
Local Type Inference

BENJAMIN C. PIERCE

University of Pennsylvania

and

DAVID N. TURNER

An Teallach, Ltd.

We study two partial type inference methods for a language combining subtyping and impredica-
tive polymorphism. Both methods are local in the sense that missing annotations are recovered
using only information from adjacent nodes in the syntax tree, without long-distance constraints
such as unification variables. One method infers type arguments in polymorphic applications using
a local constraint solver. The other infers annotations on bound variables in function abstractions
by propagating type constraints downward from enclosing application nodes. We motivate our
design choices by a statistical analysis of the uses of type inference in a sizable body of existing
ML code.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory

General Terms: Languages, Theory

Additional Key Words and Phrases: Polymorphism, subtyping, type inference

1. INTRODUCTION

Most statically typed programming languages offer some form of type inference,
allowing programmers to omit type annotations that can be recovered from context.
Such a facility can eliminate a great deal of needless verbosity, making programs
easier both to read and to write. Unfortunately, type inference technology has
not kept pace with developments in type systems. In particular, the combination
of subtyping and parametric polymorphism has been intensively studied for more
than a decade in calculi such as System F≤ [Cardelli and Wegner 1985; Curien and
Ghelli 1992; Cardelli et al. 1994], but these features have not yet been satisfactorily

This is a revised and extended version of a paper presented at the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 1998. Most of the paper was
written while Turner was visiting Indiana University in Summer ’97. Pierce was supported by In-
diana University and the University of Pennsylvania, and by NSF grant CCR-9701826, Principled
Foundations for Programming with Objects.
Authors’ addresses: B.C. Pierce, Department of Computer and Information Science, Univ. of
Pennsylvania, 200 South 33rd Street, Philadelphia, PA 19104-6389; email bcpierce@cis.upenn.edu;
D.N. Turner, An Teallach, Ltd., Technology Transfer Center, King’s Buildings, Edinburgh, EH9
3JL, UK; email dnt@cruach.freeserve.co.uk.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2000 ACM 0164-0925/00/0100-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000, Pages 1–44.

2 · B. C. Pierce and D. N. Turner

integrated with practical type inference methods. Part of the reason for this gap
is that most work on type inference for this class of languages has concentrated
on the difficult problem of developing complete methods, which are guaranteed to
infer types, whenever possible, for entirely unannotated programs. In this article,
we pursue a much simpler alternative, refining the idea of partial type inference with
the additional simplifying principle that missing annotations should be recovered
using only types propagated locally, from adjacent nodes in the syntax tree.

Our goal is to develop simple, well-behaved type inference techniques for new
language designs in the style of Quest [Cardelli 1991], Pizza [Odersky and Wadler
1997], GJ [Bracha et al. 1998] or ML2000—designs supporting both object-oriented
programming idioms and the characteristic coding styles of languages such as ML
and Haskell. In particular, we shall use the shorthand ML-style programming to
refer to a style in which (1) the use of higher-order functions and anonymous ab-
stractions is encouraged; (2) polymorphic definitions are used freely and at a fairly
fine grain (for individual function definitions rather than whole modules); and (3)
“pure” data structures are used instead of mutable state, whenever possible. Our
goal might then be restated as “type inference for ML-style programming in the
presence of subtyping.”

In particular, we are concerned with languages whose type-theoretic core com-
bines subtyping and impredicative polymorphism in the style of System F [Girard
1972; Reynolds 1974]. This combination of features places us in the realm of partial
type inference methods, since complete type inference for impredicative polymor-
phism alone is already known to be undecidable [Wells 1994], and the addition of
subtyping does not seem to make the problem any easier. (For the combination of
subtyping with Hindley/Milner-style polymorphic type inference, promising results
have been reported [Aiken and Wimmers 1993; Eifrig et al. 1995; Jagannathan
and Wright 1995; Trifonov and Smith 1996; Sulzmann et al. 1997; Flanagan and
Felleisen 1997; Pottier 1997], but practical checkers based on these results have yet
to see widespread use.)

1.1 How Much Inference Is Enough?

The job of a partial type inference algorithm should be to eliminate especially those
type annotations that are both common and silly—i.e., those that can be neither
justified on the basis of their value as checked documentation nor ignored because
they are rare.

Unfortunately, each of the characteristic features of ML-style (polymorphic in-
stantiation, anonymous function abstractions, and pure data structures) does give
rise to a certain number of silly annotations that would not be required if the same
program were expressed in a first-order, imperative style. To get a rough idea of the
actual numbers, we made some simple measurements of a sizable body of existing
code—about 160,000 lines of ML, written by several different programming teams.
The results of these measurements can be summarized as follows (they are reported
in detail in Appendix A):

—Polymorphic instantiation (i.e., type application) is ubiquitous, occurring in every
third line of code, on average.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 3

—Anonymous function definitions occur anywhere from once per 10 lines to once
per 100 lines of code, depending on style.

—The manipulation of pure data structures leads to many local variable bindings
(occurring, on average, once every 12 lines). However, in all but one of the
programs we measured, local definitions of functions only occur once in 66 lines.

These observations give a fairly clear indication of the properties that a type in-
ference scheme should have in order to support the ML programming style conve-
niently:

(1) To make fine-grained polymorphism tolerable, type arguments in applications
of polymorphic functions must usually be inferred. However, it is acceptable
to require annotations on the bound variables of top-level function definitions
(since these usually provide useful documentation) and local function definitions
(since these are relatively rare).

(2) To make higher-order programming convenient, it is helpful, though not ab-
solutely necessary, to infer the types of parameters to anonymous function
definitions.

(3) To support the manipulation of pure data structures, local bindings should not
usually require explicit annotations.

Note that, even though we have motivated our design choices by an analysis of ML
programming styles, it is not our intention to provide the same degree of type in-
ference as is possible in languages based on Hindley-Milner polymorphism. Rather,
we want to exchange complete type inference for simpler methods that work well
in the presence of more powerful type-theoretic features such as subtyping and
impredicative polymorphism.

1.2 Local Type Inference

In this article, we propose two specific partial type inference techniques that, to-
gether, satisfy all three of the requirements listed above.

(1) An algorithm for local synthesis of type arguments that infers the “locally best
possible” values for types omitted from polymorphic applications whenever such
best values exist. The expected and actual types of the term arguments are
compared to yield a set of subtyping constraints on the missing type arguments;
their values are then selected so as to satisfy these constraints while making
the result type of the whole application as informative (small) as possible.

(2) Bidirectional propagation of type information allows the types of parameters
of anonymous functions to be inferred. When an anonymous function appears
as an argument to another function, the expected domain type is used as the
expected type for the anonymous abstraction, allowing the type annotations
on its parameters to be omitted. A similar, but even simpler, technique infers
type annotations on local variable bindings.

Both of these methods are local, in the sense that type information is propagated
only between adjacent nodes in the syntax tree. Indeed, their simplicity—and, in
the case of type argument synthesis, its completeness relative to a simple declarative
specification—rests on this property.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

4 · B. C. Pierce and D. N. Turner

The basic idea of bidirectional checking is well known as folklore. Similar ideas
have been used, for example, in ML compilers and typecheckers based on attribute
grammars. However, this technique has usually been combined with ML-style type
inference (see, for example, Aditya and Nikhil [1991]); it is surprisingly powerful
when used by itself as a local type inference method. Specific technical contributions
of this article are the formalization of bidirectional checking in a setting with both
subtyping and impredicative polymorphism and the combination of this idea with
the technique for local synthesis of type arguments presented in the previous section.

The remainder of the article is organized as follows. In the next section, we de-
fine a fully typed internal language. Sections 3, 4, and 5 develop the techniques of
local synthesis of type arguments and bidirectional checking in detail, first for (in
Sections 3 and 4) a simplified language with subtyping and unbounded universal
polymorphism, then (in Section 5) extending this treatment to bounded quanti-
fiers. Section 6 sketches some possible extensions. Section 7 surveys related work.
Section 8 offers evaluation and concluding remarks. Details of our measurements
of ML programs appear in an appendix.

Some additional experiments with using local type inference in practice are re-
ported in Hosoya and Pierce [1999].

2. INTERNAL LANGUAGE

When discussing type inference, it is useful to think of a statically typed language
in three parts:

(1) Syntax, typing rules, and semantics for a fully typed internal language.
(2) An external language in which some type annotations are made optional or

omitted entirely. This is the language that the programmer actually uses. (In
some programming languages, the internal and external language may differ
in more than just type annotations, and type inference may perform nontrivial
transformations on program structure. For example, under certain assumptions
ML’s generic let-definition mechanism can be viewed in this way.)

(3) Some specification of a type inference relation between the external language
and the internal one. (The terms type inference, type reconstruction, and type
synthesis have all been used for this relation. We choose “inference” as the
most generic.)

In explicitly typed languages, the external and internal forms are essentially the
same, and the type reconstruction relation is the identity. In implicitly typed
languages, the external language allows all type annotations to be omitted, and
type reconstruction promises to fill in all missing type information. On the other
hand, we can describe a language as partially typed if the internal and external
forms are not the same, but the specification of type inference does not guarantee
that omitted annotations can always be inferred.1

1Another possible sense of the phrase partial type inference occurs when the specification of

type reconstruction is only partially implementable: the language definition promises to infer
more than the compiler can actually do. We reject this definition, since it underspecifies the
type inference algorithm, allowing different compilers to use different heuristics and leading to
unportable programs.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 5

Our internal language—the target for the type inference methods described in
Sections 3 and 4—is based on the language Kernel F≤, Cardelli and Wegner’s
core calculus of subtyping and impredicative polymorphism. We consider first a
simplified fragment of the full system, in which variables are all unbounded (i.e.,
all quantifiers are of the form All(X)T, not All(X<:S)T). The treatment here
will be extended to deal with bounded quantifiers in Section 5, but the simple
language presented first is enough to show all of the essential ideas and the technical
development is easier to follow.

2.1 Syntax

Besides the restriction to unbounded quantifiers, we modify the usual definition of
System F≤ [Cardelli and Wegner 1985] in two significant ways. First, we add a
minimal type Bot. As we shall see in Section 3, our type inference algorithm keeps
track of various type constraints by calculating the least upper bound and greatest
lower bound of pairs of types. The Bot type plays a crucial role in these calculations,
since without it we could not guarantee that least upper bounds and greatest lower
bounds always exist. (Bot is also an interesting typing feature in its own right:
for example, it can be used as the result type of non-returning expressions such as
exception-raising primitives.2)

Second, we extend abstraction and application so that several arguments (in-
cluding both types and terms) may be passed at the same time. In other words,
we favor a “fully uncurried” style of function definition and application (though
currying is, of course, still available). This bias does not change the expressiveness
of the language, but will play an important role in our scheme for inferring type
arguments in Section 3.

The syntax of types, terms, and typing contexts in the internal language is as
follows:

T ::= X type variable
Top maximal type
Bot minimal type
All(X)T→T function type

e ::= x variable
fun[X](x:T)e abstraction
e[T](e) application

Γ ::= • empty context
Γ, x:T variable binding
Γ, X type variable binding

We use the metavariables R, S, T, U, and V to range over types; e and f range over
terms. We use the notation X to denote the sequence X1,...,Xn, and similarly x:T
to denote x1:T1,...,xn:Tn. We write Γ(x) for the type of x in Γ.

2It is worth noting that, even without such primitives, Bot changes the set of typeable
terms of the language. For example, the untyped term fun(x) x (x+1) can be typed as
fun(x:Bot) x (x+1).

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

6 · B. C. Pierce and D. N. Turner

We write S→T as an abbreviation for the monomorphic function type All()S→T.
Similarly, we write fun(x:T)e as an abbreviation for the monomorphic function
fun[](x:T)e.

Types, terms, and judgments that differ only in the names of bound variables
are regarded as identical. Binders in contexts are assumed to have distinct names.
The rules for scoping of bound variables are as usual (in All(X)S→T, the variables
X are in scope in S and T). FV(T), the set of type variables free in T, is defined in
the usual way. We write [T/X]S for the simultaneous sustitution of T for X in S.

2.2 Subtyping

Our subtyping relation is quite simple because of the restriction to unbounded
quantification. In particular, the addition of the bottom type Bot in this context is
straightforward. We write S <: T to mean “|S| = |T| and Si <: Ti for all 1 ≤ i ≤ |S|.”

X <: X (S-Refl)

T <: Top (S-Top)

Bot <: T (S-Bot)

T <: R S <: U

All(X)R→S <: All(X)T→U
(S-Fun)

For simplicity, we use an algorithmic presentation of subtyping, in which the rules
of transitivity and general reflexivity are omitted and recovered as properties of the
definition:

Lemma 2.2.1 (Transitivity). If S <: T and T <: U then S <: U.

Proof. A simple induction on the derivations of S <: T and T <: U. The cases
involving Top and Bot rely on the fact that R <: Bot implies R = Bot, and Top <: R
implies R = Top.

Lemma 2.2.2 (Reflexivity). T <: T, for all T.

Proof. A simple induction on the structure of T.

We use the notation S ∨ T to denote the least upper bound of S and T, and S ∧ T
for the greatest lower bound of S and T.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 7

S ∨ T =

T if S <: T
S if T <: S
All(X)M→J if S = All(X)V→P

T = All(X)W→Q
V ∧ W = M
P ∨ Q = J

Top otherwise

S ∧ T =

S if S <: T
T if T <: S
All(X)J→M if S = All(X)V→P

T = All(X)W→Q
V ∨ W = J
P ∧ Q = M

Bot otherwise

Note that ∧ and ∨ are total functions: for every Γ, S, and T, there are unique types
M and J such that S ∧ T = M and S ∨ T = J. It is easy to check that these definitions
have the appropriate universal properties:

Lemma 2.2.3.

(1) S <: (S ∨ T) and T <: (S ∨ T).
(2) (S ∧ T) <: S and (S ∧ T) <: T.

Proof. We prove both parts simultaneously, using induction on the structure
of S and T.

Lemma 2.2.4.

(1) If S <: U and T <: U then (S ∨ T) <: U.
(2) If U <: S and U <: T then U <: (S ∧ T).

Proof. We prove both parts simultaneously, using induction on the structure
of U.

2.3 Explicit Typing Rules

The typing relation Γ ` e ∈ T is essentially the standard one, except that, as in
the definition of subtyping, we use an algorithmic presentation, omitting the usual
rule of subsumption (“if e ∈ S and S <: T, then e ∈ T”); instead, the rules below
calculate for each typable term a unique type (sometimes called the manifest type
of the term), corresponding to its minimal type in the system with subsumption.
Note that this stylistic choice does not change the set of typable terms—just the
number of typing derivations showing that a given term is typable.

The typing rule for variables is standard.

Γ ` x ∈ Γ(x) (Var)

The rule for (multi-)abstractions combines the usual rules for term and type ab-
stractions.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

8 · B. C. Pierce and D. N. Turner

Γ, X, x:S ` e ∈ T

Γ ` fun[X](x:S)e ∈ All(X)S→T
(Abs)

Similarly, the rule for applications combines the usual application and polymorphic
application rules. We calculate the type of the function and check that the provided
term and type arguments are consistent with the function type. The result type
of the application is found by substituting the actual type arguments into the
function’s result type.

Γ ` f ∈ All(X)S→R Γ ` e <: [T/X]S
Γ ` f[T](e) ∈ [T/X]R

(App)

Γ ` e <: [T/X]S here is an abbreviation for “Γ ` e <: U and U <: [T/X]S.”
To finish the definition of the typing relation, another rule is required. To see why,

note that Bot <: All(X)S→T for any X, S, and T. This means that any expression
of type Bot should be applicable to any set of well-formed type and expression
arguments (if we did not allow for this behavior, we would lose the type soundness
property):

Γ ` f ∈ Bot Γ ` e ∈ S

Γ ` f[T](e) ∈ Bot
(App-Bot)

Note that the above rule gives the expression f[T](e) the type Bot, the most
informative result type for the expression.

Theorem 2.3.1 (Uniqueness of Manifest Types). If Γ ` e ∈ S and Γ `
e ∈ T, then S = T.

The definitions of operational and denotational semantics for the internal lan-
guage are standard, as are proofs of properties such as subject reduction and ab-
sence of runtime errors. Evaluation order may be chosen either call-by-name or
call-by-value; function spaces may be interpreted as either total or partial. The
only slightly unusual case is the type Bot, which can be interpreted as an empty
type (in a total-function semantics) or a type containing only divergent terms (in
a partial function semantics).

3. LOCAL TYPE ARGUMENT SYNTHESIS

In the introduction, we identified three categories of type annotations that are worth
inferring automatically: type arguments in applications of polymorphic functions,
annotations on bound variables in anonymous function abstractions, and annota-
tions on local variable bindings. In this section, we address the first of these, leaving
the second and third for Section 4.

Our measurements of ML programs (presented in the appendix) showed that
type arguments to polymorphic functions are inferred by the ML typechecker on at
least one line in every three, in typical programs. Moreover, explicit type arguments
rarely have any useful documentation value. We therefore believe that it is essential
to have some form of type argument synthesis in any language intended to support
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 9

ML-style programming. For example, consider the polymorphic identity function
id with type All(X)X→X. Our goal is to allow the programmer to apply the
id function without explicitly supplying any type arguments: id(3) rather than
id[Int](3).

When considering the general problem of type argument synthesis, the first ques-
tion we have to answer is: How do we decide where type arguments have been
omitted (and therefore need to be synthesized)? In the variant of F≤ we presented
in Section 2, the answer is simple: we look for application nodes where the function
is polymorphic but there are no explicit type arguments. For example, the fact that
id is polymorphic makes it clear that a type argument is missing in the application
id(3). (An alternative approach is to require an explicit marker at each point
where a type argument is missing. We did not pursue this scheme, since mark-
ing all the positions where a type argument is required can be quite cumbersome.
However, some of the partial type inference schemes proposed by Pfenning [1988a]
have used this scheme, with additional refinements which allow the type argument
markers themselves to be elided.)

The second problem we have to address is the fact that, in general, there may be
a number of different type arguments that we can pick for a particular application.
For example, both id[Int](x) and id[Real](x) are valid completions of the term
id(x), where x ∈ Int and Int is a subtype of Real. Fortunately, there is usually
a good way to choose between all the alternatives: we pick the type arguments
that yield the best (smallest) type for the result. In the case of id(x), we choose
id[Int](x), since this has result type Int, which is more informative type than
the result type Real of id[Real](x).

Sadly, there are cases where there is no best result type. Suppose, for example,
that f has type All(X)()→(X→X) (a function which takes a single type argument
X and returns a function from X to X). Two possible completions of the term f()
are f[Int]() and f[Real](), which have result types Int→Int and Real→Real.
These two result types are incomparable in the subtyping relation, so there is no
“best” result type available. In this case type argument synthesis will fail, since it
is not possible to locally determine the missing type arguments for f (in Section 4
we show how propagating additional contextual information sometimes allows us
to avoid this situation).

3.1 Specification

The syntax of the external language is identical to that of the internal language,
since external-language applications can already be written without type arguments
(using our convention that zero-length lists of type arguments can be omitted en-
tirely). All we need to do is to define a four-place type inference relation:

Γ ` e ∈ T⇒ e′

Intuitively, this relation can be read “In context Γ, type annotations can be added
to the external language term e to yield the internal language term e′, which has
type T.”

The specification of the type inference relation is quite simple. For each typing
rule in the internal language with conclusion Γ ` e′ ∈ T, the type inference relation
contains an analogous rule with conclusion Γ ` e ∈ T ⇒ e′, where e′ is derived in

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

10 · B. C. Pierce and D. N. Turner

the obvious way from the fully typed subexpressions yielded by subderivations. To
these rules is added one additional rule, handling the case where type arguments
are omitted:

Γ ` f ∈ All(X)T→R⇒ f′

Γ ` e ∈ S⇒ e′ |X| > 0 S <: [U/X]T
∀V. (S <: [V/X]T implies [U/X]R <: [V/X]R)

Γ ` f(e) ∈ [U/X]R⇒ f′[U](e′)
(App-InfSpec)

The condition |X| > 0 says that type argument synthesis is only required in the case
where the function f is polymorphic but there are no explicit type arguments. (For
simplicity, we do not synthesize type arguments in the case where an application
node provides some, but not all, of its required type arguments explicitly. This
would be easy to do, but does not seem very useful.)

The type arguments U that we pick in the conclusion of our synthesis rule must
satisfy a number of conditions. Firstly, the types of the value parameters S must be
subtypes of the function’s parameter types [U/X]T. Secondly, the arguments U must
be chosen in such a way that any other choice of arguments V satisfying the previous
condition will yield a less informative result type, i.e., a supertype of [U/X]R.

To state the formal properties of this technique, we need to relate terms in the
internal language to terms in the external language. We say that a term e is a
partial erasure of e′ if e can be obtained from e′ by erasing some type annotations
(i.e., deleting type arguments from one or more applications).

Theorem 3.1.1 (Soundness). If Γ ` e ∈ T⇒ e′, then e is a partial erasure of
e′ and Γ ` e′ ∈ T.

Proof. Straightforward from the definition.

Since we are dealing with a partial type inference technique, we cannot expect a
completeness property at this point. However, the type inference relation is “locally
complete” in the sense that its specification guarantees that it will find the best
values for missing type arguments in a single application, whenever these exist.3

It should be emphasized that the App-InfSpec rule (together with the rest of
the rules for the typing relation of the internal language), constitutes a complete
specification of the type inference relation: it is all that a programmer needs to
understand in order to use the language. Only the compiler writer needs to go
further into the development in the rest of the section, whose job is to show how
the rule we have given can be implemented.

3.2 Variable Elimination

In the constraint generation algorithm that we present in the next section, it will
sometimes be necessary to eliminate all occurrences of a certain set of variables
from a given type by promoting (or demoting) the type until we reach a supertype
(or subtype) in which these variables do not occur. Formally, we write S ⇑V T for

3When we extend the system to include bounded type quantification in Section 5, this straight-
forward completeness property will be weakened a little, since we do not presently know how to
infer type arguments for multiple quantifiers with interdependent bounds.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 11

the relation “T is the least supertype of S such that FV(T) ∩ V = ∅” and S ⇓V T
for the dual relation “T is the greatest subtype of S such that FV(T) ∩ V = ∅.”
Fortunately, such types can always be found. For example, suppose V = {X}; then
(X,Int)→X ⇑V (Bot,Int)→Top.

The variable-elimination-by-promotion relation can be computed as follows:

Top ⇑V Top (VU-Top)

Bot ⇑V Bot (VU-Bot)

X ∈ V
X ⇑V Top

(VU-Var-1)

X /∈ V
X ⇑V X

(VU-Var-2)

S ⇓V U T ⇑V R X /∈ V
All(X)S→T ⇑V All(X)U→R

(VU-Fun)

The relation S ⇓V T is defined analogously:

Top ⇓V Top (VD-Top)

Bot ⇓V Bot (VD-Bot)

X ∈ V
X ⇓V Bot

(VD-Var-1)

X /∈ V
X ⇓V X

(VD-Var-2)

S ⇑V U T ⇓V R X /∈ V
All(X)S→T ⇓V All(X)U→R

(VD-Fun)

It is easy to check that ⇑V and ⇓V are total functions, for any given set V . (These
functions are similar to the ones used in Ghelli and Pierce [1998], but somewhat
simpler because of the presence of Bot in our type system.)

Lemma 3.2.1 (Soundness).

(1) If S ⇑V T then FV(T) ∩ V = ∅ and S <: T.
(2) If S ⇓V T then FV(T) ∩ V = ∅ and T <: S.

Proof. A simple simultaneous induction on the variable-elimination deriva-
tions.

Lemma 3.2.2 (Completeness).

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

12 · B. C. Pierce and D. N. Turner

(1) If S <: T and FV(T) ∩ V = ∅, then S ⇑V R with R <: T.
(2) If T <: S and FV(T) ∩ V = ∅, then S ⇓V R with T <: R.

Proof. A simple simultaneous induction on the subtype derivations, using the
fact that, for all R, X <: R implies R = X or R = Top, and R <: X implies R = Bot or
R = X.

3.3 Constraint Generation

Next, we introduce the constraint sets that will be manipulated by our algorithm.
Each constraint has the form Si <: Xi <: Ti, recording a lower and upper bound for
Xi. An X/V -constraint set C has the form

{Si <: Xi <: Ti | (FV(Si) ∪ FV(Ti)) ∩ (V ∪ X) = ∅}.

The empty X/V -constraint set, written ∅, contains the trivial constraint Bot <: Xi <:
Top for each variable Xi. The singleton X/V -constraint set {S <: Xi <: T} includes
the constraint S <: Xi <: T for Xi and trivial constraints for every other Xj . The
meet of two X/V -constraints C and D, written C ∧ D, is defined as follows:

{S ∨ U <: Xi <: T ∧ V | S <: Xi <: T ∈ C and U <: Xi <: V ∈ D}

We write
∧
C to abbreviate C1 ∧ . . . ∧ Cn.

Our constraint generation rules have the form

V `X S <: T⇒ C

and define a partial function that, given a set of type variables V , a set of unknowns
X, and two types S and T, calculates the minimal (i.e., least constraining) X/V -
constraint set C that guarantees S <: T.

The set V allows us to avoid generating nonsensical constraint sets in which bound
variables are mentioned outside their scopes (this part of the constraint generation
problem is similar to mixed-prefix unification [Miller 1992]). For example, if we are
interested in constraining X so that All(Y)()→(Y→Y) is a subtype of All(Y)()→X,
we should not return the constraint set {Y→Y <: X <: Top}, since Y would be out
of scope. Instead, we should return the constraint set {Bot→Top <: X <: Top},
which is in fact the weakest constraint on X guaranteeing that All(Y)()→(Y→Y)
is a subtype of All(Y)()→X.

Our constraint generation algorithm is defined by the following collection of rules,
where we always suppose that X ∩ V = ∅.

V `X T <: Top⇒ ∅ (CG-Top)

V `X Bot <: T⇒ ∅ (CG-Bot)

Y ∈ X S ⇓V T FV(S) ∩ X = ∅
V `X Y <: S⇒ {Bot <: Y <: T}

(CG-Upper)

Y ∈ X S ⇑V T FV(S) ∩ X = ∅
V `X S <: Y⇒ {T <: Y <: Top}

(CG-Lower)

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 13

Y /∈ X

V `X Y <: Y⇒ ∅
(CG-Refl)

V ∪ {Y} `X T <: R⇒ C V ∪ {Y} `X S <: U⇒ D
Y ∩ (V ∪ X) = ∅

V `X All(Y)R→S <: All(Y)T→U⇒ (
∧
C)∧D

(CG-Fun)

Note that the C returned by the above algorithm is always an X/V -constraint set.
Also, if V `X S <: T ⇒ C and the variables X do not appear in S or T, then the
constraint set C is always the empty constraint. The constraint generator in this
case is effectively just the subtyping relation.

When we “call” the constraint generator in a statement of the form V `X S <:
T⇒ C, it will always be the case that only one of S and T mentions the variables X
(i.e., either FV(S)∩ X = ∅ or FV(T)∩ X = ∅). This is crucial to the completeness of
our constraint-solving method, since it ensures we only have to solve a matching-
modulo-subtyping problem rather than a unification-modulo-subtyping problem.

3.4 Soundness and Completeness of Constraint Generation

Each constraint set returned by the constraint generator characterizes a collection
of substitutions associating concrete types with the names of the missing type
parameters. An X/V -substitution σ is a finite map from type variables to types
whose domain is X with FV(σXi) ∩ V = ∅ for all Xi. We write σ[Xi 7→ T] for the
substitution that behaves like σ everywhere except at Xi, where its value is T.

Suppose σ is an X/V -substitution and X∩V = ∅. We say that σ satisfies an X/V -
constraint set C, written σ ∈ C, if Si <: σ(Xi) <: Ti for each (Si <: Xi <: Ti) ∈ C.4

A constraint set is satisfiable if there is some substitution that satisfies it. Note
that this condition can be checked very easily, by verifying that Si <: Ti for each
(Si <: Xi <: Ti) ∈ C.

If C and D are two X/V -constraint sets such that σ ∈ C implies σ ∈ D for all
σ, we say that C is more demanding than D. Note that the meet of constraint
sets defined previously yields a greatest lower bound in this ordering and that the
empty constraint set is maximal (i.e., least demanding).

Proposition 3.4.1 (Soundness). If V `X S <: T ⇒ C and σ ∈ C, then σS <:
σT.

Proof. By induction on the derivation of V `X S <: T⇒ C.
Case CG-Top: V `X S <: Top⇒ ∅. Immediate, since σTop = Top and σS <: Top

for all σS.
Case CG-Bot: V `X Bot <: T⇒ ∅. Similar: since σBot = Bot and Bot <: σT for

all σT.
Case CG-Upper: V `X Y <: T ⇒ {Bot <: Y <: R}, where Y ∈ X, T ⇓V R, and

FV(T) ∩ X = ∅. Since σ ∈ C we have σY <: R. Using Lemma 3.2.1 we have R <: T.
Since FV(T) ∩ X = ∅ we have that σT = T and σY <: σT as required.

4An alternative, somewhat more standard, definition would be “σ ∈ C iff σSi <: σ(Xi) <: σTi for
each (Si <: Xi <: Ti) ∈ C.” We prefer our formulation, since it emphasizes the fact that the Xs
do not occur at all in the upper or lower bounds.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

14 · B. C. Pierce and D. N. Turner

Case CG-Lower: V `X S <: Y ⇒ {R <: Y <: Top}, where Y ∈ X, S ⇑V R, and
FV(S) ∩ X = ∅ . Since σ ∈ C we have R <: σY. Using Lemma 3.2.1 we have S <: R.
Since FV(S) ∩ X = ∅ we have that σS = S and σS <: σY as required.

Case CG-Refl: V `X Y <: Y⇒ ∅, where Y /∈ X . Since Y /∈ X we have that σY = Y
and the result follows immediately, since Y <: Y by S-Refl.

Case CG-Fun: V `X All(Y)R→S <: All(Y)T→U ⇒ (
∧
C) ∧ D and V ∪ {Y} `X

T <: R ⇒ C and V ∪ {Y} `X S <: U ⇒ D, with Y ∩ V = ∅ and Y ∩ X = ∅ . If we
pick fresh Z such that Z ∩ (V ∪ X) = ∅, it is easy to check that V ∪ {Z} `X [Z/Y]T <:
[Z/Y]R ⇒ C and V ∪ {Z} `X [Z/Y]S <: [Z/Y]U ⇒ D. Now, since σ is a valid X/(V ∪
{Z})-substitution, we can use the induction hypothesis to prove that σ[Z/Y]T <:
σ[Z/Y]R and σ[Z/Y]S <: σ[Z/Y]U. Using the subtyping rule for function types, we
have All(Z)σ[Z/Y]R→[Z/Y]S <: All(Z)σ[Z/Y]T→σ[Z/Y]U. The result now follows,
since All(Z)σ[Z/Y]R→σ[Z/Y]S = σ(All(Y)R→S) and All(Z)σ[Z/Y]T→σ[Z/Y]U =
σ(All(Y)T→U).

Proposition 3.4.2 (Completeness). Let σ be an X/V -substitution with X ∩
V = ∅, and let S and T be types such that either FV(S) ∩ X = ∅ or FV(T) ∩ X = ∅.
If σS <: σT, then V `X S <: T⇒ C for some C such that σ ∈ C.

Proof. By induction on the structure of S and T.
Case: S = Y where Y ∈ X. We have V `X Y <: T⇒ {Bot <: Y <: R} where T ⇓V R.

Now, since σ is an X/V -substitution, we know that FV(σY) ∩ V = ∅, and therefore,
using Lemma 3.2.2, we have σY <: R. This ensures that σ ∈ {Bot <: Y <: R} as
required.

Case: T = Y where Y ∈ X. We have V `X S <: Y⇒ {R <: Y <: Top} where S ⇑V R.
Now, since σ is an X/V -substitution, we know that FV(σY) ∩ V = ∅, and therefore,
using Lemma 3.2.2, we have R <: σY. This ensures that σ ∈ {R <: Y <: Top}, as
required.

Case: T = Top. Immediate, since V `X S <: Top⇒ ∅ and σ ∈ ∅.
Case: S = Bot. Immediate, since V `X Bot <: T⇒ ∅ and σ ∈ ∅.
Case: S = Y and T = Y where Y /∈ X. Immediate, since V `X Y <: Y ⇒ ∅ and

σ ∈ ∅.
Case: S = All(Y)R→R and T = All(Y)U→U. Since we identify type expressions

up to alpha-conversion, we can pick Y such that Y∩ V = ∅, Y∩ X = ∅, and FV(σ) ∩
Y = ∅. Thus, σ is a valid X/(V ∪ {Y})-substitution and σS = All(Y)σR→σR and
σT = All(Y)σU→σU. Now, since σS <: σT, it must be the case that σU <: σR
and σR <: σU. Using the induction hypothesis, V ∪ {Y} `X U <: R ⇒ C and
σ ∈ C. Similarly, V ∪ {Y} `X R <: U ⇒ D and σ ∈ D. So, by CG-Fun, we have
V `X All(Y)R→R <: All(Y)U→U ⇒ (

∧
C)∧D. Finally, by the fact that (

∧
C)∧D

is a greatest lower bound, we have σ ∈ (
∧
C)∧D, as required.

3.5 Calculating Type Arguments

Having generated a set of constraints for the missing type parameters X, the final
job of the local constraint solver is to choose values for X that make the type of the
whole application as informative as possible. Depending on where the variables X
occur in R, this may involve choosing the smallest possible values for some variables
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 15

and the largest for others. For example, if R is X→Y and we have generated the
constraint set {S <: X <: T, U <: Y <: V}, then the smallest possible value for R is
found by taking the substitution [X 7→ T, Y 7→ U], which maximizes X and minimizes
Y.

It may also be the case that no substitution for the variables yields a minimal
result type; for example, if R is X→X and we have the constraint set {Int <: X <:
Top}, then both Int→Int and Top→Top are solutions, but neither is a subtype
of the other. Local type argument synthesis fails in this case (as required by the
specification in Section 3.1).

We begin by formalizing the ways in which maximizing or minimizing X affects
the final result type.

(1) We say that R is constant in X when [S/X]R <: [T/X]R for every S and T.
(2) We say that R is covariant in X when Γ ` [S/X]R <: [T/X]R iff Γ ` S <: T.
(3) We say that R is contravariant in X when Γ ` [T/X]R <: [S/X]R iff Γ ` S <: T.
(4) We say that R is invariant in X when Γ ` [S/X]R <: [T/X]R iff S = T.

It is easy to check whether R is constant, covariant, contravariant, or invariant in
a given variable X by examining where X occurs in R (to the right or left of arrows,
etc.).

We can now show how to choose values for the variables X that will minimize R
(or else determine that this is not possible). Let C be a satisfiable X/V -constraint
set. The minimal substitution σCR can be defined as follows:

For each (S <: Xi <: T) ∈ C:
if R is constant or covariant in Xi
then σCR(Xi) = S

else if R is contravariant in Xi
then σCR(Xi) = T

else if R is invariant in Xi and S = T
then σCR(Xi) = S

else σCR is undefined.

It remains to verify that the substitution σCR chosen in this way is indeed the
best possible. Let C be an X/V -constraint set, and let σ be a X/V -substitution.
We say that σ is minimal for C and R if σ ∈ C and, for all X/V -substitutions σ′

with σ′ ∈ C, we have σR <: σ′R.

Proposition 3.5.1.

(1) If the substitution σCR exists, then it is minimal for C and R.
(2) If σCR is undefined, then C and R have no minimal substitution.

Proof.

(1) Suppose σCR exists and that σ′ is another substitution with σ′ ∈ C. We must
show that σCRR <: σ′R.
Let n = |X|. We can construct a sequence of substitutions σ0, . . . , σn as follows:

σ0 = σCR

σi = σi−1[Xi 7→ σ′(Xi)] if i ≥ 1.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

16 · B. C. Pierce and D. N. Turner

Note that σn = σ′. We now argue that σi−1R <: σiR for each i ≥ 1. Let
S <: Xi <: T be the constraint associated with Xi in C.
—If R is constant or covariant in Xi, then, by definition, σi−1(Xi) = σCR(Xi) = S,

and thus σi−1(Xi) <: σi(Xi). But this implies that σi−1R <: σiR, by the
definition of covariance.

—Similarly, if R is contravariant in Xi, then σi−1(Xi) = σCR(Xi) = T, and thus
σi(Xi) <: σi−1(Xi), which implies that σi−1R <: σiR, by the definition of
contravariance.

—If R is invariant in Xi, then σi−1(Xi) = σCR(Xi) = S, and we also know that
S = T. But since S <: σi(Xi) <: T, we have σi(Xi) = S, which, by the definition
of invariance (σi−1R = σiR), yields σi−1R <: σiR.

We have thus shown that σCRR = σ0R <: σ1R <: · · · <: σnR = σ′R, and the
desired result follows by transitivity of subtyping.

(2) If σCR is undefined, then either C is unsatisfiable (in which case the result holds
trivially), or else C is satisfiable, and we must show that no substitution that
satisfies it is minimal. So suppose, for a contradiction, that σ is minimal for
C and R. Since σCR is undefined, there is some Xi such that R is invariant in
Xi but (S <: Xi <: T) ∈ C where S 6= T. Now, since σ ∈ C, we have that
S <: σ(Xi) <: T. Therefore, either the substitution σ′ = σ[Xi 7→ S] or the
substitution σ′ = σ[Xi 7→ T] has the following properties: σ′ ∈ C and, by the
definition of invariance, σR 6<: σ′R. This contradicts our assumption that σ is
minimal for C and R.

Corollary 3.5.2. The algorithmic rule

Γ ` f ∈ All(X)T→R Γ ` e ∈ S |X| > 0
∅ `X S <: T⇒ D C =

∧
D σ = σCR

Γ ` f(e) ∈ σR⇒ f[σX](e)
(App-InfAlg)

is equivalent to the declarative rule given in Section 3.1.

4. BIDIRECTIONAL CHECKING

Our second type inference technique deals with the other kinds of undesirable type
annotations identified in the introduction: annotations on bound variables in anony-
mous function abstractions and annotations on local variable bindings. We intro-
duce a straightforward refinement of the internal language typing relation in which
the typechecker operates two distinct modes: synthesis mode, where typing in-
formation is propagated upward from subexpressions, and checking mode, where
information is propagated downward from enclosing expressions. Synthesis mode
corresponds to the original typing rules of the internal language and is used when
we do not know anything about the expected type of an expression (for top-level
phrases,5 function parts of application nodes, etc.). Checking mode is used when
the surrounding context determines the type of the expression and we only need to
check that it does have that type.

5In languages where modules have explicitly declared interfaces, it is possible that even top-level
phrases could be processed in checking mode.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 17

In an application node, the type of the function being applied determines the
expected types of all the arguments. Suppose f has type (Int→Int)→Int, and
consider the application f(fun(x:Int)x). Because we know the type of f, we also
know that the argument fun(x:Int)x must have type Int→Int, which determines
the type annotation on the bound variable x—the type Int is the most specific (with
respect to the subtype relation) that can validly be given to x. We therefore allow
the annotation to be omitted, writing the whole application as f(fun(x)x). During
typechecking, f’s type is synthesized (by looking it up in the context), and then
fun(x)x is processed in checking mode, with expected type Int→Int. (Note that
we do not attempt to infer type abstractions automatically. A scheme for adding
type binders as necessary in checking contexts would be a plausible extension to
what we propose, but this seems less useful than inferring type annotations on
ordinary abstractions. Also, employing such a scheme would mean that the binding
sites of type variables would not always be lexically apparent.)

4.1 External Language Syntax

The external language for the system with bidirectional checking is identical to the
one in the previous section, except that we allow an additional form of abstraction
in which all value type annotations are omitted:

fun[X](x)e bare abstraction

Note that we do not allow the type variable binders [X] to be inferred. Also, for
simplicity, abstractions have either full annotations or none (we could go further and
allow some annotations to be included and others omitted on the same abstraction).

4.2 Type Inference

The bidirectional checking algorithm is formalized by splitting the type inference
relation Γ ` e ∈ T⇒ e′ into two separate forms:

Γ ` e
→
∈ T⇒ e′ synthesis

Γ ` e
←
∈ T⇒ e′ checking

The first form is read in the same way as the type inference relation in Section 3.1:
“In context Γ, type annotations can be added to the external language term e to
yield the internal language term e′, which has type T.” The second can be read “In
context Γ, type annotations can be added to e to yield e′, which has a type smaller
than T.”

In the rules that follow, we elide the “⇒ e′” part of both judgments, since it is
always obvious how to calculate e′. The rules themselves are mostly straightforward
refinements of the typing rules for the internal language: the only real subtlety lies
in determining when it is possible to switch from synthesis to checking mode. Each
of the original typing rules is split into separate cases for synthesis and checking
modes. For example, the synthesis rule for variables is identical to the rule in the
internal language,

Γ ` x
→
∈ Γ(x) (S-Var)

while the checking rule must perform an additional subtype check:
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

18 · B. C. Pierce and D. N. Turner

Γ ` Γ(x) <: T

Γ ` x
←
∈ T

(C-Var)

The synthesis rule for fully annotated abstractions is again identical to the internal
language: we add the (explicitly given) annotations to the context and proceed in
synthesis mode.

Γ, X, x:S ` e
→
∈ T

Γ ` fun[X](x:S)e
→
∈ All(X)S→T

(S-Abs)

There is no synthesis rule for unannotated function abstractions, since we cannot
determine the missing type annotations from the local type information available.
However, in a checking context, we can determine the appropriate annotations:

Γ, X, x:S ` e
←
∈ T

Γ ` fun[X](x)e
←
∈ All(X)S→T

(C-Abs-Inf)

If we encounter a fully annotated abstraction in a checking context, we check that
the provided annotations are consistent with the type we are checking against:

Γ, X ` T <: S Γ, X, x:S ` e
←
∈ R

Γ ` fun[X](x:S)e
←
∈ All(X)T→R

(C-Abs)

The synthesis and checking rules for application nodes are again nearly identical:
we synthesize the type of the function and then switch to checking mode for the
arguments:

Γ ` f
→
∈ All(X)S→R Γ ` e

←
∈ [T/X]S

Γ ` f[T](e)
→
∈ [T/X]R

(S-App)

In checking mode, we perform a final check that the actual result type is a subtype
of the expected type.

Γ ` f
→
∈ All(X)S→R

Γ ` [T/X]R <: U Γ ` e
←
∈ [T/X]S

Γ ` f[T](e)
←
∈ U

(C-App)

To combine bidirectional checking and type argument synthesis, we also need
synthesis and checking versions of the “bare application” rule from Section 3.1.

Γ ` f
→
∈ All(X)T→R

Γ ` e
→
∈ S |X| > 0 Γ ` S <: [U/X]T

∀V. (Γ ` S<:[V/X]T implies Γ ` [U/X]R<:[V/X]R)

Γ ` f(e)
→
∈ [U/X]R

(S-App-InfSpec)

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 19

Γ ` f
→
∈ All(X)T→R Γ ` e

→
∈ S

|X| > 0 Γ ` S <: [U/X]T Γ ` [U/X]R <: V

Γ ` f(e)
←
∈ V

(C-App-InfSpec)

Note that the checking version of this rule is significantly more permissive than the
synthesis version, since it allows any type arguments U which satisfy the appropriate
constraints: there is no need to try to minimize the result type. This means that
the checking rule will perform significantly better on polymorphic function types
such as All(X)()→(X→X), where the result type mentions a polymorphic variable
in both positive and negative positions.

The expected type Top does not give any useful information in a checking context:
when it appears, we simply revert to synthesis mode:

Γ ` e
→
∈ T

Γ ` e
←
∈ Top

(C-Top)

Finally, we need checking and synthesis rules corresponding to the typing rule for
Bot:

Γ ` f
→
∈ Bot Γ ` e

→
∈ S

Γ ` f[T](e)
→
∈ Bot

(S-App-Bot)

Γ ` f
→
∈ Bot Γ ` e

→
∈ S

Γ ` f[T](e)
←
∈ R

(C-App-Bot)

It is worth remarking that application expressions involving both type argument
synthesis and anonymous function arguments (specifically, anonymous function ar-
guments that are not thunks) are not handled well by our type inference rules,
since we force the argument expressions to be synthesized. Fortunately, our mea-
surements of ML code in Appendix A show that application expressions of this
form only occur about once every 100 lines of code.

4.3 Local Variable Bindings

The above rules for typechecking function application embody a simple heuris-
tic: synthesize the type of the function, and then use the resulting information to
switch to checking mode for the argument expressions. This heuristic works well
in contexts where the head of an application expression is a variable or another
application expression, both of whose types can easily be synthesized.

One important case where our heuristic fails is in the encoding of let-expressions.
The expression let x = e in b is normally encoded as (fun(x)b) e, which fails
to typecheck, since the type of the function fun(x)b cannot be synthesized. A
better approach would be to synthesize the type of e first, and then use that to
determine the type of x. We could include a second typing rule for application ex-
pressions to do exactly this, synthesizing the argument expression types and then

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

20 · B. C. Pierce and D. N. Turner

switching to checking mode for the function expression. However, this would intro-
duce some nondeterminism in the typing of expressions and require backtracking
in the typechecker implementation. A simpler solution would be to include let-
expressions in the internal language, add the typechecking rules below, and leave
the heuristic for typechecking application expressions unchanged.

Γ ` e
→
∈ S Γ, x:S ` b

→
∈ T

Γ ` let x = e in b
→
∈ T

(S-Let)

Γ ` e
→
∈ S Γ, x:S ` b

←
∈ T

Γ ` let x = e in b
←
∈ T

(C-Let)

4.4 Soundness and Completeness

Appropriate refinements of the soundness and partial completeness theorems of
Section 3.1 can be shown to hold when bidirectional checking is added.

Theorem 4.4.1 (Soundness).

(1) If Γ ` e
→
∈ T⇒ e′, then e is a partial erasure of e′ and Γ ` e′ ∈ T.

(2) If Γ ` e
←
∈ T⇒ e′, then e is a partial erasure of e′ and Γ ` e′ <: T.

Proof. By induction on derivations.

Theorem 4.4.2 (Partial Completeness). If Γ ` e ∈ T (i.e., e is fully typed),
then

(1) Γ ` e
→
∈ T⇒ e

(2) Γ ` T <: U implies Γ ` e
←
∈ U⇒ e.

Proof. By induction on derivations.

(We might expect that the following stronger version of Theorem 4.4.2(2) would
also hold:

If Γ ` e
←
∈ T and Γ ` T <: U, then Γ ` e

←
∈ U.

Unfortunately, this is not the case. For example, the checking rule for fun does not
apply if the type constraint is Top.)

4.5 Calculating Type Arguments

The algorithmic version of the S-App-InfSpec rule is similar to the algorithmic rule
App-InfAlg, which we presented in Section 3.5. The algorithmic version of the C-
App-InfSpec rule is different, however, since we do not need to choose a substitution
σ which minimizes the result type of the expression:

Γ ` f
→
∈ All(X)T→R Γ ` e

→
∈ S |X| > 0

∅ `X S <: T⇒ C ∅ `X R <: V⇒ D σ ∈
∧
C ∧ D

Γ ` f(e)
←
∈ V⇒ f[σX](e)

(C-App-InfAlg)

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 21

That is, we calculate the set of constraints generated by the arguments just as in
Section 3.5, and add in the constraints generated by comparing the result type R
with the expected type V. If the combined constraints are satisfiable (i.e., if Si <: Ti
for each (Si <: Xi <: Ti) ∈

∧
C ∧ D), then we succeed; otherwise we fail.

5. LOCAL TYPE ARGUMENT SYNTHESIS WITH BOUNDED QUANTIFICATION

We now describe an optional extension to the local type argument synthesis tech-
nique described in Section 3 to include an internal language where bounded quan-
tification is allowed (specifically, we treat Cardelli and Wegner’s Kernel F≤—or
“Kernel Fun” [Cardelli and Wegner 1985]—extended with Bot). All the properties
presented above continue to hold for the extended system (including the combina-
tion with the bidirectional propagation technique described in Section 4), but the
algorithms involved in generating constraint sets become somewhat more subtle,
due principally to some surprising interactions between bounded quantifiers and
the Bot type [Pierce 1997]. The treatment of Bot is not just “dual to Top,” since
bounds in F≤ are asymmetric: we have upper bounds for variables (such as X<:T)
but no lower bounds (such as T<:X). In particular, the intuitive property that “a
type variable has no subtypes except itself and Bot” fails to hold; for example, if
the context contains X<:Bot, then we have X <: Y for any variable Y.

There is one caveat: we make some restrictions on the kinds of polymorphic
functions we automatically infer type arguments for. In particular, we have so far
been unable to deal with interdependent bounds: we do not know of a complete
algorithm which can synthesize, for example, the type arguments for a function of
type All(X<:Top,Y<:X)S→T. Rather than introduce a potentially unimplementable
rule in the specification of type inference, we explicitly disallow this case in our
specification: the user must always write explicit type arguments on applications
of such functions. It appears that this restriction could be relaxed if a more clever
constraint solver were employed, but we do not see how to remove it completely.

5.1 Bounded Quantification

For our full explicitly typed internal language, we use Cardelli and Wegner’s Kernel
F≤ calculus [Cardelli and Wegner 1985] of subtyping and impredicative polymor-
phism, enriched with Bot. We only give definitions here; the metatheory of the
system has been developed in detail elsewhere [Pierce 1997].

T ::= X type variable
Top maximal type
Bot minimal type
All(X<:T)T→T function type

e ::= x variable
fun[X<:T](x:T)e abstraction
e[T](e) application

Γ ::= • empty context
Γ, x:T variable binding
Γ, X<:T type variable binding
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

22 · B. C. Pierce and D. N. Turner

The only difference from the internal language defined in Section 2 is the addition
of bounds to the quantifiers.

Γ ` X <: Γ(X) (S-Bound)

The rule for comparing function types in the subtyping relation is refined as follows:

Γ, X<:B ` T <: R Γ, X<:B ` S <: U

Γ ` All(X<:B)R→S <: All(X<:B)T→U
(S-Fun)

Note that we use the original “Kernel” rule for comparing quantifiers [Cardelli
and Wegner 1985], in which the upper bounds B in the subtyping rule for poly-
morphic functions are required to be identical, rather than the more powerful but
less tractable variant of Curien and Ghelli [Curien and Ghelli 1992; Cardelli et al.
1994].6 The principal reason for this restriction is that it allows us to define meets
and joins of all pairs of types, which may fail to exist in “Full F≤” [Ghelli 1990].

It is also important to note that some of the usual properties of presentations of
Kernel F≤ without Bot do not hold here. For instance, Γ ` S <: T and Γ ` T <: S do
not imply S = T (consider, for example, X<:Bot ` X <: Bot and X<:Bot ` Bot <: X).
This fact is the result of the interaction between bounded quantification and Bot,
and it substantially complicates the proofs of the properties in the remainder of
this section. See Pierce [1997].

We write Γ ` S ↑ T for the operation which calculates a least non-variable super-
type T of a type S by repeated promotion of variables:

S is not a variable
Γ ` S ↑ S

Γ ` Γ(X) ↑ T
Γ ` X ↑ T

We write Γ ` S ∧ T = M for “M is the meet of S and T in context Γ” and
Γ ` S ∨ T = J for “J is the join of S and T in Γ.” The definitions of these relations
can be found in Pierce [1997, Section 3.3].

The rules for (multi-)abstractions and applications straightforwardly refine the
original ones to deal with bounds:

Γ, X<:B, x:S ` e ∈ T

Γ ` fun[X<:B](x:S)e ∈ All(X<:B)S→T
(T-Abs)

Γ ` f ∈ F Γ ` F ↑ All(X<:B)S→R
Γ ` Ti <: [T1/X1 . . .Ti−1/Xi−1]Bi Γ ` e ∈ U <: [T/X]S

Γ ` f[T](e) ∈ [T/X]R
(T-App)

6A variant on the rule used here would require that the upper bounds be equivalent—i.e., each a
subtype of the other. Choosing this variant appears to make some of the following development
simpler and other parts more complex, sometimes substantially so. It is not clear to us which is
better overall.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 23

Γ ` f ∈ F Γ ` F ↑ Bot Γ ` e ∈ S

Γ ` f[T](e) ∈ Bot
(T-App-Bot)

5.2 Type Inference (Specification)

The specification of type inference changes only a little from what we saw in Sec-
tion 3.1.

Γ ` f ∈ F⇒ f′ Γ ` F ↑ All(X<:S)T→R Γ ` e ∈ U⇒ e′

|X| > 0 X ∩ FV(S) = ∅ Γ ` A <: S Γ ` U <: [A/X]T
∀B. (Γ ` B <: S and Γ ` U <: [B/X]T imply Γ ` [A/X]R <: [B/X]R)

Γ ` f(e) ∈ [A/X]R⇒ f′[A](e′)
(App-InfSpec)

The condition X ∩ FV(S) = ∅ explicitly disallows type argument synthesis in the
case where the bounds S are inter-dependent (since, at this time, we do not know
of a complete solution to this problem).

The type arguments A that we pick as the result of our synthesis rule must
satisfy a number of conditions. Firstly, they must must be legal type arguments
for f. (The condition Γ ` A <: S ensures that the arguments are subtypes of the
required bounds S, while the condition Γ ` U <: [A/X]T ensures that the types of
the argument expressions match the types of the function parameters.) Secondly,
the final line of the rule asserts that the arguments A must be chosen in such a way
that any other choice of arguments B satisfying the above conditions will yield a
less informative result type, i.e., a supertype of [A/X]R.

5.3 Variable Elimination

In the constraint-generation algorithm, it will again sometimes be necessary to
eliminate all occurrences of a certain set of variables from a given type by promoting
or demoting the type until we reach a type in which these variables do not occur.
Of course, this promotion or demotion must now take place with respect to the
more interesting subtyping relation of Kernel F≤—in particular, the promotion
and demotion relations will be indexed by a context Γ.

The ability to eliminate variables in this way is a crucial reason for choosing the
“Kernel” variant of F≤ rather than the “full F≤” variant where two polymorphic
function types with different upper bounds for their type components are allowed
to stand in the subtype relation under appropriate conditions; in the latter system,
it can be shown that variables cannot always be eliminated in a most general
way [Ghelli and Pierce 1998].

Formally, we write Γ ` S ⇑V T for the relation “T is the least supertype of S such
that FV(T)∩V = ∅” and Γ ` S ⇓V T for the dual relation “T is the greatest subtype
of S such that FV(T)∩V = ∅.” The variable-elimination-by-promotion relation can
be computed as follows:

Γ ` Top ⇑V Top (VU-Top)

Γ ` Bot ⇑V Bot (VU-Bot)
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

24 · B. C. Pierce and D. N. Turner

X ∈ V Γ ` Γ(X) ⇑V T

Γ ` X ⇑V T
(VU-Var-1)

X /∈ V
Γ ` X ⇑V X

(VU-Var-2)

FV(A) ∩ V = ∅ Γ, X<:A ` S ⇓V S′ Γ, X<:A ` T ⇑V T′

Γ ` All(X<:A)S→T ⇑V All(X<:A)S′→T′

(VU-Fun-1)

FV(A) ∩ V 6= ∅
Γ ` All(X<:A)S→T ⇑V Top

(VU-Fun-2)

The definition of Γ ` S ⇓V T is similar to Γ ` S ⇑V T:

Γ ` Top ⇓V Top (VD-Top)

Γ ` Bot ⇓V Bot (VD-Bot)

X ∈ V
Γ ` X ⇓V Bot

(VD-Var-1)

X /∈ V
Γ ` X ⇓V X

(VD-Var-2)

FV(A) ∩ V = ∅ Γ, X<:A ` S ⇑V S′ Γ, X<:A ` T ⇓V T′

Γ ` All(X<:A)S→T ⇓V All(X<:A)S′→T′

(VD-Fun-1)

FV(A) ∩ V 6= ∅
Γ ` All(X<:A)S→T ⇓V Bot

(VD-Fun-2)

It is easy to check that, for each variable set V , ⇑V and ⇓V are total functions.
(These functions are similar to the ones used in Ghelli and Pierce [1998], but some-
what simpler because of the presence of Bot in our type system.)

Lemma 5.3.1 (Soundness of Variable Elimination).

(1) If Γ ` S ⇑V T then FV(T) ∩ V = ∅ and Γ ` S <: T.
(2) If Γ ` S ⇓V T then FV(T) ∩ V = ∅ and Γ ` T <: S.

Proof. By a straightforward simultaneous induction on variable-elimination
derivations.

Lemma 5.3.2 (Completeness of Variable Elimination).

(1) If Γ ` S <: T and FV(T) ∩ V = ∅, then Γ ` S ⇑V R with Γ ` R <: T.
(2) If Γ ` T <: S and FV(T) ∩ V = ∅, then Γ ` S ⇓V R with Γ ` T <: R.

Proof. See Pierce [1997].

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 25

5.4 Constraints

Next, we introduce the constraints that will be manipulated by our algorithm. To
handle bounded quantification, we will now need constraints of two forms, one for
recording the fact that a type variable X must be exactly equal to some type T (for
example, X must be exactly equal to Bot in order to make All(Y<:X)Y→Y a subtype
of All(Y<:Bot)Y→Y), and the other for recording the fact that a variable X must
lie between two types S and T (for example, X must lie between A and B in order to
make X→X a subtype of A→B).

Formally, an X/V -constraint has one of the forms below, with the additional
constraint that all the free variables of S and T are distinct from V ∪ X.

[T] equality constraint
[S, T] subtyping constraint

A type R satisfies a constraint c, written Γ ` R ∈ c, if

c = [S] and R = S
or c = [S, T] and Γ ` S <: R and Γ ` R <: T.

The maximal and minimal types satisfying a given constraint are defined in the
obvious way:

max([S, T]) = T max([S]) = S
min([S, T]) = S min([S]) = S

An X/V -constraint set C is a finite map from X to X/V -constraints. The empty
X/V -constraint set, written ∅, maps each variable Xi to the constraint [Bot, Top].
The singleton X/V -constraint set {Xi 7→c} maps Xi to the constraint c and every
other Xj to [Bot, Top]. The meet of two V -constraints is defined as follows (for all
cases other than those specified below, the meet is undefined):

[S] ∧ [S] = [S]
[S] ∧ [U, V] = [S] if Γ ` U <: S <: V
[S, T] ∧ [U] = [U] if Γ ` S <: U <: T
[S, T] ∧ [U, V] = [J, M] if Γ ` S ∨ U = J and Γ ` T ∧ V = M

The meet operation is extended pointwise to constraint sets.

(C ∧ D)(Xi) = C(Xi) ∧ D(Xi)

We write C ∧ D to abbreviate C1 ∧ . . . ∧ Cm ∧ D1 ∧ . . . ∧ Dn.

5.5 Constraint Generation

Our constraint generation rules have the form

Γ `V
X
S <: T⇒ C

and define a partial function that, given a typing context Γ, a set of type variables V ,
a set of unknowns X, and two types S and T, calculates the minimal X/V -constraint
set C guaranteeing that Γ ` S <: T.

Γ `V
X
T <: Top⇒ ∅

Γ `V
X
Bot <: T⇒ ∅

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

26 · B. C. Pierce and D. N. Turner

Y ∈ X Γ ` T ⇓V R FV(T) ∩ X = ∅
Γ `V

X
Y <: T⇒ {Y7→[Bot, R]}

Y ∈ X Γ ` T ⇑V R FV(T) ∩ X = ∅
Γ `V

X
T <: Y⇒ {Y7→[R, Top]}

Γ `V
X
Y <: Y⇒ ∅

Γ `V
X

Γ(Y) <: T⇒ C

Γ `V
X
Y <: T⇒ C

Γ `V
X
A ≡ B⇒ K, D V ′ = V ∪ Y Y ∩ (V ∪ X) = ∅

Γ, Y<:K `V ′
X

T <: R⇒ C Γ, Y<:K `V ′
X

S <: U⇒ D

Γ `V
X
All(Y<:A)R→S <: All(Y<:B)T→U⇒ D∧D∧C

In the clause for quantifiers (whose bounds must match exactly rather than modulo
subtyping), we need an auxiliary “matching relation” Γ `V

X
S ≡ T ⇒ U, C, which

yields both a constraint set C whose solutions make S and T identical and a type U
that is equal to whichever of S and T is concrete (recall that the variables X do not
occur in one of S or T). The definition of this relation follows the same lines as the
main constraint generator:

Γ `V
X
Top ≡ Top⇒ Top, ∅

Γ `V
X
Bot ≡ Bot⇒ Bot, ∅

Y ∈ X FV(T) ∩ (V ∪ X) = ∅
Γ `V

X
Y ≡ T⇒ T, {Y7→[T]}

Y ∈ X FV(T) ∩ (V ∪ X) = ∅
Γ `V

X
T ≡ Y⇒ T, {Y7→[T]}

Y /∈ X

Γ `V
X
Y ≡ Y⇒ Y, ∅

Γ `V
X
A ≡ B⇒ K, D V ′ = V ∪ Y Y ∩ (V ∪ X) = ∅

Γ, Y<:K `V ′
X

T ≡ R⇒ L, C Γ, Y<:K `V ′
X

S ≡ U⇒ M, D

Γ `V
X
All(Y<:A)R→S ≡ All(Y<:B)T→U⇒ All(Y<:K)L→M, D∧D∧C

5.6 Soundness and Completeness of Constraint Generation

Before we can prove soundness and completeness for the constraint generator, we
need analogous lemmas for the auxiliary “matching-constraint” generator.

Lemma 5.6.1 (Soundness of Matching Constraint Generation). If
Γ `V

X
S ≡ T⇒ U, C and σ ∈ C then σS = σT = U.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 27

Proof. Straightforward induction.

Lemma 5.6.2 (Completeness of Matching-Constraint Generation). If
σ is an X/V -substitution where X ∩ V = ∅, and S and T are types such that either
FV(S) ∩ X = ∅ or FV(T) ∩ X = ∅, then σS = σT implies that Γ `V

X
S ≡ T ⇒ σS, C

for some C such that Γ ` σ ∈ C.

Proof. By induction on the structure of σS (= σT). We only give the most
interesting cases of the proof. The remaining cases follow easily using the induction
hypothesis and, for the function case, the fact that Γ ` σ ∈ C and Γ ` σ ∈ D
implies Γ ` σ ∈ C ∧ D.

Case: S = Y where Y ∈ X . It must be the case that FV(T) ∩ X = ∅, since Y ∈ X.
We therefore have σY = σT = T. It must also be the case that FV(T) ∩ V = ∅,
since T occurs in the codomain of σ and σ is a X/V -substitution. We therefore have
Γ `V

X
S ≡ T⇒ T, {Y7→[T]} and Γ ` σ ∈ {Y7→[T]} as required.

Case: T = Y where Y ∈ X . Similar.

Proposition 5.6.3 (Soundness of Constraint Generation). Suppose
that FV(Γ) ∩ X = ∅ and dom(Γ) ∩ X = ∅. If Γ `V

X
S <: T ⇒ C and Γ ` σ ∈ C, then

Γ ` σS <: σT.

Proof. By induction on the derivation of Γ `V
X
S <: T ⇒ C. Proceed by case

analysis on the final rule used in the derivation.
Case: Γ `V

X
S <: Top⇒ ∅. Immediate, since σTop = Top and Γ ` σS <: Top.

Case: Γ `V
X
Bot <: T⇒ ∅. Immediate, since σBot = Bot and Γ ` Bot <: σT.

Case: Γ `V
X
Y <: T ⇒ C where Y ∈ X, Γ ` T ⇓V R, FV(T) ∩ X = ∅ and C =

{Y7→[Bot, R]}. Since Γ ` σ ∈ C we have Γ ` σY <: R. Since FV(T) ∩ X = ∅, we
know that σT = T; also, Lemma 5.3.1(2) tells us that Γ ` R <: T. We therefore have
Γ ` σY <: R <: T = σT, as required.

Case: Γ `V
X
S <: Y ⇒ C where Y ∈ X, Γ ` S ⇑V R, FV(S) ∩ X = ∅ and C =

{Y7→[R, Top]}. Since Γ ` σ ∈ C we have Γ ` R <: σY. Since FV(S) ∩ X = ∅, we
know that σS = S; also, Lemma 5.3.1(1) tells us that Γ ` S <: R. We therefore have
Γ ` σS = S <: R <: σY, as required.

Case: Γ `V
X
Y <: Y⇒ ∅. Since, by assumption, the variables X do not appear free

in both S and T, it must be the case that Y /∈ X. Thus, σY = Y and Γ ` Y <: Y, as
required.

Case: Γ `V
X

Y <: T ⇒ C where Γ `V
X

Γ(Y) <: T ⇒ C. Using the induction
hypothesis, we obtain Γ ` σ(Γ(Y)) <: σT. Since Y ∈ dom(Γ), we know that Y /∈ X.
The fact that FV(Γ(Y)) ∩ X = ∅ follows from our assumption that FV(Γ) ∩ X = ∅.
We therefore have Γ ` Γ(Y) <: σT. Using the S-Var rule, we obtain Γ ` Y <: σT,
which is what we need, since σY = Y.

Case: Γ `V
X
All(Y<:A)R→S <: All(Y<:B)T→U ⇒ D ∧ D ∧ C where Γ `V

X
A ≡

B⇒ K, D and Γ, Y<:K `V ′
X

T <: R⇒ C and Γ, Y<:K `V ′
X

S <: U⇒ D and V ′ = V ∪{Y}
and Y∩V = ∅ and Y∩X = ∅. We may assume (wlog) that the Y are fresh variables—
in particular, that FV(σ) ∩ Y = ∅ and that σ is a valid X/V ′-substitution. Our
assumption that Γ ` σ ∈ D ∧ D ∧ C, plus the fact that FV(K)∩X = ∅, implies that
we can use the induction hypothesis to prove Γ,Y<:K ` σS <: σU and Γ,Y<:K ` σT <:

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

28 · B. C. Pierce and D. N. Turner

σR. Moreover, Lemma 5.6.1 tells us that σA = σB = K. By the subtyping rule for
functions, we conclude Γ ` All(Y<:σA)σR→σS <: All(Y<:σB)σT→σU. The result
follows, since All(Y<:σA)σR→σS = σ(All(Y<:A)R→S) and All(Y<:σB)σT→σU =
σ(All(Y<:B)T→U).

Proposition 5.6.4 (Completeness of Constraint Generation). Let σ
be an X/V -substitution with X ∩ V = ∅, and let S and T be types such that ei-
ther FV(S) ∩ X = ∅ or FV(T) ∩ X = ∅. Let Γ be a context such that X ∩ dom(Γ) = ∅
and FV(Γ) ∩ X = ∅. If Γ ` σS <: σT, then Γ `V

X
S <: T⇒ C and Γ ` σ ∈ C.

Proof. By induction on the depth of a derivation of Γ ` σS <: σT.
Case: S = Y where Y ∈ X. We have Γ `V

X
Y <: T ⇒ C where C = {Y7→[Bot, R]}

and T ⇓V R. Now, since σ is a X/V -substitution, we know that FV(σY)∩V = ∅, and
therefore, using Lemma 5.3.2, we have Γ ` σY <: R. This ensures that Γ ` σ ∈ C,
as required.

Case: T = Y where Y ∈ X. We have Γ `V
X
S <: Y ⇒ C where C = {Y7→[R, Top]}

and S ⇑V R. Now, since σ is a X/V -substitution, we know that FV(σY)∩V = ∅, and
therefore, using Lemma 5.3.2, we have Γ ` R <: σY. This ensures that Γ ` σ ∈ C,
as required.

Case: T = Top. Immediate, since Γ `V
X
S <: Top⇒ ∅ and Γ ` σ ∈ ∅.

Case: S = Bot. Immediate, since Γ `V
X
Bot <: T⇒ ∅ and Γ ` σ ∈ ∅.

Case: S = Y and T = Y where Y /∈ X. Immediate, since Γ `V
X
Y <: Y ⇒ ∅ and

σ ∈ ∅.
Case: Γ ` Y <: σT where Γ ` Γ(Y) <: σT. Since FV(Γ)∩X = ∅ we have σ(Γ(Y)) =

Γ(Y), so we can use the induction hypothesis to prove that Γ `V
X

Γ(Y) <: T ⇒ C
and Γ ` σ ∈ C. The result follows directly, since Γ `V

X
Y <: T⇒ C.

Case: Γ ` All(Y<:σA)σR→σS <: All(Y<:σB)σT→σU, where σA = σB and
Γ, Y<:σB ` σT <: σR and Γ, Y<:σB ` σS <: σU. Since we identify type expressions up
to alpha-conversion, we may suppose (wlog) that the Y are chosen so that Y∩V = ∅,
Y∩X = ∅, and FV(σ)∩Y = ∅. If V ′ = V ∪Y then σ is a valid X/V ′-substitution and
we can use the induction hypothesis to prove that Γ, Y<:σB `V ′

X
T <: R ⇒ C and

Γ, Y<:σB ` σ ∈ C, and similarly, Γ, Y<:σB `V ′
X

S <: U ⇒ D and Γ, Y<:σB ` σ ∈ D.
Using Lemma 5.6.2, we have that Γ `V

X
A ≡ B ⇒ σB, D and Γ ` σ ∈ D. So, by

the constraint generation rule for function types, we have Γ `V
X
All(Y<:A)S→P <:

All(Y<:B)T→Q ⇒ D∧D∧C. Finally, by the fact that D∧D∧C is a greatest lower
bound, we have Γ ` σ ∈ D∧D∧C, as required.

5.7 Calculating Type Arguments

As before, the first step in calculating the actual type arguments to an application
begins by formalizing the ways in which maximizing or minimizing X affects the
final result type. The main new element here is the case of rigid variables:

(1) We say that R is constant in X when Γ ` [S/X]R <: [T/X]R for every S and T.
(2) We say that R is covariant in X when Γ ` [S/X]R <: [T/X]R iff Γ ` S <: T.
(3) We say that R is contravariant in X when Γ ` [T/X]R <: [S/X]R iff Γ ` S <: T.
(4) We say that R is invariant in X when Γ ` [S/X]R <: [T/X]R iff both Γ ` S <: T

and Γ ` T <: S.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 29

(5) We say that R is rigid in X when Γ ` [S/X]R <: [T/X]R iff S = T.

It is easy to check whether R is constant, covariant, contravariant, invariant, or
rigid in a given variable X by examining where X occurs in R (to the right or left of
arrows, in the bounds of type binders, etc.).

Next, we need a technical definition characterizing types whose equivalence classes
in the subtype relation are singletons. For example, if X<:Bot, then X→X is equiva-
lent, but not identical, to Bot→Bot: indeed its equivalence class has several mem-
bers. On the other hand, Top is only equivalent to itself. Formally, we call a type
variable a bottom variable (in Γ) if its upper bound is Bot or by another bottom
variable. Now, let Γ be a context and S a type whose free variables are in dom(Γ).
We say that S is rigid under Γ if

—S = Top;
—S = Bot and no variable in Γ is bounded by Bot;
—S = X and X is not a bottom variable;
—S = All(X<:A)S→T with each Ai rigid under Γ, X1<:A1, . . . ,Xi−1<:Ai−1 and S and
T rigid under Γ, X<:A;

Extending the notion of rigidity from types to constraints, we say that a Γ-constraint
c is rigid if it admits only one solution—i.e., if either c = [S] or else c = [S, S], where
S is rigid under Γ. Similarly, c is said to be tight if it admits only one solution, up
to equivalence—i.e., if either c = [S] or else c = [S, T] with both Γ ` S <: T and
Γ ` T <: S.

Lemma 5.7.1. If S is rigid under Γ, then every type equivalent to S is syntac-
tically equal to S—i.e., Γ ` S <: T and Γ ` T <: S together imply that S and T are
identical.

Proof. See Pierce [1997, Lemma 4.1.2].

Corollary 5.7.2. If c is rigid under Γ and Γ ` S ∈ c and Γ ` T ∈ c, then S
and T are identical.

With the foregoing definitions in hand, we can now show how to choose values
for the variables X that will minimize R (or else determine that this is not possible).
Let C be a satisfiable X/V -constraint set and R a type whose free variables are in
dom(Γ) ∪ {X}. Let the substitution σCR be defined (when it exists) as follows (the
new case is the penultimate one, for rigid variables):

For each Xi...
if R is constant or covariant in Xi,
then σCR(Xi) = min(C(Xi))

else if R is contravariant in Xi,
then σCR(Xi) = max(C(Xi))

else if R is invariant in Xi
and C(Xi) is tight,
then σCR(Xi) = min(C(Xi))

else if R is rigid in Xi,
and C(Xi) is rigid,
then σCR(Xi) = min(C(Xi))

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

30 · B. C. Pierce and D. N. Turner

else σCR is undefined.

We can again show:

Proposition 5.7.3.

(1) If the substitution σCR exists, then it is a minimal substitution for C and R.
(2) If σCR is undefined, then C and R have no minimal substitution.

Proof.

(1) Suppose σCR exists, and suppose σ′ is another substitution such that Γ ` σ′ ∈
C. We must show that Γ ` σCRR <: σ′R.
Let n = |X|, and construct a sequence of substitutions σ0, . . . , σn as follows:

σ0 = σCR

σi = σi−1[Xi 7→ σ′(Xi)] if i ≥ 1.

Note that σn = σ′. We now argue that Γ ` σi−1R <: σiR for each i ≥ 1.
—If R is constant or covariant in Xi, then, by definition, σi−1Xi = σCR(Xi) =

min(C(Xi)), and thus Γ ` σi−1(Xi) <: σi(Xi). But this implies that Γ `
σi−1R <: σiR, by the definition of covariance.

—Similarly, if R is contravariant in Xi, then σi−1Xi = σCR(Xi) = max(C(Xi)),
and thus Γ ` σi(Xi) <: σi−1(Xi), which implies that Γ ` σi−1R <: σiR, by the
definition of contravariance.

—If R is invariant in Xi, then σi−1Xi = σCR(Xi) = min(C(Xi)), and we also
know (by the tightness of C(Xi)) that Γ ` min(C(Xi)) <: max(C(Xi)) <:
min(C(Xi)). But since Γ ` min(C(Xi)) <: σi(Xi)) <: min(C(Xi)), we have
by transitivity, Γ ` σi(Xi) <: σi−1(Xi) <: σi(Xi), which, by the definition of
invariance, yields Γ ` σi−1R <: σiR.

—Finally, if R is rigid in Xi, then σi−1(Xi) = σi(Xi), and so Γ ` σi−1R <: σiR by
reflexivity of subtyping.

We have thus shown that Γ ` σCRR = σ0R <: σ1R <: · · · <: σnR = σ′R, and the
desired result follows by transitivity of subtyping.

(2) If σCR is undefined, then either C is unsatisfiable (in which case the result holds
trivially) or else C is satisfiable and we must show that no substitution that
satisfies it is minimal. So suppose, for a contradiction, that σ is minimal for
C and R. There are two cases to consider, depending on why σCR failed to be
defined:
(a) For some Xi, R is invariant in Xi but C(Xi) is not a tight constraint. In

this case, we know that there must be some T such that Γ ` T ∈ C(Xi) but
such that either Γ ` σ(Xi) 6<: T or Γ ` T 6<: σ(Xi). We can then construct a
substitution σ′ = [Xi 7→ T] such that Γ ` σ′ ∈ C and, since Xi is invariant in
R, such that Γ ` σR 6<: σ′R, contradicting our assumption that σ is minimal
for C and R.

(b) For some Xi, R is rigid in Xi but C(Xi) is not a rigid constraint. In this
case, we know that there must be some T different from σ(Xi) such that
Γ ` T ∈ C(Xi). We can then construct a substitution σ′ = σ[Xi 7→ T] such
that Γ ` σ′ ∈ C and, since Xi in rigid in R, such that Γ ` σR 6<: σ′R,
contradicting our assumption that σ is minimal for C and R.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 31

Corollary 5.7.4. The algorithmic rule

Γ ` f ↑ All(X<:S)T→R⇒ f′

Γ ` e ∈ U⇒ e′ |X| > 0 X ∩ FV(S) = ∅
Γ `∅

X
X <: S⇒ C Γ `∅

X
U <: T⇒ D E = (C ∧ D) σ = σER

Γ ` f(e) ∈ σR⇒ f′[σX](e′)

is equivalent to the declarative rule given in Section 5.2.

6. EXTENSIONS

We have experimented with these and similar type inference techniques in our com-
piler for the Pict language [Pierce and Turner 1997b]. Although these experiments
do not yet cover the full language, they give some confidence that the methods
do actually infer enough type annotations to be helpful. (Indeed, we converted
around 10,000 lines of library code from a version of Pict incorporating Cardelli’s
greedy algorithm to one using a variant of the techniques presented here in a few
hours.) Moreover, they provide an indication of how well these techniques scale to
languages with more features than the tiny core calculus presented here. In gen-
eral, our experience has been quite encouraging: it has usually been quite easy to
see how to extend the definitions here to the larger syntax and richer type system
found in Pict.

However, one important set of issues remains incompletely resolved. A signif-
icant difference between Pict’s type system and the variants of F≤ studied here
and in Pierce and Turner [1997a] is that Pict includes type operators—formally,
it is based on the higher-order extension Fω

≤ [Cardelli 1990; Cardelli and Longo
1991; Pierce and Turner 1994; Pierce and Steffen 1994; Hofmann and Pierce 1995;
Compagnoni 1994]. Our type argument synthesis technique needs to know whether
type operators are covariant, contravariant, or invariant in the subtype relation;
in the case of Fω

≤ , this requires that we distinguish covariant, contravariant, and
invariant user-defined type operators. The necessary extension of Fω≤ with polarized
type operators is significantly more complex than the form in which Fω

≤ is usually
studied [Compagnoni 1994; Pierce and Steffen 1994], and its metatheoretic proper-
ties are a matter of current investigation [Steffen 1998]. We are experimenting with
strategies for simplifying the system and have achieved some promising preliminary
results.

Another important avenue for further investigation is the possibility of combining
these type inference techniques with overloading. There is reason to hope that the
integration can be accomplished smoothly, at least for limited forms of overloading,
since we have insisted that each typable term should have a unique manifest type.
(This property plays a crucial role in the formulation of simple overloading systems
like Java’s: the type of an argument to an overloaded operator must be uniquely
determined before overloading resolution.)

7. RELATED WORK

There have been a number of proposals for partial type inference schemes treating
just impredicative polymorphism (without subtyping). One line of work has been
explored by Pfenning [1988b; Pfenning [1993], following earlier work of Boehm

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

32 · B. C. Pierce and D. N. Turner

[Boehm 1985; 1989]. Interestingly, the key algorithm here comes from a proof of
undecidability of a certain style of partial type inference, where occurrences of type
application must be marked but the type argument itself need not be supplied,
and where all other type annotations may be omitted. Boehm showed that this
form of type inference was just as hard as higher-order unification, hence undecid-
able. Conversely, Huet’s earlier work on efficient semi-algorithms for higher-order
unification [Huet 1975] led directly to a useful semi-algorithm for partial type in-
ference [Pfenning 1988b]. Later improvements in this line of development have
included using a more refined algorithm for higher-order constraint solving [Dowek
et al. 1996], eliminating the troublesome possibilities of nontermination or gener-
ation of non-unique solutions. Experience with related algorithms in languages
such as LEAP [Pfenning and Lee 1991], Elf [Pfenning 1989], and FX [O’Toole and
Gifford 1989] has shown them to be quite well behaved in practice.

A different approach to partial type inference (still without subtyping) was ini-
tiated by Läufer and Odersky [1994], sparked by Perry’s observation that first-
class existential types can be added to ML by integrating them with the datatype
mechanism [Perry 1990]. In essence, datatype constructors and destructors can be
regarded as explicit type annotations, marking where values must be injected into
and projected from disjoint union types, where recursive types must be folded and
unfolded, and (when existentials are added) where packing and unpacking must
occur. This idea was extended to include first-class (impredicative) universal quan-
tifiers by Rémy [1994]. Other, more recent, proposals by Odersky and Läufer [1996]
and Garrigue and Rémy [1997] conservatively extend ML-style type inference by
allowing programmers to explicitly annotate function arguments with types, which
may (unlike the annotations that can be inferred automatically) contain embedded
universal quantifiers, thus partly bridging the gap between ML and System F. This
family of approaches to type inference has the advantage of relative simplicity and
clean integration with the existing Hindley/Milner polymorphism of ML.

We know of only one partial type inference scheme that works in the presence of
both impredicative polymorphism and subtyping: Cardelli’s “greedy type inference
algorithm” for F≤ [Cardelli 1993]. (Similar algorithms have also been used in proof-
checkers for dependent type theories, such as NuPrl [Howe 1988] and Lego [Pollack
1990].) The idea here is that any type annotation may be omitted by the program-
mer: a fresh unification variable α will be generated for each one by the parser. Dur-
ing typechecking, the subtype-checking algorithm may be asked to check whether
some type S is a subtype T, where both S and T may contain unification variables.
Subtype-checking proceeds as usual until a subgoal of the form α <: T or T <: α is
encountered, at which point α is instantiated to T, thus satisfying the immediate
constraint in the simplest possible way. Of course, setting α to T may not be the
best possible choice, and this may cause later subtype-checks for types involving α
to fail when a different choice would have allowed them to succeed; but, again, prac-
tical experience with this algorithm in Cardelli’s implementation and in an early
version of the Pict language [Pierce and Turner 1997b] shows that the algorithm’s
greedy choice is correct in nearly all cases.

Unfortunately, there are some situations in which the greedy algorithm is almost
guaranteed to guess wrong. For example, if f has type (S,T)→Int and T <: S
then the expression fun(x) f(x,x) will fail to typecheck: the greedy algorithm
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 33

first assigns x the indeterminate type α; after checking the first argument to f it
concludes that α must equal S. But then the second argument check fails, since we
should have given x type T. In such cases, the algorithm’s behavior can be quite
puzzling to the programmer, yielding mysterious errors far from the point where a
suboptimal instantiation is made.

Also, we should note that Cardelli’s greedy algorithm lacks monotonicity: it is
not the case that adding some type annotations will always improve the chances
that the algorithm will be able to find the rest. Formally, there is a fully typed term
e, a partial erasure e′ of e, and a further erasure e′′ of e′, such that e and e′′ pass
the type inference algorithm, while e′ does not. (For the greedy algorithm, this
failure was first noticed by Dilip Sequeira.) While this kind of behavior has never
been observed in practice, we would be happier to see it excluded in principle. It is
currently an open question whether our proposed type inference algorithm behaves
well in this respect.

The difficulties with the greedy algorithm can be traced to the fact that there is
no way of giving a robust explanation of its behavior without describing the typing,
subtyping, and unification algorithms in complete detail, since the instantiations
that they perform are highly sensitive to the precise order in which constraints
are encountered during checking. This means that the language definition, to be
complete, must describe the internal structure of the compiler in quite a bit of
detail. Our goal in this article has been to develop partial type inference methods
that share the good behavior in common cases of the greedy algorithm, but that
are much more straightforward to explain to programmers.

Although we focus here on the combination of subtyping and polymorphism, it
is worth remarking that there are other ways of achieving a synthesis of object-
oriented and ML-style programming, not necessarily involving subtyping. Cur-
rently, the most successful design is Objective Caml, an object-oriented dialect of
ML now in use in a number of software projects worldwide [Rémy and Vouillon
1997]. A crucial design choice in Objective Caml is the use of row-variable poly-
morphism [Wand 1987; 1988; Rémy 1989; Wand 1994] instead of subsumption for
the typing of objects and classes. In Objective Caml, an object with a large inter-
face cannot simply be regarded as an object with a smaller interface; however, it is
straightforward to write functions that manipulate both kinds of objects by “quan-
tifying over the difference” between their interfaces. The type inference algorithm
aids the programmer by performing this kind of generalization wherever possible.

8. DISCUSSION

We have identified a promising class of local type inference methods and studied
two representatives in detail. To evaluate the contributions of these two particular
methods, let us review the requirements stated in the introduction:

(1) To make fine-grained polymorphism tolerable, type arguments in applications
of polymorphic functions must usually be inferred. However, it is acceptable
to require annotations on the bound variables of top-level function definitions
(since these usually provide useful documentation) and local function definitions
(since these are relatively rare).

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

34 · B. C. Pierce and D. N. Turner

We have seen that our local type argument synthesis method is complete for
a certain class of situations—those in which either (1) some choice of values
for the omitted type parameters yields a (unique) minimal result type for the
whole application, or (2) the application itself appears in a checking context.
How common these situations will be in practice is an empirical question that
is difficult to address until some good-sized programs have been written in
languages supporting ML-style programming with subtyping. However, we can
get some feeling for the coverage of our type inference techniques by examining
a few typical examples.
To make the examples more familiar, suppose that our core language has been
extended with list types List(T) (the type of lists whose elements have type
T) and reference types Ref(T) (the type of mutable storage cells contain-
ing elements of T). The List type constructor may soundly be taken to be
covariant—i.e., we have List(S) <: List(T) whenever S <: T—while Ref must
be invariant—i.e., we have Ref(S) <: Ref(T) only when S = T. These types
come with the following built-in constants and functions:

nil ∈ List(Bot)
cons ∈ All(X) (X, List(X))→List(X)
map ∈ All(X,Y) (List(X), X→Y)→List(Y)
newref ∈ All(X) X→Ref(X)
deref ∈ All(X) Ref(X)→X
update ∈ All(X) Ref(X)→X→Unit

Assuming we are also given integers and arithmetic operators and that the
variables l and r have types List(Int) and Ref(Int), we have the following
simple examples:

cons(1, cons(2, cons(3, nil))) succeeds by (1)
map(l, fun(x:Int)x+1) succeeds by (1)
newref(2) fails
update(newref(2), 3) fails
(fun(s:Ref(Int)) update(s,0)) (newref(2)) succeeds by (2)
update(r, 3) succeeds by (1)
deref(r) succeeds by (1)

Our proposal does require annotations on all bound variables of function defi-
nitions. For top-level function definitions, we regard these annotations as ben-
eficial anyway. For local function definitions, we would prefer to have these
annotations inferred, since these type annotations are often “obvious” to the
programmer and so do not provide significant value as documentation, but our
measurements indicate that local function definitions are not too common in
any case.
It is also worth noting that annotations on recursively defined functions (if our
language had them) could never be inferred using our scheme. While this is a
limitation, it does have some benefits. For example, polymorphic recursion is
automatically supported. In Haskell, polymorphic recursion is allowed if top-
level binders are annotated, which effectively represents a step in the direction
of our methods.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 35

(2) To make higher-order programming convenient, it is helpful, though not abso-
lutely necessary, to infer the types of parameters to anonymous function defi-
nitions.
Bidirectional typechecking allows type annotations on anonymous abstractions
to be omitted whenever they appear in checking contexts—for example, when
they are used as arguments to functions. For example, if the function f has the
type (Int→Int)→Int, we can write

f (fun(x)x+3)

instead of:

f (fun(x:Int)x+3)

The one exception is when the application expression in which an anonymous
abstraction appears as argument omits some expected type arguments. For
example, we cannot infer types in:

map(l, fun(x)x+2)

Instead, we must provide either the type argument

map[Int](l, fun(x)x+2)

or else the argument type of the anonymous abstraction:

map(l, fun(x:Int)x+2)

(3) To support a mostly functional style (where the manipulation of pure data struc-
tures leads to many local variable bindings), local bindings should not normally
require explicit annotations.
We are able to calculate the types of locally bound values as long as they can
be synthesized. This means that almost all local bindings except functions
will have their types inferred. Local function bindings must have their bound
variables fully annotated with types.

One weakness of our proposal is the relative complexity of extending local type
argument synthesis to handle bounded quantification. On the positive side, the
strengths of our inference techniques include their simple descriptions, their pre-
dictability, their robustness in the face of extensions to the internal language, and
their tendency to report errors close to the point where more type annotations are
required (or where an actual error is present in the program).

More generally, restricting attention to local methods imposes several important
design constraints on both the internal language and on possible type inference
algorithms:

—Unification or matching can be used only during the processing of single nodes
in the syntax tree: types involving unification variables are never added to the
context, passed down as checking constraints, or returned as the results of type
synthesis.

—Polymorphic applications must be fully uncurried in order to obtain the benefits
of type inference. Curried applications can still be used, but they are second-class
in this respect. (This point is a corollary of the first.)

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

36 · B. C. Pierce and D. N. Turner

—Expressions in the internal language must have unique manifest types that can
be calculated easily by the programmer, in order for the behavior of partial type
inference to be predictable.

—The type system of the internal language must be sufficiently complete and reg-
ular to permit “best annotations” to be inferred. In the system studied here,
this means in particular that the minimal type Bot must be provided, with some
attendant increase in the complexity of the internal language (particularly when
the system is extended to include bounded quantification). Similarly, type oper-
ators like List must be made covariant in the subtype relation in order to allow
inference of type arguments to nil and cons.

APPENDIX

A. MEASUREMENTS

This appendix presents in more detail our measurements of the uses of type inference
in ML programs, as a rough guide to the frequency of undesirable type annotations
of various sorts that would arise if we adopted an ML programming style in a
language with no type inference at all.

It is helpful to distinguish between two kinds of type annotations. One kind
we call reasonable, the other silly—the difference being that reasonable type anno-
tations have some value as documentation, while silly annotations do not. Obvi-
ously, opinions will vary on precisely which annotations belong in each category,
but many cases are fairly clear. For example, type annotations on parameters to
top-level function definitions are arguably reasonable, since (except for very short
functions) they are not normally obvious and writing them explicitly helps make
code more readable (moreover, they are checked documentation and can never be
out of date).7 On the other hand, it is hard to imagine why anyone would want to
write or read either of the occurrences of Int in cons[Int](3,nil[Int]). They
are both silly.

We are interested in the kinds and frequencies of type annotations that will
typically arise if we adopt the programming style encouraged by ML in an explic-
itly typed language. The three characteristic features of this style—fine-grained
polymorphism, higher-order programming, and heavy use of data constructors and
destructors instead of mutable state—each lead to an increase in the number of
type annotations; moreover, many of these annotations are silly.

The use of fine-grained polymorphism, in which individual functions (rather than
whole modules, as in C++, Pizza, or GJ) are parameterized on type arguments,
leads to type annotations whenever polymorphic functions are defined or used—e.g.,
the three occurrences of [X] in:

let cons-twice =

fun[X] (v:X, l:List(X))

cons[X](v, cons[X](v, nil[X]))

The abstraction on X is arguably reasonable (indeed, in many languages, it actually
has behavioral significance), but the [X] arguments to nil and cons are silly.

7In fact, even in ML, many top-level definitions are given explicit type declarations in module
signatures.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 37

A higher-order programming style, in which small anonymous functions are passed
as arguments to other functions, leads to an increase in the total number of func-
tions. Moreover (unlike top-level function definitions), the types of the parame-
ters to these functions are mostly obvious from context. For example, suppose
fold-range is a function of type (((Int,Int)→Int),Int,Int,Int)→Int; we
might use it in an expression like

fold-range(

fun(x:Int, y:Int) x+y,

0, 1, 10)

to calculate the sum of the numbers from 1 to 10. The two occurrences of Int are
silly annotations, since they act only to lengthen the expression and obscure its
behavior; it would be clearer to write:

fold-range(

fun(x,y) x+y,

0, 1, 10)

A mostly functional (or, in the extreme, purely functional) style, which favors the
construction of new data values rather than in-place mutation of existing ones, leads
to an increase in the number of local variable bindings compared to an imperative
style. An imperative program with one local declaration

let x : Int = 0;

x := x + 1;

x := x * 2;

x := x - 3;

return x;

can become a functional program with four:

let x : Int = 0 in

let y : Int = x + 1 in

let z : Int = y * 2 in

let r : Int = z - 3 in

r

Again, the type annotations on these binders are all silly. (The annotation on the
single binder in the imperative version is also silly, but this matters less if such
declarations are relatively rare.)

We chose the Objective Caml compiler as our experimental tool, because the
front end is quite easy to understand and modify.8 We gathered raw data by
instrumenting the compiler to produce a trace showing where the generalization
and instantiation operations were being used during typechecking, where function
definitions were encountered, and so on for each of the quantities we were interested
in measuring. Each program was then compiled in the usual way, and a small script
was used to tabulate and summarize the resulting traces.9

8Although Objective Caml supports object-oriented idioms in addition to a “pure ML style,” this
facility is relatively new and is not used heavily in the code we measured.
9The raw traces from which the tables in this section were generated are available on-line through
http://www.cis.upenn.edu/~bcpierce/lti-stats.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

38 · B. C. Pierce and D. N. Turner

We measured several publicly available Objective Caml programs, amounting to
about 160,000 lines of code plus about 30,000 lines in interface files.

lines (.ml) lines (.mli)
CamlTk 10080 4596
Coq 69571 9054
Ensemble 27747 6842
MMM 15645 2967
OCaml Libs 8521 4746
OCaml Progs 27069 3872

Camltk, written at Inria-Roquencourt, is a collection of mainly stub functions pro-
viding an interface to the Tk toolkit. Coq, the largest single program we measured,
is a theorem prover, also from INRIA. Ensemble is a toolkit for group communica-
tion in distributed systems, built at Cornell. MMM is a web browser, from INRIA.
Finally, we included the Objective Caml system itself, dividing it into libraries (the
stdlib and otherlibs subdirectories of the distribution) and the compiler itself
(plus debugger, etc.). We included comments in the line counts, since we are
interested in the impact of the presence or absence of type annotations on the full
text that programmers actually read and write.

The discussion above identified three ways in which silly type annotations arise
from features of the programming style promoted by ML. The first was fine-grained
polymorphism, which encourages the use of large numbers of polymorphic functions.
To estimate the impact of this feature in practice, we counted the frequency of
instantiations of polymorphic variables and constructors10 performed during type-
checking: each instantiation would correspond to one or more type arguments in an
explicitly typed language. We counted separately the instantiations arising from
comparison functions (=, <, etc.), which are polymorphic in Objective Caml but
could well be monomorphic in other languages.

variable constructor comparison
instantiation instantiation instantiation

CamlTk 13.1 28.9 1.2
Coq 38.8 32.1 2.1
Ensemble 19.1 16.0 2.4
MMM 14.8 20.4 1.4
OCaml Libs 13.7 9.5 5.2
OCaml Progs 16.9 9.8 1.9

To highlight the impact of including or eliding type annotations associated with
various language features, we express our results (here and in the tables that follow)
as numbers of occurrences per hundred lines of code. For example, in CamlTk, an
instantiation occurs, on average, in 13.1% of the lines of code. Assuming 50 lines
per screenful of text, this means that we might expect, on average, to see six or
seven per displayed page.

The frequencies of constructor instances in this table should be taken with a grain
of salt, since they include instantiations occurring during typechecking of patterns,

10The constructor instance count also includes instances arising from polymorphic record labels.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 39

which can probably be avoided in many cases. The high frequency of instantiation
in Coq is a consequence of its extensive use of Objective Caml’s built-in stream
syntax.

Another source of silly type annotations is type annotations on bound variables
of anonymous functions. To gauge the importance of this effect, we counted the
frequency of anonymous function definitions in each of the sample programs. (For
simplicity, we did not count the number of arguments to each function definition
or the sizes of the type annotations that would have been required if they had been
written explicitly.)

anonymous
functions

CamlTk 2.9
Coq 12.4
Ensemble 2.4
MMM 2.8
OCaml Libs 0.7
OCaml Progs 3.1

We see that the usage of anonymous functions varies according to programming
style: the Objective Caml libraries use almost none, preferring direct recursive def-
initions, while application programs tend to make reasonably frequent use of higher-
order functions like map and fold. Coq uses a relatively high number of anonymous
functions—a consequence, again, of its extensive use of Objective Caml’s stream
syntax, which is translated internally into calls to the lazy stream library involving
large numbers of thunks.

Two final sources of silly type annotations are variable bindings and local func-
tion definitions. Since all definitions, including function definitions, are translated
internally into let-bindings, we divide this count into three: local function defi-
nitions (probably silly), top-level function definitions (probably reasonable), and
let-bindings of other kinds (probably silly).

local top-level other
functions functions let-bindings

CamlTk 0.5 7.5 8.7
Coq 1.5 7.0 10.5
Ensemble 2.8 4.2 9.6
MMM 1.0 3.8 8.8
OCaml Libs 0.6 8.7 7.9
OCaml Progs 0.5 3.9 6.9

Let-bindings are fairly frequent, as might be expected. Local functions are much
less frequent than top-level definitions—but, especially in Ensemble, not as rare as
we might have had hoped (given that we do not infer these). It is also interesting
to note, in passing, that library code—CamlTk and the Objective Caml libraries—
tends to define smaller functions than most of the application code.

As we noted for anonymous functions, these numbers give only a rough measure
of the “cost” of adding type annotations, since more than one type annotation
may be required for each let-binding. Also, small changes in programming style

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

40 · B. C. Pierce and D. N. Turner

can make a large difference in the number and size of required annotations. For
example, changing a Caml function definition from the form

let f = function <pat> → <exp> | ...

to the form

let f x:T = match x with <pat> → <exp> | ...

eliminates the need for explicit annotations in all of the patterns.
We also gathered some measurements to help evaluate the limitations of our

proposed inference techniques. In particular, there are some situations where either,
but not both, can be used. This occurs when a polymorphic function or constructor
is applied to an argument list that includes an anonymous abstraction. We break
the measurements of these “hard applications” into two categories—one where some
function argument is really hard and the easier case where the function argument
is actually a thunk (whose parameter is either _ or (), and which can therefore
easily be synthesized).

“hard” “hard”
function args thunk args

CamlTk 1.7 0.0
Coq 1.9 9.7
Ensemble 1.1 0.1
MMM 0.8 0.0
OCaml Libs 0.4 0.0
OCaml Progs 1.1 0.0

Finally, we found it interesting to measure how often the generalization operation
was used during typechecking: these would each correspond to one or more type
abstractions in an explicitly typed language. As above, we distinguish between
polymorphic top-level definitions and local definitions of polymorphic functions.

top-level local
polymorphism polymorphism

CamlTk 0.4 0.1
Coq 2.9 0.5
Ensemble 2.2 0.8
MMM 0.4 0.1
OCaml Libs 2.0 0.1
OCaml Progs 0.6 0.0

There is actually considerable variation in the frequency of type generalization in
the different styles of code represented in this table—much more than the variation
in numbers of instantiations. Also, the frequency of generalization seems to have
little correlation with the distinction between library and application code.

ACKNOWLEDGMENTS

This article synthesizes insights from conversations with more people than we can
list—probably almost everyone we know—but a few contributions were particu-
larly direct: John Reynolds first acquainted us [BCP] with the idea of bidirectional
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 41

typechecking around 1988, while early discussions with Luca Cardelli helped plant
the ideas about type argument synthesis that eventually developed into the pro-
posal in Section 3 in this article. Work with Dilip Sequeira on refinements of
Cardelli’s greedy inference algorithm greatly improved our understanding of its
good and bad properties. Scott Smith, Frank Pfenning, Konstantin Läufer, and
Didier Remy gave us useful background on related work. Discussions with Robert
Harper, John Reppy, Karl Crary, and Stephanie Weirich and careful comments
from Haruo Hosoya and the POPL and TOPLAS referees significantly improved
the final version.

REFERENCES

Aditya, S. and Nikhil, R. S. 1991. Incremental polymorphism. In Functional Programming
Languages and Computer Architecture. Number 523 in Lecture Notes in Computer Science.
Springer-Verlag. Also available as MIT CSG Memo 329, June 1991.

Aiken, A. and Wimmers, E. L. 1993. Type inclusion constraints and type inference. In Conference
on Functional Programming Languages and Computer Architecture. ACM press, 31–41.

Boehm, H.-J. 1985. Partial polymorphic type inference is undecidable. In 26th Annual Symposium
on Foundations of Computer Science. IEEE, 339–345.

Boehm, H.-J. 1989. Type inference in the presence of type abstraction. In Proceedings of the
SIGPLAN ’89 Conference on Programming Language Design and Implementation. Portland,
OR, 192–206.

Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P. 1998. Making the future safe for the
past: Adding genericity to the Java programming language. In Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA), C. Chambers, Ed. ACM SIGPLAN Notices
volume 33 number 10. Vancouver, BC, 183–200.

Cardelli, L. 1990. Notes about Fω<:. Unpublished manuscript.

Cardelli, L. 1991. Typeful programming. In Formal Description of Programming Concepts,
E. J. Neuhold and M. Paul, Eds. Springer-Verlag. An earlier version appeared as DEC Systems
Research Center Research Report #45, February 1989.

Cardelli, L. 1993. An implementation of F<:. Research report 97, DEC Systems Research
Center. Feb.

Cardelli, L. and Longo, G. 1991. A semantic basis for Quest. Journal of Functional Program-
ming 1, 4 (Oct.), 417–458. Preliminary version in ACM Conference on Lisp and Functional
Programming, June 1990. Also available as DEC SRC Research Report 55, Feb. 1990.

Cardelli, L., Martini, S., Mitchell, J. C., and Scedrov, A. 1994. An extension of system F
with subtyping. Information and Computation 109, 1–2, 4–56. Preliminary version in TACS
’91 (Sendai, Japan, pp. 750–770).

Cardelli, L. and Wegner, P. 1985. On understanding types, data abstraction, and polymor-
phism. Computing Surveys 17, 4 (Dec.), 471–522.

Compagnoni, A. B. 1994. Decidability of higher-order subtyping with intersection types. In
Computer Science Logic. Kazimierz, Poland. Springer Lecture Notes in Computer Science 933,
June 1995. Also available as University of Edinburgh, LFCS technical report ECS-LFCS-94-281,

titled “Subtyping in Fω∧ is decidable”.

Curien, P.-L. and Ghelli, G. 1992. Coherence of subsumption: Minimum typing and type-

checking in F≤. Mathematical Structures in Computer Science 2, 55–91. Also in Carl A.
Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming:
Types, Semantics, and Language Design (MIT Press, 1994).

Dowek, G., Hardin, T., Kirchner, C., and Pfenning, F. 1996. Unification via explicit substitu-
tions: The case of higher-order patterns. In Proceedings of the Joint International Conference
and Symposium on Logic Programming, M. Maher, Ed. MIT Press, Bonn, Germany, 259–273.

Eifrig, J., Smith, S., and Trifonov, V. 1995. Type inference for recursively constrained types
and its application to OOP. In Proceedings of the 1995 Mathematical Foundations of Pro-

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

42 · B. C. Pierce and D. N. Turner

gramming Semantics Conference. Electronic Notes in Theoretical Computer Science, vol. 1.
Elsevier.

Flanagan, C. and Felleisen, M. 1997. Componential set-based analysis. ACM SIGPLAN
Notices 32, 5 (May), 235–248.

Garrigue, J. and Rémy, D. 1997. Extending ML with semi-explicit polymorphism. In Inter-
national Symposium on Theoretical Aspects of Computer Software (TACS), Sendai, Japan,
M. Abadi and T. Ito, Eds. Springer-Verlag, 20–46.

Ghelli, G. 1990. Proof theoretic studies about a minimal type system integrating inclusion
and parametric polymorphism. Ph.D. thesis, Università di Pisa. Technical report TD–6/90,
Dipartimento di Informatica, Università di Pisa.

Ghelli, G. and Pierce, B. 1998. Bounded existentials and minimal typing. Theoretical Computer
Science 193, 75–96.

Girard, J.-Y. 1972. Interprétation fonctionelle et élimination des coupures de l’arithmétique
d’ordre supérieur. Ph.D. thesis, Université Paris VII. A summary appeared in the Proceedings of
the Second Scandinavian Logic Symposium (J.E. Fenstad, editor), North-Holland, 1971 (pp. 63–
92).

Hofmann, M. and Pierce, B. 1995. A unifying type-theoretic framework for objects. Journal of
Functional Programming 5, 4 (Oct.), 593–635. Previous versions appeared in the Symposium
on Theoretical Aspects of Computer Science, 1994, (pages 251–262) and, under the title “An
Abstract View of Objects and Subtyping (Preliminary Report),” as University of Edinburgh,
LFCS technical report ECS-LFCS-92-226, 1992.

Hosoya, H. and Pierce, B. C. 1999. How good is local type inference? Tech. Rep. MS-CIS-99-17,
University of Pennsylvania. June. Available from the authors.

Howe, D. 1988. Automating reasoning in an implementation of constructive type theory. Ph.D.
thesis, Cornell University.

Huet, G. 1975. A unification algorithm for typed λ-calculus. Theoretical Computer Science 1,
27–57.

Jagannathan, S. and Wright, A. 1995. Effective flow analysis for avoiding run-time checks. In
Proceedings of the Second International Static Analysis Symposium. LNCS, vol. 983. Springer-
Verlag, 207–224.

Läufer, K. and Odersky, M. 1994. Polymorphic type inference and abstract data types. ACM
Transactions on Programming Languages and Systems (TOPLAS) 16, 5 (Sept.), 1411–1430.
An earlier version appeared in the Proceedings of the ACM SIGPLAN Workshop on ML and
its Applications, 1992, under the title “An Extension of ML with First-Class Abstract Types”.

Miller, D. 1992. Unification under a mixed prefix. Journal of Symbolic Computation 14, 4
(Oct.), 321–358.

Odersky, M. and Läufer, K. 1996. Putting type annotations to work. In Conference Record
of POPL ’96: the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, St. Petersburg, Florida, 54–67.

Odersky, M. and Wadler, P. 1997. Pizza into Java: Translating theory into practice. In
Principles of Programming Languages (POPL).

O’Toole, J. W. and Gifford, D. K. 1989. Type reconstruction with first-class polymorphic
values. In Proceedings of the SIGPLAN’89 Conference on Programming Language Design and
Implementation, Portland, Oregon. ACM Press, 207–217.

Perry, N. 1990. The implementation of practical functional programming languages. Ph.D.
thesis, Imperial College.

Pfenning, F. 1988a. Partial polymorphic type inference and higher-order unification. In Pro-
ceedings of the 1988 ACM Conference on Lisp and Functional Programming. ACM Press,
Snowbird, Utah, 153–163.

Pfenning, F. 1988b. Partial polymorphic type inference and higher-order unification. In Pro-
ceedings of the 1988 ACM Conference on Lisp and Functional Programming, Snowbird, Utah.
ACM Press, 153–163. Also available as Ergo Report 88–048, School of Computer Science,
Carnegie Mellon University, Pittsburgh.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

Local Type Inference · 43

Pfenning, F. 1989. Elf: A language for logic definition and verified meta-programming. In Fourth
Annual Symposium on Logic in Computer Science. IEEE Computer Society Press, Pacific
Grove, California, 313–322.

Pfenning, F. 1993. On the undecidability of partial polymorphic type reconstruction. Fundamenta
Informaticae 19, 1,2, 185–199. Preliminary version available as Technical Report CMU-CS-92-
105, School of Computer Science, Carnegie Mellon University, January 1992.

Pfenning, F. and Lee, P. 1991. Metacircularity in the polymorphic λ-calculus. Theoretical
Computer Science 89, 1 (21 Oct.), 137–159. Preliminary version in TAPSOFT ’89, Proceed-
ings of the International Joint Conference on Theory and Practice in Software Development,
Barcelona, Spain, pages 345–359, Springer-Verlag LNCS 352, March 1989.

Pierce, B. and Steffen, M. 1994. Higher-order subtyping. In IFIP Working Conference on
Programming Concepts, Methods and Calculi (PROCOMET). Full version in Theoretical Com-
puter Science, vol. 176, no. 1–2, pp. 235–282, 1997 (corrigendum in TCS vol. 184 (1997), p. 247).

Pierce, B. C. 1997. Bounded quantification with bottom. Tech. Rep. 492, Computer Science
Department, Indiana University.

Pierce, B. C. and Turner, D. N. 1994. Simple type-theoretic foundations for object-oriented
programming. Journal of Functional Programming 4, 2 (Apr.), 207–247. Preliminary version
in Principles of Programming Languages (POPL), 1993.

Pierce, B. C. and Turner, D. N. 1997a. Local type argument synthesis with bounded quantifi-
cation. Tech. Rep. 495, Computer Science Department, Indiana University. Jan.

Pierce, B. C. and Turner, D. N. 1997b. Pict: A programming language based on the pi-calculus.
Tech. Rep. CSCI 476, Computer Science Department, Indiana University. To appear in Proof,
Language and Interaction: Essays in Honour of Robin Milner, Gordon Plotkin, Colin Stirling,
and Mads Tofte, editors, MIT Press, 1999.

Pollack, R. 1990. Implicit syntax. Informal Proceedings of First Workshop on Logical Frame-
works, Antibes.

Pottier, F. 1997. Simplifying subtyping constraints. In Proceedings of the International Con-
ference on Functional Programming (ICFP).

Rémy, D. 1989. Typechecking records and variants in a natural extension of ML. In Proceedings
of the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin.
ACM, 242–249. Also in Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of
Object-Oriented Programming: Types, Semantics, and Language Design (MIT Press, 1994).

Rémy, D. 1994. Programming objects with ML-ART: An extension to ML with abstract and record
types. In International Symposium on Theoretical Aspects of Computer Software (TACS),
M. Hagiya and J. C. Mitchell, Eds. Springer-Verlag, Sendai, Japan, 321–346.

Rémy, D. and Vouillon, J. 1997. Objective ML: A simple object-oriented extension of ML. In
Conference Record of POPL ’97: the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM Press, Paris, France, 40–53. Full version to appear in Theory

and Practice of Object Systems, 1998.

Reynolds, J. 1974. Towards a theory of type structure. In Proc. Colloque sur la Programmation.
Springer-Verlag LNCS 19, New York, 408–425.

Steffen, M. 1998. Polarized higher-order subtyping. Ph.D. thesis, Universität Erlangen-
Nürnberg. Forthcoming.

Sulzmann, M., Odersky, M., and Wehr, M. 1997. Type inference with constrained types. In
Fourth International Workshop on Foundations of Object-Oriented Programming (FOOL 4).
Full version in Theory and Practice of Object Systems, 1998.

Trifonov, V. and Smith, S. 1996. Subtyping constrained types. In Proceedings of the Third
International Static Analysis Symposium. LNCS, vol. 1145. Springer Verlag, 349–365.

Wand, M. 1987. Complete type inference for simple objects. In Proceedings of the IEEE Sympo-
sium on Logic in Computer Science. Ithaca, NY.

Wand, M. 1988. Corrigendum: Complete type inference for simple objects. In Proceedings of the
IEEE Symposium on Logic in Computer Science.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

44 · B. C. Pierce and D. N. Turner

Wand, M. 1994. Type inference for objects with instance variables and inheritance. In Theoret-
ical Aspects of Object-Oriented Programming: Types, Semantics, and Language Design, C. A.
Gunter and J. C. Mitchell, Eds. The MIT Press, 97–120.

Wells, J. B. 1994. Typability and type checking in the second-order λ-calculus are equivalent
and undecidable. In Proceedings of the Ninth Annual IEEE Symposium on Logic in Computer
Science (LICS). 176–185.

Received November 1997; revised February 1999; accepted July 1999

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 1, January 2000.

