data by conservatively
filtering out any train set examples with a 13-gram overlap with any evaluation example. Up to 90% of tasks
were flagged as potentially contaminated.

In our research, we do not focus on the impact of duplicate text in pretrained models on downstream
benchmark tasks; instead we address how duplicate text in the LM training and validation sets impacts model
perplexity and the extent to which generated text included memorized content.

4.3.2 Datasets Considered in this Study

We analyze the presence of duplicate text in four datasets of varying sizes that have been used for training
natural language generation systems, producing general-purpose pre-trained models, and for language model
benchmarking. While the analysis we perform is restricted to English datasets, we expect that non-English
datasets suffer from similar issues and could likewise benefit from de-duplication.

∙ Wikipedia (Wiki-40B) consists of multi-lingual cleaned Wikipedia text [56]. We take the English
portion, which contains 2.9M Wikipedia pages with an average length of 768 BPE tokens. The dataset
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creators do not indicate any deduplication was performed aside from removing redirect-pages (e.g.,
“sunflower” to “Helianthus”).

∙ One-Billion Word benchmark (LM1B) contains 30M sentences of news commentary [25]. Unlike
the other datasets we analyze, LM1B’s examples are one sentence long rather than multi-sentence
documents. The average example length is 32 BPE tokens. While this dataset is extremely standard for
benchmarking language models, Radford et al. [118, Sec 4] note it has 13.2% overlap of the test set with
the train set.

∙ Colossal Cleaned Common Crawl (C4) is made up of 360M web documents, with an average length
of 486 BPE tokens [119]. C4 was introduced as a pre-training dataset for T5, a set of encoder-decoder
models which have been widely used in fine-tuned downstream tasks. The dataset was previously
deduplicated in a more sophisticated process than the prior two datasets. Each paragraph was hashed
and paragraphs resulting in hash collisions were removed. This was followed by a pass that removed
placeholder text, code, and prohibited words. See Dodge et al. [38] for a detailed breakdown of the
source text in C4.

∙ RealNews is a subset of the Common Crawl consisting of articles from news domains [174]. It contains
31M documents with average length 793 BPE tokens. RealNews was deduplicated by inserting a hash
of the first 100 characters of each document into a bloom filter [13] and then excluding any document
which resulted in a hash collision. Like C4, examples with duplicate URLs were excluded.

4.3.3 Method for Exact Substring Duplication

overview We consider a dataset D = {xi}Ni=1 as a collection of examples xi. Each of these examples is
itself a sequence of tokens: xi =

[

x1i , x
2
i ,⋯ , xsii

].
Due to the diversity of possibilities in human language, it is rare for the same idea to be expressed identically

in multiple documents unless one expression is derived from the other, or both are quoting from a shared source.
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This observation motivates deduplicating exact substrings. We call our approach EXACTSUBSTR. When two
examples xi and xj share a sufficiently long substring (that is, a substring for which xa..a+ki = xb..b+kj ), that
substring is removed from one of them.

suffix arrays This exact-substring-matching criterion, while conceptually simple, is computationally
prohibitive with naive (quadratic) all-pair matching. To improve the efficiency, we concatenate all the examples
of the entire dataset D into a giant sequence  , and construct a Suffix Array  of  . A suffix array [98] is a
representation of a suffix tree [163] that can be constructed in linear time in ‖‖ [76] and enables efficient
computation of many substring queries; in particular, they allow us to identify duplicated training examples in
linear time. Suffix arrays have the advantage over suffix trees in that they are 10–100× more memory efficient
[98], requiring just 8 bytes per input token, though they are asymptotically less efficient for some query types.
They have been used widely in NLP, such as for efficient TF-IDF computation [171] and document clustering
[27].
The suffix array  for a sequence  is a lexicographically-ordered list of all suffixes contained in the

sequence. Formally,
() = arg sort all_suffixes()

For example, the suffixes of the sequence “banana” are (“banana”, “anana”, “nana” “ana”, “na”, “a”) and so
the suffix array is the sequence (6 4 2 1 5 3). In practice, we construct  from the BPE tokenization of the
text (§4.3.5).

substring matching After constructing , it is straightforward to identify duplicated training
examples. Suppose that the sequence s was repeated exactly twice in the training dataset  at positions i and
j, that is, i..i+|s| = j..j+|s|. Then the indices i, j will occur adjacent to each other in the suffix array.
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Figure 4.14: For each substring of length k, we plot the probability that there exists a second identical length-k
substring in the same train set. Matches with length under 10 subword tokens are common, and account
for 90% of tokens. We choose a threshold of 50 for experiments.

Finding all repeated sequences is thus a matter of linearly scanning the suffix array from beginning to
end and looking for sequencesi,i+1 that share a common prefix of at least some threshold length. Any
satisfying sequences are recorded.

setting a threshold of duplicates One important question is how long a substring match must
be before we ought to count it as a duplicate. In Figure 4.14, we plot the frequency of substring matches
within the four datasets we will consider. For each substring of length k, we compute the probability that
there exists another sequence of length k identical to this one; formally:

m(k) = Pr
i∈[N]

[

∃j ≠ i ∶ i..i+k = j..j+k
]

.

We choose 50 tokens as the threshold to be conservative: the “bend in the knee” occurs at 10 tokens, and
manual inspection of length-25 matches found no false positives. We then doubled this value to have an
exceptionally large margin for error.
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parallel linear time construction. We build a parallelized linear time suffix array algorithm.
As a building block, we make black-box use of the SA-IS algorithm for constructing a suffix array in linear
time Nong et al. [110] and Ko and Aluru [78]. Unfortunately, this algorithm is not easily parallelized directly,
so we introduce a simple divide and conquer approach to parallelizing the array construction.
We build our implementation in Rust and extend an existing suffix array library9 with three modification.

The first two are straightforward implementation differences: we modify the code to allow datasets larger
than 4GB, and we remove the requirement that strings parse as valid UTF-8 sequences in favor of raw byte
sequences. Our third change is more significant: we re-implement the algorithm so that we can stream the
suffix array itself off disk.

parallel partial suffix array construction. Our divide and conquer suffix array construction
algorithm starts by partitioning the dataset into K different “splits” with SA-IS run over independently on
each split in parallel. This algorithm still requires O(N) work but runs in O(N∕K) wall-clock time. This
gives usN separate suffix arraysi.
Given two suffix arrays A1 and A2 for two sequences S1 and S2 it’s not completely trivial to construct a

single suffix array A for S = S1 ∣∣ S2 because of the boundary conditions. Instead, we don’t build the data
S = S1 ∣∣ S2 but rather let S′

1 = S1 ∣∣ S2[uptoK] for some K greater than the longest substring match. Then
we build the arrays on S′

1 and S2. To merge the arrays together we can remove the items from the first array
after index |S1| and merge-sort insert them into the second.

parallel merge of partial suffix arrays. We now merge these separate arrays together into
a single suffix array , Consider the simpler case of two partial suffix arrays B and C that we would like
to merge together. We can achieve this by letting i = 0 index B and j = 0 index C . Each iteration of the
algorithm then pushes Bi into  if SBi.. < SCi and Ci otherwise, repeating until i = |B|− 1 and j = |C|− 1.

9 https://github.com/BurntSushi/suffix
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To generalize to K splits, we need only replace the single comparison above with a min-heap requiring
O(logK)≪ 10 work on each iteration.
Observe that in the general case this algorithm is O(Nm log(K)) whereN is the length of the dataset, m

is the average length of a prefix match, and K is the number of splits. It is therefore incorrect to call this
algorithm linear time in the general case, for ours it is. Because the length of the longest match is bounded
above by the length of the longest sequence, as long as the size of the dataset is independent of the length of
the longest sequence in the dataset, this algorithm remains efficient.
Again, we can parallelize this operation among L simultaneous jobs (in practice we set K = L as the

number of threads on our machine). In the K = 2 case, job l processes i ∈ [jN∕L, (j + 1)N∕L], choosing
the bounds of j by binary searching into C so that SBi < SCj < SBj+1 . The case where K > 2 is identical
except that we repeat this over all K partial suffix arrays.

computational analysis We run our algorithm on a single VM on the cloud with 96 cores and
768GB of memory. Our algorithm is efficient, for example processing the Wiki-40B training set (3 million
examples containing 4GB of text) in 2.3 minutes wall-clock time (2.1 CPU-hours of work). The 350GB C4
dataset takes under 12 hours (wall-clock) to build a suffix array; although we are still memory constrained
and so this corresponds to ∼ 1000 CPU-hours. Once the suffix array has been constructed, it takes under an
hour to deduplicate the C4 dataset.

Note that this algorithm still requires that the dataset itself fits in memory (so that we can efficiently index
in arbitrary positions), but we do not need to fit the entire suffix array into memory. This is fortunate since our
suffix array requires an 8× space overhead. For example, the suffix array for the 350GB C4 is 1.5TB.

Compared to the cost of training a languagemodel on this dataset, the additional work required to deduplicate
the training dataset is negligible.
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Table 4.2: Qualitative examples of near-duplicates identified by NEARDUP from each dataset. The similarlity between
documents is highlighted. Note the small interspersed differences that make exact duplicate matching less
effective. Examples ending with “[...]” have been truncated for brevity. More data available in Appendix.

Dataset Example Near-Duplicate Example
Wiki-40B \n_START_ARTICLE_\nHum Award for Most Impact-

ful Character \n_START_SECTION_\nWinners and nomi-
nees\n_START_PARAGRAPH_\nIn the list below, win-
ners are listed first in the colored row, followed by the other
nominees. [...]

\n_START_ARTICLE_\nHum Award for Best Actor in a
Negative Role \n_START_SECTION_\nWinners and nomi-
nees\n_START_PARAGRAPH_\nIn the list below, winners
are listed first in the colored row, followed by the other nomi-
nees. [...]

LM1B I left for California in 1979 and tracked Cleveland ’s
changes on trips back to visit my sisters .

I left for California in 1979 , and tracked Cleveland ’s changes
on trips back to visit my sisters .

C4 Affordable and convenient holiday flights take off from
your departure country, "Canada". From May 2019 to Oc-
tober 2019, Condor flights to your dream destination will
be roughly 6 a week! Book your Halifax (YHZ) - Basel
(BSL) flight now, and look forward to your "Switzerland"
destination!

Affordable and convenient holiday flights take off from your
departure country, "USA". From April 2019 to October 2019,
Condor flights to your dream destination will be roughly 7 a
week! Book your Maui Kahului (OGG) - Dubrovnik (DBV)
flight now, and look forward to your "Croatia" destination!

4.3.4 Method for Approximate Matching with MinHash

overview We also perform approximate deduplication based on matching entire examples. This method,
which we call NEARDUP, is a good complement to the exact substring matching, especially for web crawl
text, as it handles the very common case of documents being identical except for interspersed templated fields
(such as the last row of Table 4.2).

MinHash [15] is an approximate matching algorithm widely used in large-scale deduplication tasks [156,
47, 57], including to deduplicate the training set for a large Chinese-language LM [175]. Given two documents
xi and xj , the main idea is to represent each document by its respective set of n-grams di and dj . We can then
use hash functions to approximate the Jaccard Index [69]:

Jaccard(di, dj) = |di∩dj |∕|di∪dj | (4.1)

If the Jaccard Index between di and dj is sufficiently high, it is likely that documents are approximate matches
of each other. To efficiently approximate the Jaccard index, MinHash constructs document signatures by
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sorting each of the n-grams via a hash function, and then keeping only the k smallest hashed n-grams. There
are multiple ways to construct estimators of the Jaccard index from these kinds of signatures [31].

In our implementation, we use 5-grams and a signature of size 9,000. The probability that two documents
are considered a potential match is

Pr(di, dj| Jaccard(di, dj) = si,j) = 1 − (1 − sbi,j)
r (4.2)

where b = 20 and r = 450 are user-settable parameters to control the strength of the filter.
For each pair of documents identified as a potential match, more computationally expensive similarity

metrics can be employed as a subsequent filtering step. In particular, we identify two documents as duplicates
if they are matched by the MinHash algorithm and their edit similarity is greater than 0.8. The edit similarity
between token sequences xi and xj is defined as:

EditSim(xi, xj) = 1 −
EditDistance(xi, xj)

max(|xi|, |xj|)
(4.3)

To build clusters of similar documents, we construct a graph that has an edge between two documents if
they are considered a match. Then, we use the method introduced in Łącki et al. [185] to identify connected
components.

implementation details For our MinHash based deduplication method, documents are first space
tokenized, then each consecutive 5-gram is hashed using tabulation hashing. The set of these hashes is the
signature for the document. For each element in a document’s signature, the element is hashed using k other
hash functions. The minimum hashed element for each of the k hash functions is stored. These minimum
hashes are then partitioned into r buckets, with b hashes per bucket. These b hashes are augmented into a
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single value, then if two documents have the same value in at least one bucket, they’ll be marked as a potential
match. The probability that two documents are considered a potential match is equal to

Pr(di, dj| Jaccard(di, dj) = si,j) = 1 − (1 − sbi,j)
r (4.4)

where si,j is the Jaccard index between the two documents. For document pairs that were identified as potential
matches, we computed their actual Jaccard index, and if that was above 0.8, we computed their edit similarity.
Document pairs with edit similarity higher than 0.8 were identified as duplicates. After some experimentation,
we chose to use b = 20, and r = 450, so k = 9, 000, so as to make sure a collision at the desired Jaccard index
threshold of 0.8 had a high probability of occurring

computational analysis Let N be the number of documents and T be the maximal number of
tokens in a document. Edit similarity has a worst case complexity of T 2, so the worst case complexity is

O(N + bk2T 2N) = O(N) (4.5)

since b, k, and T are all≪N . The left term is the complexity of grouping by the signatures, and the right
represents the pathological worst case of all documents falling into the same B buckets.

The highly distributed NEARDUP implementation we employed is one used for large-scale production tasks
at Google. On the English C4 dataset, the algorithm consumed approximately 41.5 kWh of energy. Note that
our choices of k and b were designed to produce very high recall, and with different parameters, the algorithm
could be made much more energy efficient while producing similar results.
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Figure 4.15: The distribution of near-duplicate cluster sizes from running NEARDUP on C4.

4.3.5 Results

We deduplicate each of the four datasets with both of our two techniques. When text was duplicated across
multiple data splits, we prioritized keeping a copy in the test or validation set and removing it from the train
set.

Amount of Text Removed

With NEARDUP, we found that the web-scrape datasets contain between 3.04% (on C4) to 13.63% (on
RealNews) near duplicates (Table 4.3). Near-duplicate text is much less common in Wiki-40B, forming only
0.39% of the train set.10 In C4, the majority (1.8M) of near-duplicate clusters consisted of just a single pair
of examples that matched against each other, but there were 280 clusters with over 5,000 examples in them
(Figure 4.15), including one cluster of size 250,933.

On averagewith EXACTSUBSTR, we removemore total content thanwith NEARDUP (despite EXACTSUBSTR

not removing any examples outright)—for example removing 7.18% of the tokens in C4. The exception is
LM1B, where EXACTSUBSTR removes 8× less data than NEARDUP. On investigation, we find this is due
to the fact that LM1B documents are significantly shorter: 90% of all documents are under 50 tokens, and

10 Most duplicates we saw were automatically generated pages, such as the outcomes of sports games. This shows the strength of manual
curation for creating high-quality datasets.
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Table 4.3: The fraction of examples identified by NEARDUP as near-duplicates.

% train examples with % valid with
dup in train dup in valid dup in train

C4 3.04% 1.59% 4.60%
RealNews 13.63% 1.25% 14.35%
LM1B 4.86% 0.07% 4.92%
Wiki40B 0.39% 0.26% 0.72%

Table 4.4: The fraction of tokens (note Table 4.3 reports the fraction of examples) identified by EXACTSUBSTR as part
of an exact duplicate 50-token substring.

% train tokens with % valid with
dup in train dup in valid dup in train

C4 7.18% 0.75% 1.38%
RealNews 19.4% 2.61% 3.37%
LM1B 0.76% 0.016% 0.019%
Wiki40B 2.76% 0.52% 0.67%

so are not even candidates for potential matches even if the entire sequence matched verbatim. We find that
both NEARDUP and EXACTSUBSTR remove similar content—77% of the training examples that NEARDUP

removes from C4 have at least one verbatim length-50 match found by EXACTSUBSTR.

Properties of Duplicated Text

While the authors of both RealNews and C4 explicitly attempted deduplication during dataset construction,
the methods were insufficient to capture the more subtle types of duplicate text commonly found on the
internet. In C4 and Wiki-40B, we qualitatively observe that much of the text identified as near-duplicated is
computer-generated. The text is identical except for the names of places, businesses, products, dates, and so
on. Because these examples frequently differ by just a few words at a time, deduplication strategies relying
on exact string matching would fail to identify a match. Example duplicate pairs from each dataset can be
found in Table 4.2. Table 4.5 shows the URLs had the largest proportion of examples identified by NEARDUP
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Table 4.5: On the left, we show the URLs that had the greatest proportion of examples marked as near-duplicates by
NEARDUP(filtered to URLs which occurred at least 10 times). On the right, we show the 20 most frequent
URLs in C4 for which all examples were marked as near-duplicates by NEARDUP.

RealNews Url # Total Frac Dups C4 Url # Total Frac Dups
medicalnewstoday.com. 12 1.00 hairtechkearney.com 4883 1
dodbuzz.com 301 0.99 keywordsking.com 1786 1
undertheradar.military.com 187 0.97 sydneysitalianfruitshops.online 1178 1
q.usatoday.com 33 0.94 moewiki.usamimi.info 1001 1
ad-test.thirdage.com 354 0.94 swarovskijewelryoutlet.org 984 1
amp.nymag.com 15 0.93 forzadurto.org 980 1
citizenwire.com 1022 0.93 producerati.com 971 1
paycheck-chronicles.military.com 363 0.92 sourceryforge.org 908 1
product-reviews.net 73403 0.92 heavenz-kitchen.com 876 1
kitup.military.com 196 0.92 little-eclipse.com 822 1
gcaptain.com 33903 0.92 walops.com 819 1
dev.screenrant.com 70 0.91 16thstlaunderland.com 713 1
live.swissinfo.ch 66 0.91 theroyalstarinfo.com 696 1
news.theepochtimes.com 82 0.87 code4kt.com 684 1
opinion.toledoblade.com 986 0.87 nflfalconsjerseys.us 682 1
cdn.moneytalksnews.com 121 0.86 quiltingbeeshop.com 676 1
amp.fox23.com 14 0.86 ulifeinsurancemiami.com 675 1
sales.rollingstone.com 20 0.85 wowkeyword.com 673 1
ftp.screenrant.com 20 0.85 taspetro.com 671 1



4.3 deduplicating training data reduces memorization 104

as near-duplicates. For C4, these tend to be websites that sell many similar products and thus have a large
amount of templated text. For RealNews, content aggregators seem especially common.
For RealNews and LM1B, derived from news sites, we observe that many near-duplicates occur because

the same news article appears on multiple news sites with slightly different formatting. For example, in LM1B,
there is one example that starts “MINEOLA , N.Y. - New York officials say [...]” and another that starts “( AP )

- New York officials say [...]”. The two examples are otherwise identical.

Train / Test Set Leakage

Both deduplication methods identify overlap between the train set and the validation set (Table 4.3). For
example, 4.6% of the C4 validation set and 14.4% of the RealNews validation set examples had an approximate
duplicate in their respective training sets. Such duplication is problematic since it could cause evaluation
metrics to be unfairly inflated for models that are better at memorizing their train sets. We evaluate the effect
of this leakage on publicly released models in Section 4.3.5.

Impact of Training on Deduplicated Data

We trained 1.5B parameter “XL", decoder-only, Transformer-based language models similar to GPT-2, on
C4-ORIGINAL, C4-NEARDUP, and C4-EXACTSUBSTR, respectively. We use the T5 codebase and model
architecture from Raffel et al. [119], and each model was trained for about two epochs on its respective
dataset. To better understand the amount of variance in the perplexities of trained models, we also trained
three different random seeds of the 110M parameter “base" model for each of the above three datasets—for a
total of nine base-sized models.
For all experiments, we used a Byte Pair Encoding (BPE) vocabulary trained on C4-NEARDUP with a

budget of 50K tokens, which resulted in a vocabulary the same size as GPT-2’s. We trained with a maximum
sequence length of 512 tokens (for longer documents, we randomly extracted subsequences of this length.)
Each model was trained for about two epochs. Since both C4-ORIGINAL and C4-EXACTSUBSTR contain
approximately 365M examples, we performed 152K steps with a batch size of 4800 (or approximately 2
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epochs). C4-NEARDUP contains approximately 350M examples, we performed 146K steps (or approximately
2 epochs). On a 128-core TPU v3 pod slice, XL models trained on C4-ORIGINAL and C4-EXACTSUBSTR took
approximately 131 hours (5.5 days) to train, while the XL model trained on C4-NEARDUP took approximately
126 hours to train. Like T5, models were trained with the Adafactor optimizer [137]. A constant learning rate
of 0.01 was used for the base models and 0.001 for the XL models.
The 1.5B parameter XL models had 24 layers, each with 32 attention heads. The model embedding size

was 2,048, the feed forward layers had a hidden size of 5,120, and the key/value dimension size for the
attention heads 64. The 110M parameter base models had 12 layers, each with 12 attention heads. The model
embedding size was 768, the feed forward layers had a hidden size of 2,048, and the key/value dimension size
for the attention heads 64.

validation set perplexity We computed the perplexity of our trained models on the validation
sets of LM1B and Wiki-40B, and on subsets of the C4 validation set (Figure 4.16). For the base size, we
observe that all models have similar perplexity on the original C4 validation set and on validation set examples
that were identified as unique (no near-duplicate in either train or validation). However, both models trained
on deduplicated data have significantly higher perplexity on validation set examples that have duplicates
in the training set than the model trained on the original C4. EXACTSUBSTR-deduplicated results in higher
perplexity than NEARDUP-deduplicated. These trends holds true for the XL sized model as well. While this
may suggest EXACTSUBSTR duplication results in models least overfit on the train set, note that both of these
techniques have used separate duplicate thresholds and a different choice of thresholds could change the
results.

When evaluating on the validation sets of LM1B andWiki-40B, we found that models trained on NEARDUP-
deduplicated C4 consistently achieved lowest perplexity. EXACTSUBSTR deduplication decreases perplexity
of the XL model by almost 3 points perplexity on Wiki-40B which is much larger than the variation of about
1 point perplexity we observed in the base models. This is despite seeing fewer tokens of training data overall.
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Figure 4.16: Impact of deduplicating the training set on validation perplexity. In (a), we plot the results from T5

base (110M parameters) across three training runs with different random initializations. The black bar
represent the lowest perplexity to the highest perplexity, and the colored bar the median perplexity. In
(b), we plot the results from T5 XL (1.5B parameters). For C4, we evaluate on C4 Original, the original
validation set; C4 Unique, a subset of the validation set identified by NEARDUP as having zero matches
across C4; and C4 Duplicates, a subset of the validation set identified by NEARDUP as having a match in
the C4 train set.

Lastly, we note all our XLmodels achieved <35 perplexity on LM1B, which is less than the 42.16 perplexity
reported for the 1.5B GPT-2 using a vocabulary the same size as ours.

memorization exhibited in generated text Data duplication has the effect of biasing the
trained LM towards particular types of examples. This can contribute to a lower diversity of generations,
and increased likelihood that the generated content is copied from the training data [24]. For our generation
experiments, we use top-k random sampling with k = 50 and experiment with prompted and unprompted
generation.

We first evaluate memorization tendencies in the case where the model is asked to generate text without any
prompt sequence. We generate 100,000 samples, each up to 512 tokens in length. For each generated token,
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Table 4.6: When generating 100k sequences with no prompting, over 1% of the tokens emitted from a model trained
on the original dataset are part of a 50-token long sequence copied directly from the training dataset. This
drops to 0.1% for the deduplicated datasets.

Model 1 Epoch 2 Epochs
XL-ORIGINAL 1.926% 1.571%
XL-NEARDUP 0.189% 0.264%
XL-EXACTSUBSTR 0.138% 0.168%

we say the token is memorized if it is part of a 50-token substring that is exactly contained in the training data.
On XL-ORIGINAL, over 1% of the generated tokens belong to memorized sub-sequences (see Table 4.6). This
is ∼ 10× more memorization than XL-EXACTSUBSTR or XL-NEARDUP. Some example subsequences that
were copied verbatim from the train set can be found in Table 4.7.
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Figure 4.17: Memorized continuations distribution

In most real use cases, language model generation is controlled by providing a prompt for the model to
continue. We experiment with four possible prompt sources: training examples identified by EXACTSUBSTR

as having near-duplicates in the train set (train dup), training examples identified as unique (train unique),
validation set examples with a near-duplicate in the train set (valid in train), and validation set examples
identified as unique across all splits (valid unique). We select the first 32 tokens of each example as the prompt,
which means we can evaluate the fraction of generations which are near-duplicates with the ground-truth con-
tinuation for the prompt. Figure 4.18 shows the proportion of generations which meet this requirement, while
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Figure 4.18: The proportion of generations which have edit similarity above 0.8 with the groundtruth continuation
when using the LM to generate continuations for 32-token prompts identified by NEARDUP as either
duplicated or unique.

Figure 4.17 shows the distribution in edit similarities between the generations and ground-truth continuations.
When the prompt comes from duplicate examples in the train set, XL-ORIGINAL reproduces the groundtruth
continuation over 40% of the time. XL-EXACTSUBSTR and XL-NEARDUP still copy the groundtruth more
often when the prompt comes from a duplicate example than when the prompt comes from a unique example,
suggesting that more stringent deduplication may be necessary to remove memorization tendencies entirely.

Impact on Deduplicating Validation Sets

Train-test leakage does not just impact models trained on C4. Table 4.9 shows that the presence of near-
duplicates of the evaluation set in the train set has a significant impact on model perplexity for two standard
models: Transformer-XL [34], which was trained on LM1B, and GROVER [174], which was trained on
RealNews. For Transformer XL, the perplexity halves on examples identified as near-duplicates. For GROVER,
the difference, though not quite as stark, is present in both model sizes considered.

Existing models also suffer from the problem of generating text from their train sets. We find that 1.38% of
the tokens in the official release of 25k GROVER-Mega outputs are part of verbatim matches in RealNews of
at least length 50. Likewise, more than 5% of the tokens in ~200k sequences outputted by GPT-Neo 1.3B [12]
are part of a 50 token matches of its training data, the Pile [49].
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4.3.6 Discussion

The results in this section demonstrate the crucial nature of the text used to train and evaluate language models.
While recent work has focused the potential harms that could arise from problematic datasets [10, 51], less
work has been done to quantitatively analyze properties of real language model train datasets, like Dodge et al.
[38] has done for C4. The analysis in this section addresses just one particular axis, that of data duplication.

Our experiments measured what could be quantified: the amount of duplicate content in common datasets,
the effect of deduplication on trained model perplexity, and the reduction of memorized content in trained
models through deduplication. We do not focus on the nature of the data being removed by deduplication or
memorized by LMs.

Privacy is an important subject for future work, as memorized training data has significant privacy conse-
quences. By this, we mean the standard privacy definition that a model should not reveal anything particular to
the specific dataset it was trained on, as opposed to another training dataset from a similar distribution [139].11
Training on standard datasets that have not yet been deduplicated results in models that are particularly
sensitive to examples that happened to be repeated multiple times, and this has negative privacy implications.
For instance, it could violate a person’s expectations of privacy if their publicly available personal data
appeared in a different, surprising context. Downstream applications of LMs, such as the game AI Dungeon12,
should also not output memorized content like adverts for real products.

We stress that in our experiments, we do not distinguish between undesired memorized text (such as phone
numbers), innocuous memorized text (common phrases), and text we may want to be memorized (such as a
quote by a public figure), and instead treat all instances of the LM generating text that closely matches the
training set as problematic. While we qualitatively observed that much of the identified memorized content
was relatively innocuous, a more systematic study of the risks associated with the detected memorization was
beyond the scope of this work.

11 Another interpretation of privacy focuses on the sensitivity of the data involved, when a model is trained on and able to reproduce
personal identifiers or other forms of “private data.” Our definition is more expansive.

12 https://play.aidungeon.io/

https://play.aidungeon.io/
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We also do not investigate the negative consequences of deduplication. Some language tasks explicitly
require memorization, like document retrieval or closed-book question answering. Also, text that gives
attribution is often duplicated across documents, so removing duplicate substrings could correspond to
removing just the attribution, which could result in models that learn the content without its attached attribution.
Deduplication is also not sufficient to remove privacy-sensitive data like bank passwords and medical records
which should never be used in training data.

Lastly, the exact technique used to perform deduplication seems less important than performing stringent
deduplication in the first place. On the whole, deduplication does not harm, and sometimes improves, model
perplexity, despite the fact that the deduplicated datasets are smaller and faster to train on. It is especially
important that there are no duplicates between the training and testing sets, because overlap here explicitly
encourages selecting models that memorize the training data. Lastly, deduplication helps to reduce some of
the privacy concerns around LMs memorizing their training data.

4.4 conclusion

In this chapter, I present several factors which impact one’s ability to extract memorized content from language
models. First, I demonstrate the relationship between the length of prompt passed to the language model and
the chance it will verbatim generate the true continuation to the prompt. Second, I show how modeling and
training dataset choices have significant impact on memorization capacity. Larger language models memorize
more than smaller ones, and the presence of duplicate examples in train sets significantly increases the chance
those examples will get memorized.
In Section 4.3, I present a comprehensive quantitative analysis of the effect of mitigating the duplication

problem. I discuss how thorough deduplication is difficult due to the presence of many near-duplicate
examples, and I present two algorithms for handling this. By training language models on data before and after
deduplication, I make the case that while current LMs do accurately model the distribution of their training
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data, this does not necessarily imply they will model the desired underlying data distribution. In particular,
when the training data distribution is skewed (e.g., by containing many duplicates of some sequences) larger
models with more capacity are likely to learn these unintended dataset peculiarities. It therefore becomes even
more important to carefully analyze the datasets used to train ever larger models, as future (larger) models are
likely to remember even more details than current (smaller) models.
The findings in this chapter indicate that current large language models likely memorize a significant

fraction of their training datasets. Memorization scales log-linear with model size—by doubling the number
of parameters in a model we can extract a significantly larger fraction of the dataset. Given that current
state-of-the-art models contain more than 200× as many parameters as the largest 6B parameter model we
analyze, it is likely that these even larger models memorize many sequences that are repeated just a handful
of times. At the same time, I have shown that this memorization is often hard to discover, and for an attack to
actually extract this data it will be necessary to develop qualitatively new attack strategies. Fortunately, it
appears that (for the comparatively small models we study) training data inserted just once is rarely memorized,
and so thoroughly deduplicating training datasets is a practical technique to mitigate many the harms of
memorization.
Ultimately, whether memorization is a desired property of a language model, or else risky and unwanted,

depends both on the nature of the text that has been memorized and on the downstream applications of the
trained model. However, since the trend has been towards creating datasets and models that are application-
agnostic, researchers should think carefully about the limitations of the data they have collected and the
how the model’s intended usage constrains what should be part of the training set. Developing techniques to
memorize or forget specific sequences depending on the end application is a promising research direction.
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4.5 summary of contributions

This chapter describes work that from two papers: “Deduplicating Training Data Makes Language Models
Better” published in ACL 2022 and “Quantifying Memorization Across Neural Language Models” which at
the time of writing this disseration is under submission. Both projects were conducted with my collaborators
Nicholas Carlini, Matthew Jagielski, Katherine Lee, Andrew Nystrom, Florian Tramér, and Chiyuan Zhang.

For Section 4.2, I helped come up with the idea for the paper; ran inference on the deduplicated language
models, wrote code to check for memorization, prepared data for the T5 results, created plots, and contributed
to the framing and experimental design.

For Section 4.3, I co-led the project with Katheirne Lee; ran the approximate matching data deduplication
pipelines; extracted prompts and evaluation datasets; ran eval pipelines; and contributed significantly to
project planning and data analysis.
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Table 4.7: A selection of substrings identified by EXACTSUBSTR as being in C4 multiple times. The number of times
this exact substring occurs in C4 is also given.

Text Freq in C4

HD wallpaper. This wallpaper was upload at April 19, 2019 upload by admin in.You can
download it in your computer by clicking resolution image in Download by size:. Don’t forget
to rate and comment if you interest with this wallpaper.

40,340

to the address posted below. Include our failure information form,a packing slip with your
Company name, contact person, and Email address or phone number. Upon receipt of your
repair, we\’ll inspect it and then contact you with a quote or evaluation notice. Normal turn aro
und for repair is 5 to 7 business days, with "Rush Repair" available.

5,900

is a great place to begin your search. Whether you are a first-time home buyer or you are already
familiar with the home buying process, you can be assured that you have the best tools and the
perfect agent available to help with your

5,358

pics at these awesome group starting P letter. Desktop wallpapers were first introduced way back
in the 1980s and have gained immense popularity since then. It is possible to come across more
than 80 million sites on the web offering some sort of wallpaper.

848

flowers will let them know you’re thinking of them and wishing them well. Cheerful yellow
flowers bring their own sunshine and will get right to work on lifting spirits, and a colorful vase
will bring loads of smiles to friends and visitors! Get Well flower arrangements from

479

our premier 24 hour emergency* plumbing and heating solutions. We realise that when your
heating fails or pipes and drains leak it can cause havoc with your routine and even cause damage
to your property. When a plumbing problem occurs that requires an immediate response we
provide qualified local plumbers throughout

56

is to remove all images that violate copyrights. Please contact us to request that images be
removed or to assign proper credit. The images displayed on this site may be used for Free or
educational purposes only. If you would like to use any of the images displayed on this site for
any other purpose, please obtain permission from the owner. www.

48

list of fishing locations, providing interactive maps that show each location’s GPS coordinates,
nearby facilities (like restaurants, gas stations, marinas and fishing shops), their current and
forecasted weather and, if available, their water conditions.\nFind any of the 8

5

. Dyer, Ph.D., is an internationally renowned author and speaker in the field of self-development.
He’s the author of 30 books, has created many audio programs and videos, and has appeared on
thousands of television and radio shows.

5
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Table 4.8: A selection of substrings generated by XL-ORIGINAL with no prompting (and top-k with k=50) that were
identified by EXACTSUBSTR as being in C4 multiple times. The number of times each substring was found
in C4 is given. We observe that most memorized generations tend to be from advertisements.

Generated Text Freq in C4

, you’ll need to be knowledgeable to make the very best decisions. We will make sure you know
what can be expected. We take the surprises from the picture by giving accurate and thorough
information. You can start by talking about your task with our client service staff when
you dial 888-353-1299. We’ll address all of your questions and arrange the initial meeting.
We work closely with you through the whole project, and our team can show up promptly and
prepared.

5,497

then Waterside Lodge are well equipped for the task. Our fully equipped family sized lodges
offer a comfortable luxurious stay for a fantastic price, giving you beautiful views of the lakes
and the surrounding countryside. Offering luxurious self-catering holidays in our fully featured
Scandinavian holiday lodges. Perfectly located to explore the beaches, coastline. All of our
lodges are sized for 6 people and are furnished to the highest standards to ensure you have a stay
like no other. At Waterside Lodge the stay itself is only half of the package, Waterside lodge
is situated closely to the Heritage Coast which makes our lodges the perfect stay for anyone
wanting to get away and have a relaxing countryside break from the city. Whilst you stay with
us be sure to take advantage of all the activities Waterside Lodge has to offer. Such as the use of
our on-site fishing lakes for the keen fisherman, free internet access, outside relaxation areas,
comfortable lounges and much more.

571

you are only looking to find rent to own homes in your city or are open to exploring all kinds of
rent to own home listings, our database does it all. One of the best aspects of iRentToOwn.com is
that, besides options to rent to buy a house, it has numerous other categories of home sale options.
These include bank foreclosure homes, pre-foreclosure homes, short sales, HUD/government
foreclosures, auction homes and owner-financing/FSBO (For Sale By Owner) homes. With help
from the convenient search features offered by our site, shoppers are able to find their ideal lease
to own home, real estate company, and more in South

51

, IL employs journeyman as licensed to work by themselves, without direct supervision, installing
wiring, outlets and fixtures. Our journeyman also does service work, troubleshooting when a
breaker fails or a light stops working. Our journeyman does not offer permits that must be issued
by our master. Our journeyman follows our master’s plans and directions. Our journeyman’s
responsibilities will vary based on the work that needs to be done. Our journeymen are skilled
with residential, commercial and industrial installations and repairs.ust work from six years as an
apprentice, under direct supervision of our master, and pass a journeyman test. This person also
must have some classroom education on the National Electrical Code and fundamental electricity
in a technical school a program affiliated with the National Joint Apprenticeship Training Council.
Journeyman training combines hands-on work with education on basic electricity.

6

combustion process of a petrol engine is never perfect. Dangerous gases, such as nitrogen oxide,
carbon monoxide and hydrocarbons will arise and it is the job of the catalytic converter to reduce
these to safer emissions. These cat converters can fail by becoming clogged, or if the engine has
bad exhaust valves or the plugs fail, causing unburned fuel to overheat the converter. Mettam’s
Mufflers can resolve these issues with your Karr

5

,ANDREW Find the ancestral town: Many a researcher is stuck behind records that say, BIRTH-
PLACE: IRELAND without saying where in Ireland, or whatever other country. Remember that
your immigrant ancestor’s siblings probably were born in the same ancestral town, so check all o
f their records, too. Around 1900, the Roman Catholic churches reported marriages to the
churches where the persons were baptised, and before the wedding, they would require a bap-
tismal certificate from that church, without marriage notations, to make sure that the persons
were no
t already married, ordained, or whatever, and were free to marry. Do check the Catholic records
especially for ex loco and the home town. If your ancestor’s sister had a daughter who generated
a marriage or death record saying, MOTHER’S BIRTHPLACE: and the exact town, then y
ou know where to start searching for records that will confirm it is your ancestor’s home town.
BEWARE: Just because you find a family with the same names does not mean they are the same
family, as they could very well be an unrelated family from a different town in the same an
cestral country. The webmaster has learned this. One clue was that one family was still having
babies in Potenza city, Italy while the other was having babies in Colorado, U.S.A.

2

will not want to search for Power Washing companies in Wyoming on an extensive basis. The
service personnel will be at your doorsteps through online or phone booking. The power wash
solutions offered by us are matchless and you can compare with others in Winfield, IL. The
power wash services offered by us are very economical. Gutter brightener will be applied which
will be followed by cleaning through double scrub. The cleaning will be done by using a soft
bristle brush. The bond and contaminants will be released in an effortless manner.

1

Z3 Plus are valid in all major cities of India like Delhi, Gurgaon, Noida, Mumbai, Chennai,
Bangalore, Hyderabad, Kolkata, Pune, Ahmedabad, Coimbatore, Lucknow, Trichy, Madurai,
Trivandrum, Mysore, Jaipur, Chandigarh, Pondicherry, Bhopal, Patna, Bhubaneswar, Amritsar,
Cochin,
Allahabad, Srinagar, New Delhi, Surat, Ludhiana, Navi Mumbai, Ghaziabad, Bengaluru, Indore,
Nagpur, Thane, Agra, Meerut, Ranchi. The delivery feasibility and charges may be varying,
hence for them please check with the particular seller or store.

1
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Table 4.9: For each model, the perplexity of the official validation set (Orig), valid set examples which were identified
by NEARDUP as matches of train set examples (Dups), and valid set examples identified by NEARDUP as
unique (Unique). Due to the size of the RealNews validation set, we evaluated on only the first 25k examples
meeting each condition.

Model Dataset Orig Dups Unique
Transformer-XL LM1B 21.77 10.11 23.58
GROVER-Base RealNews 15.44 13.77 15.73
GROVER-XL RealNews 9.15 7.68 9.45



5
E N A B L I N G A P P L I C AT I O N S I N

C R E AT I V E W R I T I N G

One application where NLG has considerable potential is in the development of tools for creative writing.
AI-assisted creative writing is an attractive testbed for NLG systems because ideation tools are already part of
writers’ arsenal, and mistakes like hallucinating false facts are less problematic in fiction than in domains like
automatic news summarization, where faithfulness to the real world is crucial. In addition, science fiction
writers have been grappling with the concept of human-like machines and artificial intelligence for at least as
long as computer scientists have, so it stands to reason they might be early adopters of AI-powered creative
writing tools.

In this chapter, I describe work I have done toward bridging the gap between what most language models
do by default (predict a continuation for a prompt) and the operations writers actually would want. First, I will
show how existing neural networks can be modified to support fill-in-the-blank style tasks in addition to the
more common paradigm of continuation. Filling in the blank is a common functionality requested by writers.
Second, I will present a recipe for performing sentence style transfer into an arbitrary range of styles–such
as rewriting text to be more Shakespearean, metaphorical, or meladramatic–without any exemplars of the
task or task-specific model training. Third, to test out how these and other NLG-based tools can be used in
practice, I present Wordcraft, a word processor augmented with a variety of “smart” writing controls and
suggestion tools. I describe how a single large language model is used to support all of the “smart” functions
in Wordcraft, and I examine Wordcraft’s strengths and limitations through user studies conducted with both
amateur and professional writers.

116



5.1 supporting arbitrary style transfer 117

5.1 supporting arbitrary style transfer

Text style transfer is the task of rewriting text to incorporate additional or alternative stylistic elements while
preserving the overall semantics and structure. Early approaches to style transfer required parallel text data
[183, 122], where every input in the source style has a corresponding output in the target style. Because the
availability of such data is limited, however, there has been a shift toward approaches which instead rely
on non-parallel monostyle data [90, 73, 94, 79]. Most recently, label-free methods have taken advantage of
the natural manifold of language (i.e., that sentences that are nearby to each other in a text passage are also
similar stylistically) to train style transfer models that require only a few exemplars in the target style for
inference [169, 125]. This is true even for approaches which claim to be label-free [169, 125]. Hence, there is
a clear need for new methods that both reduce the training data requirements and expand the scope of styles
supported [72, 63].
In this section, we present augmented zero-shot learning, a prompting method that allows large language

models to perform text style transfer to arbitrary styles, without any exemplars in the target style. Our method
builds on prior work showing that sufficiently large LMs such as GPT-3 can perform various tasks ranging
from classification to translation, simply by choosing a clever prompt to prepend to the input text for which
the model is asked to continue [19, 14]. Although large LMs are trained only for continuation, recent work
has shown that they can perform a variety of NLP tasks by expressing the task as a prompt that encourages
the model to output the desired answer as the continuation [95, 116, 164, 19, 132]. The simplest approach,
zero-shot prompting, directly uses natural language to ask the large LM to perform a task, as shown in
Figure 5.1a. Zero-shot learning, however, can be prone to failure modes such as not returning well-formatted
or logical outputs (see §5.1.3). However, zero-shot prompts are prone to failure modes such as not returning a
well formatted or logical answer. This problem can often be overcome by prepending exemplars to the prompt
that demonstrate what successful completions may look like. This approach, called few-shot prompting, has
been shown to achieve higher performance, but requires exemplars for the exact task that we want the model
to perform (Figure 5.1b).
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Here is some text: {That is an ugly dress}. Here is 
a rewrite of the text, which is more positive: {

Here is some text: {I was really sad about the 
loss}. Here is a rewrite of the text, which is more 
positive: {I was able to accept and work through 
the loss to move on.} 
Here is some text: {The eggnog was tasteless}. Here 
is a rewrite of the text, which is more positive: 
{The eggnog had a great, festive taste to it.} 
… 
Here is some text: {That is an ugly dress}. Here is 
a rewrite of the text, which is more positive: {

Here is some text: {When the doctor asked Linda to 
take the medicine, he smiled and gave her a 
lollipop}. Here is a rewrite of the text, which is 
more scary: {When the doctor told Linda to take the 
medicine, there had been a malicious gleam in her 
eye that Linda didn't like at all} 
Here is some text: {They asked loudly, over the 
sound of the train}. Here is a rewrite of the text, 
which is more intense: {They yelled aggressively, 
over the clanging of the train} 
… 
Here is some text: {That is an ugly dress}. Here is 
a rewrite of the text, which is more positive: {

Zero-shot learning prompt

Few-shot learning prompt

Augmented zero-shot learning prompt (ours)

more melodramatic  includes a metaphor  include the word “balloon”   

(a)

(b)

(c)

Figure 5.1: Zero-shot, few-shot, and augmented zero-shot prompts for style transfer. The boldface text is the zero-shot
prompt, and the plain text is the additional priming sequence. The full prompts used in this paper are shown
in Table 5.8. We encourage readers to examine the outputs of our model at https://bit.ly/3fLDuci.

https://bit.ly/3fLDuci
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To remove the need for these labeled exemplars for each style transfer task, we propose augmented zero-
shot learning, a method for performing multi-task style transfer using a single set of exemplars. Instead of
prompting the model with exemplars specific to the exact style transfer task we wish to perform, we prompt
the model with examples of a variety of sentence rewriting operations, as shown in Figure 5.1c. This intuition
is inspired by Reynolds and McDonell [124]’s observation that successful prompts constrain the behavior
of the large LM away from failure modes—in our case, we aim to preserve the flexibility of a zero shot
prompt while encouraging the model to produce outputs of a specific template. We keep the the format of
the exemplars constant and insert the desired sentence transformation into the same format. In this way, the
augmented zero-shot formulation supports arbitrary sentence rewriting tasks without the need to write any
task-specific exemplars. Thus, it works for a wide range of styles, including modifying the text to be “more
melodramatic,” “insert a metaphor,” or “include the word balloon.”
Augmented zero-shot learning is simple and facilitates the application of style transfer to a wider range

of styles than existing work. We also foresee that our strategy of prompting an LLM with non-task specific
examples will prove useful for other tasks besides style transfer.

5.1.1 Experimental Setup

Style Transfer Tasks

We consider six style transfer tasks that we deem non-standard, listed in Table 5.1. These styles were chosen to
be representative of most frequent style adjustments made by users of an AI-assisted text editor that employs
our method (discussed further in §??). As source sentences, we use 50 sentences randomly drawn from the
Reddit Writing Prompts validation set [42], excluding those that already clearly exhibited one of the styles or
were ungrammatical/incoherent. We use human evaluation for these styles, since not all styles have readily
available classifiers.
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Table 5.1: Example style transfer outputs from augmented zero-shot learning for non-standard styles.

Original There, in the middle of the street, stood an old man in a weatherbeaten brown
coat.

More
descriptive

The man’s brown trenchcoat was coated with snow, and as he leaned against the
telephone booth, he cast a long shadow across the road in the late afternoon
sun.

Include a
metaphor

There, in the middle of the street, stood an old man whose face resembled the
weatherworn bark of a gnarled tree.

Include the
word “park”

There, in the middle of Central Park, stood an old man in a weatherbeaten brown
coat.

Include the
word “balloon”

There, in the middle of the street, stood an old man with several colourful
balloons tied to the straps of his coat.

More comic There, in the middle of the street, stood an old man in a raggedy brown coat
that was much too big for him.

More melodramatic There, in the middle of the road, stood a grizzled old man, the light of life
faded from his sunken eyes.

We also evaluate our method on two standard style transfer tasks: sentiment and formality. We use the Yelp
polarity dataset [178] for sentiment and Grammarly’s Yahoo Answers Formality Corpus (GYAFC) dataset for
formality [122].13 These datasets allow us to evaluate performance of augmented zero-shot learning in the
context of prior supervised methods which have been used on these tasks.

Model

Augmented zero-shot learning requires a large language model. We primarily use LaMDA, a left-to-right
decoder-only transformer language model [153] with a non-embedding parameter count of 137B [149]. The
pre-trained LaMDA model, which we refer to as LLM, was trained on a corpus comprising 1.95B public web
documents, including forum and dialog data and Wikipedia. The dataset was tokenized into 2.49T BPE tokens
with a SentencePiece vocabulary size of 32K [80]. We also use LLM-Dialog, the final LaMDA model which
was finetuned on a curated, high-quality subset of data identified to be in a conversational format. Decoding
was done with top-k=40. To show that the success of augmented zero-shot learning is not restricted to these

13 Hosted by Luo et al. [97].
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two large LMs, we also perform experiments with GPT-3 (Table 5.3). For GPT-3, decoding was done with
nucleus sampling using p=0.6 [61].

The full prompts used for LLM and GPT-3 are shown in Figure 5.8. For LLM-Dialog, the prompt was instead
formulated as a conversation between one agent who is requesting rewrites and another who is performing
the rewrites.

5.1.2 Results

non-standard styles For our six non-standard styles, we asked six professional raters to assess
<input sentence, target style, output sentence> tuples. These raters are fluent in English, live in India, and work
full time labeling and evaluating data. To decrease inter-rater discrepancy and ensure that our instructions
were clear, we had an initial calibration session where they test-rated a small portion of the data (around 10
datapoints which were then omitted from the results) and asked us any clarifying questions. For each style,
we compare outputs from our method plus the three baselines for 50 sentences.

Each tuple was scored by three raters (3,600 ratings total) on the following three axes which are standard to
textual style transfer [103]:

1. transfer strength the amount that the output actually matches the target style
2. semantic preservation whether the underlying meaning of the output text, aside from style, matches

that of the input and
3. fluency whether the text is coherent and could have been written by a proficient English speaker

Following Sakaguchi and Van Durme [129], transfer strength and semantic preservation were rated on a
scale from 1–100. A screenshot of the evaluation UI is shown in Figure 5.2. We use dialog-LLM, and compare
it with three other methods:

1. zero-shot a baseline where no exemplars are provided
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Figure 5.2: The rating UI used for human evaluation. The user may be shown a number of blue squares at once with
the same original text and different outputs.
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Figure 5.3: Human evaluation of style transfer for six atypical styles. Our method is rated comparably to the human-
written ground truth. Error bars are mean standard error.

2. paraphrase our normal augmented zero shot prompt, but with the target style of “paraphrased”, as a
control

3. human ground-truth transformations written by the authors

Figure 5.3 shows these results. We found that the outputs of our method were rated almost as highly as
the human-written ground truth for all three evaluations. The zero-shot baseline performed the worst in all
categories: 25.4% of the time, it did not return a valid response at all (see §5.1.3), compared with 0.6% for
augmented zero shot. The strong performance of the paraphrase baseline at fluency and semantic similarity
shows that large LMs are capable of generating high quality text that remains true to the input sentence’s
meaning. Overall, the average length of the input sentences was 66 characters, whereas the average length of
augmented zero-shot outputs was 107 characters. For context, human paraphrase outputs were 82 characters.
For a subset of the tasks, some automatic evaluation was also possible. We found that the “balloon” and

“park” transformations successfully inserted the target word 85% of the time. For “more descriptive” and
“include a metaphor” the transformed text was, as expected, longer than the original (by 252% and 146%
respectively, compared with 165% and 146% for human baselines).

standard styles To better contextualize the performance of our method with prior methods, we also
generated outputs for two standard style transfer tasks: sentiment and formality. Figure 5.4 shows human
evaluations (same setup as before) for our outputs as well as the outputs from two popular prior style transfer
methods, Unsup MT [115] and Dual RL [97]. The outputs from our method were rated comparably to both
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Figure 5.4: Human evaluation of sentiment and formality transfer. Our method is rated comparably to human-written
ground truth as well as prior methods. Error bars show Standard Error of the Mean. Unsup. MT is
Prabhumoye et al. [115]; Dual RL is Luo et al. [97].

human generated responses and the two prior methods, using the same rating setup as the non-standard styles,
with six outputs and baselines for four styles across 50 sentences, rated independently by three raters, totalling
3,000 total ratings.
Furthermore, following Li et al. [90] and Sudhakar et al. [143], we perform automatic evaluation for

sentiment style transfer since there are classifiers available for these styles. We note that although automatic
evaluations can diverge from human ratings, they can still be a good proxy as we could not perform human
evaluation against every prior method due to time and resource constraints. We automatically evaluate
1. transfer strength using a sentiment classifier from HuggingFace Transformers [165]
2. semantic similarity to human examples provided by Luo et al. [97] via BLEU score
3. fluency measured via perplexity, as predicted by GPT-2 (117M).
Table 5.2 shows these automatic evaluations, with four main takeaways. First, augmented zero-shot prompt-

ing achieves high accuracy and low perplexity compared with baselines. The BLEU scores, however, the
outputs of our model had low BLEU scores with respect to human generated outputs 5.2. Based on qualitative
examination of outputs, we believe that this is because our model outputs often used different language
from human annotations, despite having high semantic similarity with the source sentence. For instance,
for transferring the sentiment of “ever since joes has changed hands it’s just gotten worse and worse” to
positive sentiment, our augmented zero-shot learning model outputted “the establishment has continued to
provide excellent service, improving steadily since its change of ownership.” This will have low BLEU with
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Table 5.2: Comparing augmented zero-shot prompting with supervised style transfer methods on the Yelp sentiment
style transfer dataset using automatic evaluation. Acc: accuracy; PPL: perplexity. The inference-only table
shows our method applied to 3 different sizes of GPT-3, plus our own LLM.

Acc BLEU PPL
SUPERVISED METHODS
Cross-alignment [138] 73.4 17.6 812
Backtrans [115] 90.5 5.1 424
Multidecoder [46] 50.3 27.7 1,703
Delete-only [90] 81.4 28.6 606
Delete-retrieve [90] 86.2 31.1 948
Unpaired RL [168] 52.2 37.2 2,750
Dual RL [97] 85.9 55.1 982
Style transformer [33] 82.1 55.2 935
INFERENCE-ONLY METHODS
GPT-3 ada, aug zero-shot 31.5 39.0 283
GPT-3 curie, aug zero-shot 53.0 48.3 207
GPT-3 da vinci, aug zero-shot 74.1 43.8 231
LLM: zero-shot 69.7 28.6 397
LLM: five-shot 83.2 19.8 240
LLM: aug zero-shot 79.6 16.1 173
LLM-dialog: zero-shot 59.1 17.6 138
LLM-dialog: five-shot 94.3 13.6 126
LLM-dialog: aug zero-shot 90.6 10.4 79

the ground truth with respect to human references, which is simply “ever since joes has changed hands it’s
just gotten better and better.” Though we do not see this as an inherent problem, increasing the BLEU for the
purposes of comparison can be done in an easy way via candidate selection, as our model returns sixteen
possible continuations. In applications for which we prefer model outputs to have high lexical similarity to
the source sentence, we could select the candidate of the sixteen with the highest BLEU score compared with
the original source sentence. We find that this candidate selection step can substantially improve the BLEU
score with the ground truth target sentences, as we show in Table 5.3.
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Table 5.3: Sentiment style transfer results with candidate selection (cand. select.). Candidate selection means that of
the sixteen examples returned by our model, we choose the one with the highest BLEU with the source
sentence.

Acc BLEU PPL
LLM-128B
Zero-shot 69.7 28.6 397
+ cand. select. 31.4 61.5 354
Five-shot 83.2 19.8 240
+ cand. select. 61.5 55.6 306
Augmented zero-shot 79.6 16.1 173
+ cand. select. 65.0 49.3 292
LLM-128B-dialog
Zero-shot 59.1 17.6 138
+ cand. select. 46.8 24.2 166
Five-shot 94.3 13.6 126
+ cand. select. 81.3 47.6 345
Augmented zero-shot 90.6 10.4 79
+ cand. select. 73.7 40.6 184
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Table 5.4: For sentiment style transfer, we show accuracy, BLEU, perplexity (PPL), and sequence length (l) reported
as the average of positive→ negative and negative→ positive. In (a), augmented zero-shot prompting of
GLM and GPT-3 are compared with prior supervised style transfer methods. In (b), we compare zero-shot,
five-shot, and augmented zero-shot prompting for our GLM models. Candidate selection means that of the
sixteen examples returned by the API, we choose the one with the highest BLEU with the source sentence
(in the default case, we just use the first returned output).

Acc BLEU PPL l

Cross-alignment [138] 73.4 17.6 812 10.7
Backtrans [115] 90.5 5.1 424 9.7
Multidecoder [46] 50.3 27.7 1,703 10.4
Delete-only [90] 81.4 28.6 606 12.1
Delete-retrieve [90] 86.2 31.1 948 11.7
Unpaired RL [168] 52.2 37.2 2,750 9.4
Dual RL [97] 85.9 55.1 982 10.1
Style transformer [33] 82.1 55.2 935 10.3
Augmented Zero-Shot Prompting
GPT-3 ada 31.5 39.0 283 10.0
GPT-3 curie 53.0 48.3 207 10.3
GPT-3 da vinci 74.1 43.8 231 10.4

(a)

Acc BLEU PPL l

GLM
Zero-shot 69.7 28.6 397 9.6
+ cand. selection 31.4 61.5 354 10.2
Five-shot 83.2 19.8 240 11.2
+ cand. selection 61.5 55.6 306 10.2
Augmented zero-shot 79.6 16.1 173 11.3
+ cand. selection 65.0 49.3 292 10.3
GLM-dialog
Zero-shot 59.1 17.6 138 17.2
+ cand. selection 46.8 24.2 166 17.2
Five-shot 94.3 13.6 126 13.3
+ cand. selection 81.3 47.6 345 10.0
Augmented zero-shot 90.6 10.4 79 12.8
+ cand. selection 73.7 40.6 184 10.7

(b)

Second, we apply augmented zero-shot learning to GPT-3 175B; these results indicate that augmented zero-
shot learning generalizes to another large language model. Third, we vary model size for GPT-3models, finding
that larger size greatly improves style transfer. Fourth, for LLM and LLM-dialog, we find that augmented
zero-shot learning substantially outperforms vanilla zero-shot learning and almost reaches the accuracy of
five-shot learning.

comparison with a range of prior methods To compare against a larger range of prior
supervised methods, we used automatic evaluation, and found comparable performance with the highest-
scoring method for transfer strength. The results are shown in Table ??. We were also significantly more
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fluent than all other methods. Finally, our method fell short on semantic preservation compared to other
methods. However, BLEU is known to penalize long sentences, and the scores do not always align with human
judgements. For example, our model’s worse performance could be because it was not explicitly trained on
Yelp data, so its generations are less likely to be in the style of Yelp reviews than models that were.

comparison across different llms We also compared between three varieties of model: GPT-3
[19], LLM, and LLM-Dialog. We adjusted the prompt template slightly to accommodate these differences:
for LLM and GPT-3, the prompt template replaced “Rewrite it to be <style>” with “Here is a rewrite

of the text, which is <style>”. For our augmented zero-shot prompts we also see that the LLM-dialog
version had higher accuracy than the LLM and GPT-3, but lower BLEU. Based on qualitative inspection, we
believe the lower BLEU is due to the LLM-dialog adding additional detail in the generated sentences, which
is consistent with an “interestingness” objective that is typically encoded into dialog training.

prompt construction Prompt engineering can be brittle: Reynolds and McDonell [124] describe
how reformulating the language of a prompt can have significant impact on performance, and that finding
the right prompt is for a task is more akin to locating an already-learned task than truly learning a new
one. To explore this, we compared several variations of the prompts for sentiment, varying the language
of the prompt to use “more positive/negative,” “happier/sadder,” “more optimistic/pessimistic,” or “more
cheerful/miserable.” As shown in Table 5.6, performance differed across the four prompts, but we found them
comparable. In a real world setting, our augmented zero-shot approach allows users to effortlessly try out
many different phrasings for the task until they find one that performs satisfactorily.

Reynolds and McDonell [124] further emphasize that prompt engineering is mostly about avoiding various
failure cases. In this work, we use delimiters (“{” and “}”) to help avoid parsing errors, giving scores of zero
when there was no valid responses with such delimiters. There are other delimiters that could be used (e.g.,
quotes, “(” and “)”, “<” and “>”, newlines with a colon (as used by GPT-3), etc. We chose curly braces as
they were 1) likely to occur in the training data as delimiters in other contexts and 2) not frequently part of
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Table 5.6: Comparing variations of augmented zero-shot learning prompt wording for sentiment style transfer.

Model / prompt wording Acc Bleu PPL
LLM
“more positive/negative” 76.3 14.8 180
“happier/sadder” 62.6 15.5 173
“more optimistic/pessimistic” 69.7 14.1 143
“more cheerful/miserable” 74.5 15.7 186
LLM-Dialog
“more positive/negative” 90.5 10.4 79
“happier/sadder” 85.9 9.6 90
“more optimistic/pessimistic” 85.8 10.2 79
“more cheerful/miserable” 88.8 11.4 93

the input sentence itself. We also use a second person prompt template for the dialog, which yielded better
results as it was more similar to the training data. Exploring these options more quantitatively would be an
interesting direction for future work.

5.1.3 Limitations and Failure Modes

There are several limitations and failure modes with our method.

malformed generations A frequent problem that arises when using large LMs for other NLP tasks
is their outputs cannot be automatically parsed into usable answers. For example, when given a prompt
like “Here is some text: that is an ugly dress. Here is a rewrite of the text, which is more

positive” LLM-Dialog might return something like “Sounds like you are a great writer!” Similar
error modes exist for LLM, which might output something like “Here are more writing tips and tricks.”

Other times, the response contains correct information, but it cannot be automatically parsed (e.g., “a good

rewrite might be to say that the dress is pretty.” ) In hindsight, these outputs make a lot of sense:
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Table 5.7: Examples of users’ arbitrary style transfer requests for which the model suggestion was accepted.

Input Model suggestion

You honor me,” said Bruno. As he spoke, he be-
gan to laugh. His laugh was merry sounding and
melodic. He took a deep breath. When he spoke
again, his voice was low and strong. “I take this
great task on and with my brothers shall lead us
on to victory!
Rewrite it to be about mining.

You honor me, said Bruno. As he spoke, he began to
laugh. His laugh was deep and gravely, as if from the
bowels of the earth. He took a deep breath. When he
spoke again, his voice was deep and dark.‘I take this
great task on and with my brothers shall delve into the
mines!”

I reckon,’ smiled Toe, ’you’d have to say the same
for icicles, wouldn’t you?
Rewrite it to be more interesting.

‘I reckon,’ smiled Toe, ‘you’d have to say the same for
icicles, wouldn’t you?’ These words were barely out
of his mouth before the others realized exactly what
they meant.

with its southern perfume
Rewrite it to be more descriptive

A mixture of sweet honeysuckles and jasmine with a
hint of tobacco and warm mesquite smoke. It was his
southern perfume, with a hint of a memory of simpler
times.

But Sally remained unmoved–and lonely.
Rewrite it to be more emotional

Her tears rolled and rolled down her cheek, mixing
with the saltwater around her, until the water was a
rich mixture of the two. She wanted her poem to be
cheerful like it used to be, but couldn’t find the right
words.

most of the training data of large LMs is not well-formatted pairs of inputs and outputs [124]. See §5.1.2 for
how we dealt with these issues.

hallucinations Large LMs are known to hallucinate text content; we saw this happen frequently
for style transfer. While this is an advantage in some contexts like creative writing, it is undesirable for
applications like summarization.
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Table 5.8: In black, we show the exact augmented-zero shot prompts used in our experiments, for LLM and GPT-3
(top), and for LLM-Dialog (bottom). As shown, for LLM-Dialog, we replaced “Here is a rewrite of
the text, which is” with “Rewrite it to be”. Each line starting with “>"" above was passed in as
an individual dialog turn. The blue shows how an input text and goal style are concatenated to the few-shot
prompt in order to produce final model output. Note that we can achieve high accuracy even though the prompt
formulation resulted in someminor grammatical errors for some styles (e.g., “rewrite it to be include
the word ’snow’”). Text versions of these prompts can be downloaded at https://bit.ly/3fLDuci.

Augmented Zero-shot Prompt: LLM
Here is some text: {When the doctor asked Linda to take the medicine, he smiled and gave her a lollipop.}. Here is a rewrite of the text,
which is more scary. {When the doctor told Linda to take the medicine, there had been a malicious gleam in her eye that Linda didn’t
like at all.} Here is some text: {they asked loudly, over the sound of the train.}. Here is a rewrite of the text, which is more intense.
{they yelled aggressively, over the clanging of the train.} Here is some text: {When Mohammed left the theatre, it was already dark out}.
Here is a rewrite of the text, which is more about the movie itself. {The movie was longer than Mohammed had expected, and despite the
excellent ratings he was a bit disappointed when he left the theatre.} Here is some text: {next to the path}. Here is a rewrite of the
text, which is about France. {next to la Siene} Here is some text: {The man stood outside the grocery store, ringing the bell.}. Here is
a rewrite of the text, which is about clowns. {The man stood outside the circus, holding a bunch of balloons.} Here is some text: {the
bell ringing}. Here is a rewrite of the text, which is more flowery. {the peales of the jangling bell} Here is some text: {against the
tree}. Here is a rewrite of the text, which is include the word "snow". {against the snow-covered bark of the tree} Here is some text:
{That is an ugly dress}. Here is a rewrite of the text, which is more positive."

Augmented Zero-shot Prompt: LLM-dialog
> Here is some text: {When the doctor asked Linda to take the medicine, he smiled and gave her a lollipop.}. Rewrite it to be more scary.
> {When the doctor told Linda to take the medicine, there had been a malicious gleam in her eye that Linda didn’t like at all.}
> Here is some text: {they asked loudly, over the sound of the train.}. Rewrite it to be more intense.
> {they yelled aggressively, over the clanging of the train.}
> Here is some text: {When Mohammed left the theatre, it was already dark out}. Rewrite it to be more about the movie itself.
> {The movie was longer than Mohammed had expected, and despite the excellent ratings he was a bit disappointed when he left the
theatre.}
> Here is some text: {next to the path}. Rewrite it to be about France.
> {next to la Siene}
> Here is some text: {The man stood outside the grocery store, ringing the bell.}. Rewrite it to be about clowns.
> {The man stood outside the circus, holding a bunch of balloons.}
> Here is some text: {the bell ringing}. Rewrite it to be more flowery.
> {the peals of the jangling bell}
> Here is some text: {against the tree}. Rewrite it to be include the word "snow".
> {against the snow-covered bark of the tree}
> Here is some text: {That is an ugly dress}. Rewrite it to be more positive."

Inherent style trends

We also noticed that even our “paraphrase” baseline, where the model was simply asked to rewrite the
input sentence, was rated highly for style strength for a few styles, including “more formal” and “more

melodramatic”. This implies that our method’s generations generally trend toward these styles. A direction
for future work would be to see what styles and qualities of text our method (and large LMs in general) are
inherently more likely to produce.

less reliable than trained methods For style transfer tasks that have available training data,
prior methods that either train or finetune on that data are going to be inherently more reliable at producing

https://bit.ly/3fLDuci
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text that looks like their training data. This can be observed in the lower BLEU scores our method achieves
than trained methods, despite comparable transfer accuracy. Thus, augmented zero-shot learning offers less
fine-grained controllability in the properties of the style-transferred text than methods which see task-specific
training data.

large lm safety concerns Large LMs themselves come with their own host of difficulties, barriers
to entry, and potential safety concerns as discussed by Bender et al. [11], which are also valid for this style
transfer method. However, we also think that this method can be a useful tool in exploring and exposing the
safety and boundaries of these models themselves: what happens if we try to force the large LM to make a
text “more racist”, “more sexist”, or “more incendiary”? It is important to keep pushing these models to their
boundaries to see where they fail and where problems arise, and specific use cases that show a broader range
of the model’s capabilities also show a broader range of its failure modes.

5.2 models for infilling text

Natural language generation systems are increasingly being incorporated into applications where a human
writer and an AI jointly collaborate to construct text. Wordcraft, The AI-assited text processor I describe in
Section 5.3 is one such application. Another is Storium, where players of a writing game have the option to
accept suggestions from a natural language generation system [3]. There are also more practical domain such
as email composition assistance and code synthesis [21, 166, 7]. Many of these applications are limited to
generating text at the end of what has been written so far. This is because both historical n-gram language
models (LMs) and state-of-the-art neural LMs are typically designed to produce text by repeatedly predicting
the next word in a sequence given the previous words. However, there is a need for more powerful interactive
tools which enable writers to solicit insertions at any chosen position within the existing text, a task variously
referred to as fill in the blank (FITB), infilling, or the Cloze task [146]. For example, a creative writer might
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Fill in the blank with about 16 words and 
include the phrase “old dog”: “The boy 
took the ____ for a walk.” 

Fill in the blank with about 4 words: 
“The boy took the ____ for a walk.”

Continue the text with about 2 words: 
“The boy took the lonely old dog ____”

Continue the text with about 8 words 
and include the phrase “rocky path”: 
“The boy took the lonely old dog ____”

leash off the hook. 
His old dog still 
acted like a puppy 
when it came time

two dalmatians to 
the beach

inside the house.

up the rocky path. 
It was slow going.

FILL-IN-THE-BLANK
+ CONTINUATION

MODEL

Figure 5.5: A single model that can handle a variety of related writing tasks is more efficient than separate models per
task.

want a tool which can insert a description of a place or character, and a programmer might want a system that
can fill in a method in the middle of their code.

Most prior work tackling FITB consider it a separate task from continuation, one to be specifically optimized
for, for example training a custom model from scratch [67, 181, 104], finetuning a model trained originally
for continuation [39], or using a combination of pre-trained models [64]. Having separate trained models
for FITB and for continuation is inefficient for downstream applications where maintaining multiple neural
networks can b e prohibitive.
Any model that can do FITB can be made to do continuation simply by placing the blank at the end of

the input. Thus, I describe how models trained on FITB can be employed effectively for both infilling and
continuation operations. I show how T5 [119], one of the most popular pre-trained models, can reasonably
handle both tasks, as it was pre-trained with a FITB-like objective. Finetuning T5 further improves its ability
and also allows for the incorporation of controllability of generation length and word choice.
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Table 5.9: Examples of the finetuning objectives. “8" is the approximate length in words of the target sequence. During
finetuning, about 25% of training examples took each of these formats.

Example Type Input Target
C4FILLBLANK
no goal

fill: I love avocados. I ate a sandwich covered in them. _8_ I talked
to my doctor about it later. It turned out I was allergic to avocados.

After I ate it, my mouth
was itchy and tingly.

C4FILLBLANK
with goal

fill: I love avocados. I ate a sandwich covered in them. _8_ I talked
to my doctor about it later. It turned out I was allergic to avocados.
Goal: mouth was itchy

After I ate it, my mouth
was itchy and tingly.

C4FILLBLANK
no goal

fill: I love avocados. I ate a sandwich covered in them. After I ate it,
my mouth was itchy and tingly. I talked to my doctor about it later.
_8_

It turned out I was aller-
gic to avocados.

C4FILLEND
with goal

fill: I love avocados. I ate a sandwich covered in them. After I ate it,
my mouth was itchy and tingly. I talked to my doctor about it later.
_8_ Goal: allergic to

It turned out I was aller-
gic to avocados.

5.2.1 Supporting FitB and Continuation

We define filling in the blank as the task of predicting text to replace a single missing span, usually demarcated
with a special token, in an input text passage. (Some prior work considers inputs with multiple blanks, but
inserting text at one position at a time better matches the kinds of edits humans do.) We define continuation
in the traditional language modeling sense–predicting the next token in a sequence given only the previous
tokens. Donahue et al. [39] discuss how language modeling is a special case of infilling, and they use this
as justification to finetune a continuation-based language model to do infilling. However, we argue that if
continuation is a subtask of infilling, it makes more sense to go in the opposite direction: prioritize a model
which can do infilling and check that it achieves satisfactory performance at continuation.

T5 is a model pre-trained with a “span corruption” objective very similar to FITB; the model is asked to
reconstruct the missing text after randomly chosen substrings of the input are replaced with special identifiers.
Thus, a pre-trained T5 model can be used without any further training to do both continuation and infilling
by appropriately choosing text to mask out. The encoder-decoder architecture of T5 is also more conducive
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to FITB than decoder-only architectures like GPT-2 [118] which are typically used for continuation-based
language models. This is because the attention mechanism in encoder-decoder architectures allows the context
on the left side of the blank to attend to the context on the right, while decoder-only architectures only support
masked attention (each token can only attend to the positions to its left).

Even though T5’s pre-training objective was a form of FITB, finetuning is still advantageous. For one, our
definition of FITB only includes a single masked out substring, not multiple, so finetuning improves alignment
with the goal task. Finetuning also allows us to incorporate additional conditioning signals not supported by
the pre-trained T5, such as being able to specify the desired length of the generated text or specify words that
ought to be included in the blank, a task we refer to as “goal conditioning." Length control, which comes by
default in a traditional language model by simply sampling more or fewer tokens, is particularly necessary for
FITB, where the end of the generation must fit seamlessly with the text to its right.

The biggest language models available today were largely trained in the continuation rather than the FITB
paradigm [18, 12]. Since our primary goal is to have a single model for both tasks, we also address the question:
if a continuation-trained model is big enough, can it handle FITB without the need for finetuning? Few-shot
learning with large language models, as popularized by Brown et al. [18], has had success on many tasks in
NLP. We try out this approach for FITB by designing a few-shot prompt containing several demonstrations of
the FITB task, formulated in a similar “infilling by language modelling" style as Donahue et al. [39].

5.2.2 Experimental Setup

main setup For all primary experiments, we use the 800M parameter v1.1 ‘large’ model. We also
show soome addditional results comparing against the 3B parameter ‘XL’ T5 model. To finetune T5 for
FITB, we construct training examples from documents by first partitioning the document text into a left
context, gap, and right context. The input sequence is then the left and right contexts concatenated with textual
representations of the additional conditioning signals. The target sequence is the true text for the blank. This
formulation easily supports continuation, as the blank can be deliberately placed at the end (i.e., providing no
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right context). Documents are drawn from C4, the same dataset T5 was pre-trained on. Documents are split
into word sequences, and these are then randomly truncated to be between 256-512 words long. A substring of
between 1 and 64 words is selected to be blanked out. For half of the training examples the blank is randomly
selected, and for the other half it is always placed at the end. To support length conditioning, we follow
Roberts and Raffel [126] and include a bucketed version of the target length as part of the blank. To support
goal conditioning, for half the examples, a random substring of up to half the words of the target is appended
to the end of the input. Examples are shown in Table 5.9.
We compare T5 against a state-of-the-art 137B parameter decoder-only language model (LLM) trained

explicitly for continuation and used successfully for few-shot learning in other domains [7, 123]. This model
is used (1) as a standard continuation model, prompting with only the left context of an example; and (2) in a
few-shot learning paradigm.

few-shot learning setup We experimented with prompts randomly selected from the C4, Reddit
Writing Prompts, and ROC Stories training sets, as well as prompts consisting of examples handwritten by the
authors with the goal of story-writing in mind. For each prompt source, we randomly generated five possible
prompts, each with three examples. To simplify the task, we conditioned on desired length but did not include
goal conditioning. When choosing random few-shot prompts from the three train sets, in order to keep the
few-shot prompt text within the 512-token context length limit of the LLM[149] we used for inference, we
only considered examples that contained 100 or fewer tokens, so that the max length of the few-shot prompt
was no more than 300 tokens. This left 212 tokens for the text of the actual example we were interested in
performing the FITB task on. For our hand-written prompt, we wrote the seven examples shown in Table
5.11. We generated 5 possible prompts by randomly subsampling 3 examples out of these 7 five times. Table
5.10 shows the perplexity of the generations from each few-shot prompt. We note that even leaving room
for 212 tokens worth of context text, some evaluation examples did not fit in the prompt length, and these
examples were skipped when doing this analysis. Based on these results, we use the best-performing prompts
from ROCFILLMIDDLE and from C4FILLBLANK for comparison with the other methods.
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Table 5.10: Perplexity of evaluation sets when the blank has been filled in using LLM with few-shot prompting (top)
and our best fine-tuned T5 model ((bottom). Among the few-shot results, the best method for each dataset
is bolded, as well as methods within one standard error.

C4FILL ROCFILL RWPFILL RWPFILL
Few-shot source: BLANK MIDDLE BLANK BLANK-Sent
C4FILLBLANK 15.67 19.72 19.65 16.82
ROCFILLMIDDLE 14.14 19.61 19.48 16.36
RWPFILLBLANK 24.39 20.29 32.33 28.13
RWPFILLBLANK-Sent 18.91 18.21 24.44 19.87
FS CUSTOM 17.98 19.80 21.72 18.38
Finetuned T5 XL 9.99 19.00 13.64 10.03
Finetuned T5 Large 10.33 20.47 14.08 10.37

evaluation We evaluate continuation and FITB on C4 as well as two story writing datasets, as creative
writing assistant applications are one of the key areas we expect to benefit from multi-task models [30]. Reddit
Writing Prompts (RWP) is a corpus of stories from the ‘r/WritingPrompts’ sub-Reddit [42], and we construct
validation sets RWPFILLBLANK and RWPFILLEND using the same method described in the previous section.
C4 and RWP validation sets are capped to 5,000 examples. ROC Stories (ROC) is a crowd-sourced dataset
of five-sentence commonsense stories [105]. For ROC Stories, the 2018 validation set is used to construct
ROCFILLMIDDLE, where the middle sentence of each story is blanked out, and ROCFILLEND, where the last
sentence is blanked out. Unless otherwise noted, all evaluation is done without goal conditioning and uses
random sampling with top-k=50 as the decoding strategy.

5.2.3 Results

failure of few-shot prompt for fill in the blank Filling in a blank seems like a task that
ought to be easy to accomplish with few-shot learning techniques. Training data for large language models
often contains fill-in-the-blank style examples, as school lessons with cloze-style questions are relatively
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Context Target

1 An elderly man was sitting alone on a dark path. The man
looked down at his feet, and realized ____ . It was a plain
pine box and looked as if it had been there for a long time.
The man was afraid to look inside the box.

he was holding a bright red box
made of pine

2 The mantle was cluttered with objects: ____ and more than
one vase of dried flowers. The bejeweled lamp was at the
very back, nearly invisible.

picture frames showing grandchil-
dren and long-ago weddings, knick-
knacks collected from all over the
world,

3 "We have to leave now!" Sarah shouted. ____ The only way
out was up. We climbed flight after flight. The sound of the
monsters banging on the door below became more distant
but no less threatening.

"The zombies are going to break
through any moment, and then we’ll
all be goners."

4 The sun was shining, and little gusts of wind brought through
the window ____ shocking contrast from the stale city smells
she had grown used to.

the faint scents of honeysuckle and
freshly turned soil. It was a

5 I was minding my business at the park, when I was ap-
proached by a little girl who was crying because she had lost
____ so of course I helped search.

her cat, which she had just received
for her birthday. She did not want
her parents to know she’d already
lost him. I’m a good person

6 It was a cold night, and a storm was raging out at sea. A
lightning bolt lit up the sky, briefly illuminating the light-
house ____ plummeted but just before reaching the churning
water, he disappeared in a poof of purple flame!

and the young man peering hesi-
tantly over the sheer cliff. Before the
next peal of thunder he jumped. At
first he

7 Themagician pulled out of his pocket ____ and then a second
one and a third. He didn’t stop until soon the ground was
covered with them.

a scarlet handkerchief

Table 5.11: Hand-written fill-in-the-blank examples. To construct “custom” few-shot learning prompts, three of these
were selected at random. In the end, the custom prompts did not result in better fill-in-the-blank performance
than simply selecting randomly examples from the train set.
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Table 5.12: Perplexity of evaluation sets according to LLM when the blank has been filled with approaches involving
no fine-tuning (top), finetuned approaches (middle), and the groundtruth (bottom). Lower values indicate
that the text was considered more fluent by the LLM.

C4FILL RWPFILL ROCFILL
BLANK BLANK MIDDLE

Few-shot LLM 14.14 19.48 18.21
Pre-trained T5 10.38 14.08 22.62
Finetuned T5 10.33 14.08 20.47
Donahue et al. [39] N/A N/A 23.28
Groundtruth 9.41 12.99 16.90

Table 5.13: Perplexity of continuation-based evaluation sets when a continuation has been generated using approaches
with no finetuning (top) and two settings of finetuning T5 (middle).

C4FILL RWPFILL ROCFILL
END END END

Pre-trained T5 10.09 13.51 21.71
T5 FILLBLANKCONT 10.04 13.74 19.60
T5 LM-ADAPTION 10.06 13.71 19.68
Groundtruth 9.41 12.99 16.90

common on the internet. Furthermore, infilling ought to be an easier task tha continuation since there is more
information available for the model to base its prediction on. However, after conducting a large-scale study of
many possible few-shot prompts, we found that this technique fell short for the fill-in-the-blank task.

One possible reason is that we did not do a sufficiently exhaustive search for a good prompt template. Zhao
et al. [180] describe how one significant challenge with in-context learning is that task performance is often
very sensitive to minor changes in prompt design. It is possible there exists a prompt for which in-context
learning techniques would prove effective for fill-in-the-blank, but our exploration did not discover it.dg What
we can conclude is that the process of finding an ideal prompt requires time-consuming trial-and-error and is
quite difficult!
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Figure 5.6: Human ratings of FITB generations (left) and continuation generations (right). Error bars are 95% confidence
intervals.
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Figure 5.7: For many of the (validation set, few-shot prompt) combinations, not all validation set examples fit into the
maximum sequence length for the LLM. The x-axis on this figure is the fraction of validation set examples
which were retained after too-long examples were filtered out. The y-axis is the count of (validation set,
few-shot prompt) pairs.
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Table 5.14: Accuracy ofmodels finetuned on FILLBLANKCONT at correctly using provided length and goal conditioning
signals.

Finetuned T5 Context Length
C4FILLBLANK 0.860 0.877
RWPFILLBLANK 0.797 0.881
C4FILLEND 0.858 0.775
RWPFILLEND 0.791 0.746

t5 generates fluent continuations and infills We measure the fluency of proposed
generations by evaluating the perplexity of each dataset’s examples when the predicted text is placed in the
blank [39]. We use the LLM to measure perplexity14. The results are shown in Table 5.12. We see that the LLM

struggles to generate fluent infills, even when used in a few-shot setting. The only exception to this is ROC
Stories, a dataset with fairly simplistic, predictable language. Finetuning T5 does not result in significantly
improved fluency over the pre-trained model except on ROC Stories. Lastly, for ROC Stories, we compare
against Donahue et al. [39]’s finetuned GPT-2 small, which yielded less fluent predictions. Table 5.13 shows
a similar analysis on our continuation-style datasets. Both T5-based models achieve roughly the same fluency.

human evaluation Human evaluation was conducted on 70 examples, 35 from RWPFILLBLANK and
35 from RWPFILLEND, with examples about evenly distributed across length buckets. For RWPFILLBLANK

evaluation tasks, the rater was presented an input context and several possible sequences that could go in the
blank. They were asked to rate each sequence first, on how well it fit the text before it, and second, on how
well it fit with the text following it, according to a 5-point slider For RWPFILLBLANK, the task was almost the
same, except that the rater was presented only a left context and asked to rate how well it continued the prompt.
A screenshot of the Human Intelligence Task (HIT) used for annotations is shown in Figure 5.8. Workers
were paid originally paid $1.85 per HIT, but since the average HIT duration ended up being 15 minutes, we
awarded each rater a bonus to raise their pay to an average of $10 per hour. Each example was shown to three

14 Note, since this is the same model being used for generation for our continuation baseline, this metric may be biased.
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Figure 5.8: A screenshot of the question structure for human evaluation.

raters, and annotations were rejected if the rater gave a lower overall score to the random output than to the
ground-truth one. A total of 3 annotations were rejected. Overall, the Fleiss’ kappa agreement of pairs of
annotators giving the same numerical score to the same question was 0.26.
Figure 5.6 shows the results. On the FITB task, the pre-trained and finetuned T5 models were indistin-

guishable in terms of quality. The LLM that formed continuations prompted with only the left context did
somewhat better than the few-shot LLM, indicating that few-shot learning is not yet a feasible alternative to
finetuning. On the continuation task, the LLM has the highest rating, which is unsurprising since it is a much
larger model than T5. However, the finetuned T5 is rated almost as highly. Overall, these results suggest that
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Figure 5.9: For each of the FITB validation sets, a histogram of the distribution of sequence lengths (measured in
words) of the groundtruth blanked out text and the proposed infills from T5 after and before finetuning).
We see that pre-trained T5 tends to produce text that is shorter than the groundtruth.

T5, unlike the LLM, can be used effectively for continuation as well as FITB. Furthermore, if one doesn’t care
about controllability, T5 can be used effectively for both tasks without any finetuning.

benefits of controllability There are good reasons to care about controllability. For example,
length conditioning is extremely important for FITBmodels, since it is not possible to control the generation
length by simply sampling more or fewer tokens. Pre-trained T5 tends to produce infill proposals which are
shorter than the groundtruth (Figure A5.9), and there is no way to ask the model to produce longer generations.
In contrast, finetuned T5 was able to produce generations in the target length bucket over 74% of the time
(Table 5.14). Goal conditioning, while not strictly necessary for either either task, has been shown to be useful
for generative commonsense reasoning [91] and may empower users in downstream applications such as
AI-assisted creative writing [127]. Finetuned T5 is able to use all of the specified goal words over 79% of the
time.

finetuned models transfer across datasets Prior work on FITB tends to only evaluate
models trained on data from the same domain as the validation set. Our results show that despite training
exclusively on C4, T5 models have strong transferability to more targeted domains such as Reddit Writing
Prompts. This sort of transferability is extremely important for achieving the goal of having single models
which can handle many tasks and domains.
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5.2.4 Conclusion

In this section, we make the case for starting with a model capable of filling in the blank when attempting to
build a system that can perform both FITB and continuation. As LMs become bigger, it is unsustainable to
have separately trained models per task. For example, in Wordcraft, the creative writing tool described in
Chapter 5.3, over half a dozen operations are incorporated. It would be impossible to host a model for each.
Compared to the one-model-per-task paradigm, multi-task, domain-transferable models require less total

training and are more efficient to store and use at inference time. In this section, we showed how T5 is easily
capable of two tasks: continuation and infilling. While this is true even for the pre-trained T5, additional
finetuning in the multi-task setting is still beneficial, as it allows us to carefully tailor the model to the tasks
we need accomplished. We show how conditioning signals such as target length and goal text when added
during finetuning allow for increased controllability at inference-time.

5.3 wordcraft: an editor for ai-assisted writing

In all the human evaluations discussed so far in my thesis, we recruited annotators to evaluate text in artificial
settings. In Sections 3.2 and 3.3, university students were asked to label text as human-written or machine-
generated in user interfaces custom-tailored to collect these sorts of annotations. In Sections 5.2 and Section
5.1, novel natural language systems were evaluated by asking raters on Amazon Mechanical Turk to view
and score generated text. However, contrived annotation tasks like these give an incomplete picture as to
the progress of natural language generation. Notably, the annotators were never asked to use the NLG to
accomplish a task of interest; they were only asked to evaluate pre-generated outputs.

While contrived evaluation tasks have their place, it is also crucial to keep in mind why NLG systems are
being built and who their target audience might be. This is especially true in the area of AI-assisted creative
writing, where there is often a significant discrepancy between how novel tools are evaluated (Amazon



5.3 wordcraft: an editor for ai-assisted writing 145

Mechanical Turker workers paid per annotation) and how they are intended to be used in the real world
(writers seeking support or inspiration while performing their craft).

Wordcraft is an AI-augmented text processor which is intended as a real-world test bed for controllable
text generation paradigms in the domain of creative writing. Our goal in developing Wordcraft was to learn
how people interact with and want to interact with NLG systems–what tasks do they ask the NLG systems to
do, how well do the systems deliver, and how does this feed back into the works people ultimately create.
The user interface for Wordcraft consists of of a traditional text processor alongside a set of NLG-powered
controls that vary based on where the user’s cursor is and whether they have selected any text. The user also
has access to a chatbot they can talk about their story with.
In this section, I first describe the controls implemented in Wordcraft and the motivations for including

each of them. I then describe the ways in which Wordcraft offers the chance for a more realistic evaluation of
state-of-the-art language generation systems through user studies with both amateur and expert writers.

5.3.1 The Wordcraft Application

Wordcraft is a web application intended for story writing with NLG assistance. The interface consists of a
traditional text editor and a set of controls that prompt a large language model to perform various writing
tasks. For example, Figure ?? (left) shows Wordcraft performing text infilling by suggesting alternatives for a
selected passage of text, which the user can splice into their story. In Figure ?? (right), Wordcraft can be seen
suggesting continuations for the user’s story. Wordcraft also includes controls for rewriting or elaborating on
a selection of text. In addition to using these pre-built controls, users can also construct custom operations on
the fly.

Wordcraft uses few-shot in-context learning techniques [20] to support each of its generative controls. The
underlying neural language model backing all these interactions is LaMDA [149], which is described in detail
in Section 5.1.1. Because LaMDA was finetuned for dialog, we frame our prompts in terms of a conversation.
The remainder of this section enumerates the controls available in Wordcraft and gives an example few-shot
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Figure 5.10: (left) Custom prompting in the Wordcraft interface. The user makes a novel request of the AI agent via
a custom prompt (1), and the model attempts to fulfill the request (2). (right) Meta prompting in the
Wordcraft interface. The user asks for suggestions for requests they could make of the model (3), and
browses those suggestions (4).

prompt that supports each. In practice, the examples used in the few-shot prompt are randomly sampled
from a small pool of examples each time the user selects a control. Each control in Worcaft results in several
candidate generations being presented to the user. When a generation is selected by the user, it is inserted into
the text at the location of the user’s cursor.

Continuation

As described in Section 2.4, continuation is the default action of a left-to-right neural language model such as
LaMDA, achieved simply by prompting the LM with a text passage, and decoding a possible continuation. A
continuation generator is useful to writers who want text appended to the end of what they have written so far.
This control is available when the user’s cursor is at the end of the text passage.
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Initial Story Ideas

When the user has no text inputted, the user can specify the topic they want their story to be about and then
have Wordrcraft generate starting sentences. The intention of this control is to allow for ideation when the
page is blank. It is supported with the following few-shot prompt:
> Here’s a topic: {A space monkey needs to escape from his dying planet.} Tell me the start

of a new story.

> {It was a cold, dark night on an unknown planet. In a field, a male monkey was pacing

back and forth. He had been trying to figure something out, but nothing seemed to be

working. He didn’t have much time left.}

> Here’s a topic: {A medieval romance where a group of colorful knights do battle.} Tell me

the start of a new story.

> {The green knight rode atop his majestic, beautiful horse, across fields of pure green.

In his palm was a magical, sparkling golden sword.}

> Here’s a topic: {An old man with a magical box tries to solve a mystery as his memories

gradually fade away.} Tell me the start of a new story.

> {The old man decided that he should look inside the box, and in the box there was a key.

The old man couldn’t quite remember why he had a key, but he knew the key was important

.}

> Here’s a topic: {A coven of witches have taken up residence outside of a quiet mountain

town, but they’re not interested in witchcraft, they’re interested in making hip-hop.}

Tell me the start of a new story.

> {An evil looking tree was growing off in the distance with no leaves and long, pointy

branches. It was a sickly green and was swaying eerily without the wind.}

> Here’s a topic: {After an ancient sea-worn bottle washes up on the shores of Tripoli, a

group of rag-tag pirates open it up to find a map leading to a magical treasure.} Tell

me the start of a new story.

> {A group of pirates set out to sea in search of a magical treasure - a long, sparkling

blue necklace called the night’s eye.}
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> Here’s a topic: {<USER’S TOPIC>} Tell me the start of a new story.}

Fill in the blank

When the user has some text selected in the editor, they are able to see alternatives that fit into the place of
their selection. This is exactly the fill-in-the-blank task described in Section 5.2. Fill-in-the-blank is useful
to writers because it allows them to insert sentences within an existing paragraph as well as see alternative
phrasings for pieces they have already written. Though in Section 5.2 we showed that finetuned models
perform much better at this than few-shot prompting techniques, due to the computational complexities of
hosting multiple models, we ended up also supporting this operation with a few-shot learning prompt:
> {\"We have to leave now!\" Sarah shouted. ____ The only way out was up. We climbed flight

after flight. The sound of the monsters banging on the door below became more distant

but no less threatening.} Finish the following sentence by filling in the blank with a

phrase. {\"We have to leave now!\" Sarah shouted. }

> {\"Let’s get out of here!\"}

> Here’s a new story: {The sun was shining, and little gusts of wind brought through the

window ____ shocking contrast from the stale city smells she had grown used to.} Finish

the following sentence by filling in the blank with a phrase. {The sun was shining,

and little gusts of wind brought through the window ____ shocking contrast from the

stale city smells she had grown used to.}

> {the faint scent of huneysuckle. It was a}

> Here’s a new story: {I was minding my business at the park, when I was approached by a

little girl who was crying because she had lost ____ so of course I helped search.}

Finish the following sentence by filling in the blank with a phrase. {I was minding my

business at the park, when I was approached by a little girl who was crying because she

had lost ____ so of course I helped search.}

> {her new kitten.}

> Here’s a new story: {It was a cold night, and a storm was raging out at sea. A lightning

bolt lit up the sky, briefly illuminating the lighthouse ____ plummeted but just before
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reaching the churning water, he disappeared in a poof of purple flame!} Finish the

following sentence by filling in the blank with a phrase. {A lightning bolt lit up the

sky, briefly illuminating the lighthouse ____ plummeted but just before reaching the

churning water, he disappeared in a poof of purple flame!}

> {in a sharp silhouette.}

> Here’s a new story: {The magician pulled out of his pocket ____ and then a second one and

a third. He didn’t stop until soon the ground was covered with them.} Finish the

following sentence by filling in the blank with a phrase. {The magician pulled out of

his pocket ____ and then a second one and a third. }

> {a scarlet handkerchief }

> Here’s a new story: {<USER’S STORY>} Finish the following sentence by filling in the

blank with a phrase. {<USER’S SELECTED SENTENCE WITH BLANK AT POSITON OF CURSOR>}

Elaboration

When the user has some text selected, they can use the elaboration button to get the model to expand upon it.
This is especially useful for description generation. The elaboration operation is supported with the following
few-shot prompt:
> Here’s a new story: {The long shadow of the tree crept up the sidewalk} Describe the tree.

> {It was an old oak tree on the main street of a small town, the branches spread as large

as the sky.}

> Here’s a new story: {The car came bouncing down the hill and came to an abrupt stop in my

driveway} Describe the car.

> {It was an old, old Model-T Ford, with brass fittings, and no doors}

> Here’s a new story: {My pencil sits on top of the desk, left there since the events of

last Saturday} Describe last Saturday.
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> {It was one of those Saturdays that starts off like any other but you have the feeling

that something is about to stir. You wake up with the same amount of enthusiasm but you

get up from bed a little slower than usual. You know this is going to be a busy day}

> Here’s a new story: {She wasn’t really upset about what had happened at the lab the other

day; she was never one to dwell on mistakes.} Describe what had happened.

> {She had accidentally left the microorganisms alone for far too long. The lab, or what

was left of it, was now filled with a strong aroma of their slime-- they had devoured

all the metal, wood, and plastic they could find}

> Here’s a new story: {<USER’S STORY>} Describe \textbf{<USER’S SELECTED TEXT>}.

Style Transfer

Using the augmented zero-shot learning approach described in Section 5.1, we include a control that allows
users to perform rewriting operations on selected text. The operations are specified in natural language. The
following prompt is used.
> Here’s a new story: {An elderly man was sitting alone on a dark path. The darkness turned

to light as a figure ran up to him. ____ The older man recognized the young man as a

dear friend, who he hadn’t seen in some time. The young man said he had had the

strangest dream.} What sentence goes in the blank?

> {The figure was holding a sword.}

> Rewrite the sentence to use more descriptive language.

> {The shadowy figure held in his hand a shining sword that glimmered in the darkness.}

> Here’s a new story: {There once was a man named Kentucky, who could play the guitar like

nobody’s business.____Kentucky was a lonely man living in a lonely house in the middle

of nowhere with only his favorite guitar to keep him company. Now this guitar had been

owned by many-a-man, and all of them had come to the same fate. They played the guitar

until the guitar played them.} What sentence goes in the blank?

> {He loved to play the guitar so that he could hear the guitar sing along to him, to hear

the guitar’s melodic hum.}
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> Rewrite the sentence to be more melancholy.

> {He loved playing sad songs on his weathered guitar, so he could drown out his loneliness

with the guitar’s melodic hum.}

> Here’s a new story: {A small group of explorers landed in China, and were amazed by the

beautiful, sparkling buildings. They wondered how such a beautiful country could ever

be as scary as they had heard. It was at night, and the explorers were deep in the

heart of the forbidden city, their flashlights not strong enough to reach the bottom of

the narrow, dark hallways.____} What sentence goes in the blank?

> {Suddenly, a terrifying sound echoed through the halls.}

> Rewrite the sentence to use more interesting words.

> {Out of nowhere, a thunderous cacophony reverberated through the halls.}

> Here’s a new story: {An elderly man was sitting alone on a dark path. ____ It was a plain

pine box and looked as if it had been there for a long time. The man was afraid to

look inside the box.} What sentence goes in the blank?

> {The man looked down at his feet, and realized he was standing next to a box.}

> Rewrite the sentence to be more evocative.

> {The man nearly gasped as he peered down at his feet, suddenly realizing he was standing

next to a mysterious box.}

> Here’s a new story: {Once upon a time, there was a rabbit princess. The bunny lives in

the little cottage just outside of town. The story ends with her getting eaten by a fox.

____ The door hung at an angle off of its hinges.} What sentence goes in the blank?

> {<SELECTED TEXT>}

> Rewrite the sentence <REWRITING INSTRUCTION>.

Custom Prompting

In the custom prompting control, users have the ability to write any request to the system they want. For
example, they could ask "Give me an origin story for the ogre" or "Tell me what happens next." We use a
similar approach to style transfer, with a prompt demonstrating a variety of requests:
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Figure 5.11: Screenshot of Wordcraft with the custom prompting feature.
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> Here is some text: {next to the path} Rewrite it to be about France.

> {next to la Siene}

> Here’s a new story: {A young boy was sitting on the sidewalk.} What comes next?

> {He was holding a lantern and looking ahead up the road.}

> Here is some text: {The man stood outside the grocery store, ringing the bell.} Rewrite

it to be about clowns.

> {The man stood outside the circus, holding a bunch of balloons.}

> Here’s a new story: {My pencil sits on top of the desk, left there since the events of

last Saturday.} Describe last Saturday.

> {It was one of those Saturdays that starts off like any other but you have the feeling

that something is about to stir. You wake up with the same amount of enthusiasm but you

get up from bed a little slower than usual. You know this is going to be a busy day}

> Here’s a new story: {<USER’S STORY>} <CUSTOM PROMPT>

Suggested Prompts

Finally, we implemented a control that allows users to request suggestions for what to write about next. We
expected this feature to be useful for novice writers to overcome writer’s block. It uses the following prompt:
> Here’s a new story: {A long time ago, in the beginning of time, beautiful crystalline

frog people inhabited the earth. Their king, the crystal king, had mysteriously

disappeared on a trip to the sea.} What would you tell me about next?

> {Tell me more about the frog people.}

> Here’s a new story: {The green knight rode atop his majestic, beautiful horse, across

fields of pure green. In his palm was a magical, sparkling golden sword.} What would

you tell me about next?

> {Tell me what happened next.}

> Here’s a new story: {Ninja schools are where the ninjas are trained for their missions.

Some are trained in the forests and snowy mountains and others are given the ultimate

training in the hottest palace in the land.} What would you tell me about next?
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> {Tell me about the ninjas}

> Here’s a new story: {The witch doctor had a large pile of magic stones. All the magic

stones had a power - healing magic, shapeshifting, seeing into the past.} What would

you tell me about next?

> {Tell me what the witch doctor did with them.}

> Here’s a new story: {The desert sun beat down on the sand, and tiny bits of sand flew

with every step. The two young travelers trudged onward. They were tired, but they knew

they had to go forward.} What would you tell me about next?

> {Tell me more about the two travelers.}

> Here’s a new story: {A prince and princess from the future set out in search of the

mythical land of the unicorns. They had heard tale of magical unicorn dust that could

heal any wound.} What would you tell me about next?

> {Tell me what their journey was like.}

> Here’s a new story: {A giant monster was chasing after a woman and yelling at her to get

away. The woman ran, knowing that she was in horrible danger.} What would you tell me

about next?

> {Tell me why the monster was chasing her.}

> Here’s a new story: {<USER’S STORY>} What would you tell me about next?"

5.3.2 User Study with Novice Writers

To evaluate Wordcraft’s effectiveness, we conducted a user study in which 25 hobbyist writers (whom we
refer to as U1-U25) were asked to write stories with and without Wordcraft. The goal of this user study was
to understand which controls writers prefered using and whether the assistance provided by Wordcraft was
valuable to writers.

∙ directly compare Wordcraft against simpler systems
∙ learn what features worked well and what features were missing
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Figure 5.12: Writing habits survey results.

∙ fix any major bugs

Methodology

We recruited participants via advertisements on Google-internal mailing lists. We then screened for individuals
who practice creative writing on a regular basis, but who had not yet published their writing. Participants
volunteered for the study and were not compensated. Most of the participants (23 out of 25) did not consider
themselves to be machine learning practitioners and had not interacted with a generative language model
previously. We asked participants to complete a pre-study questionnaire about their writing habits (Figure
5.12). Then we carried out a within-subjects study, giving each user three writing prompts and asking them to
write 100-300 word stories under the following three experimental conditions (illustrated in Figure 5.13):

1. full the full Wordcraft tool.
2. cont (baseline) a text editor with a single control: LaMDA will propose continuations to the text

written so far. The cont condition enables us to evaluate Wordcraft against existing AI-assisted writing
applications which most often feature continuation as a single control.

3. chat (baseline) a plain text editor shown alongside a chat dialog window. Users can converse with the
LaMDA-powered chatbot, but the chatbot only “knows” what the user types to it. The chat condition
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Figure 5.13: Experimental conditions for the user study. The stories written by participants as part of the study can
be viewed here: https://storage.googleapis.com/wordcraft-stories/index.html. The website also includes
purely machine-generated baselines.

enables us to evaluate the utility of the prompt and UX scaffolding we designed for Wordcraft against
giving users straightforward access to the underlying model, without any scaffolding. An omniscient
user could theoretically reproduce the functionality of the full condition by replicating Wordcraft’s
prompts.

Participants were asked to write stories based on the following three prompts 15:
1. You arrive at Grandma’s funeral to find thousands of people from around the world also in mourning.

You are entirely unaware that Grandma had 16.4m followers on Twitter.
2. All of the ‘No. 1 Dad’ mugs in the world change to show the actual ranking of Dads suddenly.
3. You lost your sight - along with everyone else on Earth - in The Great Blinding. Two years later, without

warning, your sight returns. As you look around, you realize that every available wall, floor and surface
has been painted with the same message - Don’t Tell Them You Can See.

Participants were given ten minutes to write each story. We felt that ten minutes was enough time for users to
acquaint themselves with the interface and write 100-300 words, while managing users’ expectations for how
much time they would need to spend on the study in total. To control for writing ability and prompt difficulty,
for each user, the three conditions were randomly paired with the three prompts, and the user was asked to

15 Prompts were selected from the Writing Prompts subreddit.

https://storage.googleapis.com/wordcraft-stories/index.html
https://www.reddit.com/r/WritingPrompts/
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Table 5.15: Usage statistics.

Property chat Chat cont Continuation full Wordcraft Overall
Requests made avg 6.3 ±1.3 4.3 ±0.52 7.3 ±0.74 6.0 ±0.53
Accepted suggestions avg N/A 0.17 ±0.08 1.3 ±0.25 0.51 ±0.12
Story word count avg 233 ±18 237 ±16 267 ±21.6 247 ±11.1
Model word count avg (% of story) N/A 2.9 ±2 (1.3%) 42.3 ±14.2 (13.2%) 16.2 ±5.7 (5.2%)
Time considering suggestions avg N/A 67.1s ±8.7s 41s ±4.1s 44.5s ±3.2s
Time to complete avg 11m ±62.5s 11.52m ±131.5s 9.97m ±37.1s 10.8m ±48.6s

Table 5.16: Usage statistics broken down by request type (Wordcraft only).

Request type Requests made Suggestions accepted
Rewrite 27 5 (18.5%)
Story seed 22 12 (54.5%)
Suggest a prompt 40 2 (5%)
Fill-in-the-blank 4 0 (0%)
Continue 36 4 (11.1%)
Next sentence 7 1 (14.3%)
Elaborate 3 0 (0%)
Custom 51 9 (17.6%)

write a story for each setting. We also randomized the order in which the conditions were presented. Users
were not given any training for the various conditions“they were simply given a website link and asked to
write a story with the interface. Users were told that they were participating in a study of AI assisted writing,
but they were not explicitly asked to solicit help from the AI agent, as we were interested in learning how
often users would want to make use of AI-assisted controls.

Results

This section describes the overall successes and failures of the NLG-powered assistive writing features
incorporated into Wordcraft, before comparing Wordcraft to the baseline conditions in depth.
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Table 5.17: Rewrite requests (user completions of ‘Rewrite this...‘)

to be a little less angsty • to be about mining • to be better written • to be less diabolical • to be more absurd • to be
more adventurous • to be more Dickensian • to be more emotional • to be more magical • to be more melodramatic •
to be more philosophical • to be more revolutionary • to be more surprising • to be more suspenseful • to be more
technical • to be more whimsical • to be warmer • to fit better grammatically with the rest of the story • to make more
sense

Table 5.18: Custom prompts written by users.

Tell me more about her twitter account. • More about the dad please. • Tell me about Elaine’s amazing twitter account.
• Tell me about the father. • Tell me about the funeral home, grandma, the punk kid, and the crowd. • Tell me how
the man reacted as he found out he could see again. • Tell me more about Daniel. • Tell me more about what it’s like
to have to pretend to be blind when you can see. • Tell me what happens next. • Tell me what the letter says. • What
are the words on the floor? What language are they in? • What would happen if we could quantify love? • Why were
they watching me? • More about the dad please. • So this guy was tight with your grandma? • Tell me about Elaine’s
amazing twitter account. • Tell me about the father. • Tell me about the funeral! • Tell me about the funeral home,
grandma, the punk kid, and the crowd. • Tell me how the man reacted as he found out he could see again. • Tell me
more about Daniel. • Tell me more about what it’s like to have to pretend to be blind when you can see. • Tell me what
happens next. • Tell me what the letter says. • What are the words on the floor? What language are they in? • What
would happen if we could quantify love? • Who is telling me not to tell them? • Why were they watching me?

5.3.3 The role of AI in co-writing

We observed that users solicited help from the AI agent at every stage of the writing process–from high-level
story concepting down to rewriting and editing. Thus, we found that the AI agent played many different roles
in collaborative writing.

Users asked the AI agent for help in story ideation and brainstorming. For example, nine users at one point
presented the AI agent with their story and asked simply: ‘What happens next?’. Another user solicited help
developing the premise for their story: ‘What would happen if we could quantify love?’.
Another typical use case for soliciting help from the AI was when just starting a story. The story seed

control, in which the AI agent provides opening sentences for a story given a writing prompt, had the highest
success rate of any control: 55% (Table 5.16) of suggestions were accepted by users. In these cases, the AI
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served to kick-start the writing process for users who might have been blocked. Users also found the AI agent
helpful for generating smaller scale details for their story, such as names for characters and locations.
Many users remarked on the usefulness of the AI agent’s suggestions, even if they didn’t end up using

them verbatim: ‘Multiple suggestions around the highlight or next phrasing were very helpful, even if I didn’t

use the whole phrase ... it was like having someone suggest things that I might have thought of myself’ (U9).
Another user commented: ‘It was good at generating a bunch of relevant ideas that inspire my next lines and

get me unstuck. I was never tempted to use any of the lines verbatim, but it was fun inspiration’ (U4). Some
also noted the AI agent’s tendency to provide offbeat suggestions as a strength: ‘the off the wall suggestions

were fun to play around with and helped shape how the story took form’ (U5).
We also observed users having ideas for events before knowing how they fit into an existing story - and in

such cases asking the AI agent to fill in gaps. For example, users would build a scene and then ask the AI
agent to provide plot points that would contextualize the scene. One user in their story described a character
being watched, and then asked the AI agent ‘Why were they watching me?’. Many of the custom prompts
(Table 5.18) we collected fall under this use case. These included prompts such as ‘Tell me what the letter
says.’ and ‘Tell me about the funeral home, grandma, the punk kid, and the crowd.’.
We also observed users asking the AI agent for help in smaller scale edits, for example: ‘Rewrite this

sentence to fit better grammatically with the rest of the story’, or ‘Rewrite this sentence to make more sense.’

Many of the requests in Table 5.17 fall under this category.

Shortcomings of AI in co-writing

The user study revealedmany shortcoming in AI co-writing. Users’ observations of the AI agent’s shortcomings
mostly center on its lack of contextual awareness. For example, though the assistant might provide several
fluent, well-written alternatives to a sentence as part of the rewrite control, its suggestions do not necessarily
make sense given the rest of the story. One user whose story mentioned numbers moving on a coffee mug
received suggestions from the AI agent which implied that ‘live animals (snakes specifically) were moving’.
Users also noted many grammatical issues, for example that the AI agent’s suggestions were often not in the
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same tense as the rest of the story. Some also noted that the AI did not seem aware of their story’s established
point of view (first person versus third person).

Wordcraft versus baseline 1: continuation-only

In this section we compare Wordcraft to the continuation-only baseline (cont). This baseline allows us to
measure the utility of Wordcraft’s prompting methods and UX patterns for the story writing task against the
typical experience of continue-my-text seen in existing LLM-powered writing tools. We analyzed the activity
logs from each user’s writing session, and extract quantitative findings based on the following metrics (results
in Table 5.15):

∙ Requests made avg: On average, how many times the user requested assistance from the AI while writing
a story.

∙ Accepted suggestions avg: On average, how many of the AI’s suggestions the user accepted.
∙ Time considering suggestions avg: The average time users spent between soliciting help from the AI,
and accepting a suggestion or dismissing the suggestions.

∙ Model word count avg: The average number of words in the final story that came directly from the AI
agent.

∙ Time to complete avg: The average time spent to produce the final story.

Participants made significantly more requests of the AI agent using Wordcraft (7.31 ±0.74) than the
continuation-only baseline (4.35 ±0.52) according to a paired-sample T-test (p = 0.003). Participants also
accepted significantly (p = 0.0003) more of the AI’s suggestions using Wordcraft (1.27 ±0.25 vs 0.17 ±0.079).
Accordingly, the stories written with Wordcraft contained significantly (p = 0.0068) more text from the AI
agent (13.2% ±3.8%) than stories written with continuation-only (1.3% ±0.92%).
ubsectionUsers found Wordcraft more helpful. The results from the Likert-scale questions in the exit

interviews are in Figure 5.14. According to a Mann-Whitney U test, users found Wordcraft significantly more
helpful than the continuation-only baseline (p = 0.0266).
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Figure 5.14: Exit interview results. 1: Strongly disagree, 2: Disagree, 3: Neutral, 4: Agree, 5: Strongly agree.

Figure 5.15: Results from exit interview question ‘Which controls did you enjoy using?’
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We found that participants enjoyed using controls aside from continuation. We note in Figure 5.15 that
more than half of the responses to the question ‘Which controls did you enjoy using’ indicate controls other
than ‘generate text’ (aka continuation). ‘Use your own prompt’ was the most used control and the second
most highly voted control, suggesting users enjoyed having the ability to design their own prompts. Table
5.16 lists the number of times each control was used and accepted in Wordcraft, further demonstrating that
participants found utility in a variety of controls other than continuation.

Wordcraft versus baseline 2: chat

In this section we compare Wordcraft to the chat baseline. This again allows us to measure the importance
of Wordcraft’s prompting methods and UX patterns, but also to observe how writers might make use of
a powerful open-domain LLM-powered chatbot in their creative process. As the two conditions present
significantly different user experiences, many of the metrics from the previous section are not applicable. Thus
we also analyze the chat transcripts and free-response exit interview questions to extract qualitative themes.

According to a Mann-Whitney U test, users found Wordcraft significantly more helpful than the chat
baseline (p = 0.0134), and also found it to be significantly more collaborative (p = 0.00668). Nevertheless,
we observed high user engagement with the chatbot assistant - on average users sent 6.3 ±1.3 messages
to the chatbot (Table 5.15). One user remarked: The AI agent asked good probing questions that gave me

inspiration (U22). Many talked to the chatbot the way a writer might discuss a project with a friend, asking
for suggestions about overall direction as well as story details. For example (U1):

user: How should I start a story about being blind?
AI agent: It’s a unique perspective, so focus on description. What can you hear, smell, taste, and
touch? These should all be used in your story.

Another user (U4) asked about specific plot elements and character details:

user: what is grandma famous for on twitter?
AI agent: She is known on Twitter for her love for cooking with the great recipe ideas she shares
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and her love for gardening and giving advice for what you can grow in yours.
user: what cake recipe is grandma famous for
AI agent: She is known for her classic Victoria sponge cake recipe. Her recipe has over 5,000 likes
which makes it one of her most popular.
user: what is grandma’s twitter handle
AI agent: Her twitter handle is @mylovelygrandma where she regularly tweets her cooking tips
and photos of her bountiful garden.

Finally, participants found the chatbot to be effective at retrieving information. Some treated the chatbot as
a search box, asking questions such as: how many people are fathers around the world. In the exit interview,
one user commented about the chatbot: ”I loved that it felt like a more targeted version of Google, and I could
do background research while writing” (U21).

5.3.4 User Study with Expert Writers

For the Wordcraft Writers Workshop, we commissioned 12 published writers from diverse stylistic back-
grounds, ranging from poetry to fantasy, to craft stories using Wordcraft. The writers were instructed to work
on pieces of about 1,500 words. They were also asked to keep informal journals of their observations during
the process. Finally, we conducted entrance and exit interviews with each writer before the workshop started
and after they had finished with their stories.
{TODO: Finish inserting this section. }
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5.4 conclusion

In this chapter, I have presented two ways–natural language-specified style transfer and fill-in-the-blank–that
language models can be applied to more specific tasks that simply continuing a prompt. I then incorporated
these tasks into Wordcraft, a tool for human-AI collaboration for creative writing. User studies with Wordcraft
revealed both the strengths and challenges of incorporating NLG into the creative writing process and
suggested several avenues for future research. These include {TODO: }.

5.5 summary of contributions

The work on models for doing both fill-in-the-blank and continuation generation tasks was published as “The
Case for a Single Model that can Both Generate Continuations and Fill in the Blank” in the 2022 Findings
of the North American Association of Computational Linguistics [66]. The work was performed with my
collaborators Daphne Ippolito, Liam Dugan, Emily Reif, Ann Yuan, Andy Coenen, and Chris Callison-Burch.
I led this project, designed and ran all experiments, and performed most of the analysis.
The work on style transfer was published as “A Recipe For Arbitrary Text Style Transfer with Large

Language Models ” in the 2022 Proceedings of the Association of Computational Linguistics [123]. The
project was completed with my collaborators Emily Reif, Ann Yuan, Andy Coenen, Chris Callison-Burch,
and Jason Wei. I worked with Emily Reif to come up with the premise for the project: of formulating style
transfer as an arbitrary rewriting operation. I helped to design the experiments and contributed significantly
to analysis of the results.

The Wordcraft tool was built jointly with Ann Yuan, Andy Coenen, and Emily Reif. Ann Yuan led the user
study with amateur writers, and I led the user study with professional writers. I contributed significantly to
the design and implementation the LM-powered controls in Wordcraft, and I contributed to the user interface
design.



6 C O N C L U S I O N

This thesis focuses on (1) analyzing neural language models to better understand the text they are able to
generate, and (2) studying the feasibility of applying large language models to tasks that could benefit from
human-AI writing collaboration.

Over the course of my PhD, the field of language generation with neural language models has progressed
from character-level LSTMs with tens of millions of learned weights that are only capable of generating
passages such as “An ICBM, the [[gurt and land]] has registered $155 billion in U.S. and August 1688, and
makes sure the US-transplantation disbanded backwards in the County by authorizing disputes that tend to
carry over this peninsula” [55] to non-recurrent networks with hundreds of billions of learned weights that are
capable of outputting text even skilled humans can have trouble distinguishing as machine-generated. Despite
these advancements, even state-of-the-art language models tend to generate text that fails in both subtle and
unpredictable ways. They also struggle to understand context which should influence their generations, and
they fall short on supporting the kinds of fine-grained controllability that are crucial for meaningful human-AI
collaboration. However, the future of the field is promising; {TODO: say something positive}.

I conclude by summarizing the main takeaways from my research and the future work suggested by them.

Detection of generated text is getting harder but no less important.

Chapter 3, I present the challenge of detecting machine-generated text. As neural language models get better,
it is becoming only more challenging for humans to notice they are interacting with a bot. Indeed, in a recent
controversy, a YouTuber inundated 4chan with GPT-Neo generated text 16. While some users eventually

16 https://youtu.be/efPrtcLdcdM
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caught on, many continued to be fooled even after the YouTuber revealed the scheme. In computer vision [128,
121], it is standard to watermark generated images, but thus far, this has not been applied to large language
model outputs. The increasing pervasiveness of generated text on the internet is problematic not just because
of its potential societal impacts but because it sullies our future training sets. In machine translation, it is a
well-known problem that automatically translated text could corrupt training sets, and some watermarking
techniques have been proposed [155]. This is a problem that those who build large neural language models
(and their training sets) need to start concerning themselves with as as well. My research on automatic
detection was performed in 2018 on 768M parameter models. It would be very valuable to reconsider the
automatic detection problem on state-of-the-art generation systems and in more realistic contexts (such as on
documents where only a portion of the text may be generated).

Text generation involves tradeoffs.

In Chapters 2 and 3, I describe how there exists a tradeoff between generating diverse text that is easier for
humans to detect because it contains obvious errors–and generating mundane text that is harder to detect,
but lacks the lexical diversity of a real human writer. This tradeoff continues to be important, both for
academic research–because we need to ensure that comparisons between different NLG systems are fair–and
for practitioners–because the setting chosen can have a significant impact on user experience. For example,
Wordcraft users complained that the text was in too dull a style, a problem that might have been resolved very
simply by increasing the sampling temperature. Further research is needed into techniques for sampling from
the long tail of low-likelihood words without causing semantic errors.

Memorization is a serious concern but can be hard to define.

In Chapter 4, I focus on the memorization problem; language models are capable of regurgitating text from
their train sets. Memorization is most often caused by examples being over-represented in the training data,
but in recent work [176], we show that language models also memorize rare sequences. (We show this by
measuring counterfactual memorization–how much more likely an example is according to models that saw
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it during training compared to models that never saw the example.) More detailed studies of what kinds
of content are more susceptible to memorization and the training dynamics behind memorization will be
important subjects of future work.
In the research discussed in this thesis, I have considered all instances of memorization as problematic.

While memorization is often a sign of poor generalization, and at its worst, it can divulge private information,
memorization can also be a good thing (e.g., we might want our language model to be able to accurately quote
famous speeches). It will be important to develop more advanced techniques for controlling memorization,
allowing models to quote verbatim when there is a good reason to.

More attention needs to be paid to dataset quality.

Chapter 4 shows that duplicate text in language model training data is a crucial source of memorization.
However, duplication is only one of many traits that can influence how well models pre-trained on a large
dataset perform on a variety of tasks of interest. Research answering questions on the effect of pre-training
dataset composition–including how stringent toxicity filters should be, what languages to include, and the
balancing of different sources (news, Wikipedia, books, etc.)–could have important ramifications for how
new datasets are built and how trained models are used. It will be impossible to recommend a single set
of data composition rules that will be optimal for all downstream tasks (for example, filtering out all hate
speech will result in a model that is less likely to generate hate speech but is also less useful as part of a hate
speech detection system), but at least further research should allow us to answer questions about the tradeoffs
involved in different dataset composition decisions.

Supporting many tasks from fewer models is valuable.

As neural language models increase in number of parameters, it is becoming increasingly infeasible to create
one custom-tailored model per task that needs to be supported. In Chapter 5, I show how a single pre-trained
language model can be made to support a large variety of style transfer tasks that previous work would have
typically trained several separate models for. I also argue that we should be pre-training large language models
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for a fill-in-the-blank-style objective, rather than a continuation one, because filling in the blank is a strictly
more versatile task. There has been a significant focus in recent work on developing training objectives to
support a variety of downstream tasks with minimal additional task-specific adaption [162, 131]. However,
these approaches require a substantial amount of annotated training data, and self-supervised pre-training
objectives which yield multi-task-capable models is an important subject for future research.

Evaluation of NLG systems should happen in real-world settings.

In Chapter 5, I present Wordcraft, a text editor with NLG-powered writing assistance intended for creative
writers. Through user studies with both novice and professional writers, we explore the strengths and weak-
nesses of state-of-the-art natural language generation. Studies of NLG use by real users can lead to different
and more nuanced conclusions than those from more contrived human evaluation schemes. For example, when
evaluating the use of augmented zero shot learning for style transfer with Amazon Mechanical Turk-based
evaluation, we saw that annotators preferred our approach’s generations over other approaches. However, use
of this feature within Wordcraft revealed just how much of gap there still is between the types of transfers
writers want to do and the capability of our approach.

Fiction writing is only one domain where NLG-powered tools could be impactful, and it would be valuable
to see the types of studies I ran with Wordcraft be conducted in other domains. In particular, NLG has many
possible uses in tools that assist people in learning how to write (both children and new-language learners). It
could also have impact in domains that require writers to produce a lot of text quickly, such as script writing
for immersive video games.
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