
P1: IBD
CM026A-03 ACM-TRANSACTION January 23, 2002 17:39

Featherweight Java: A Minimal Core
Calculus for Java and GJ

ATSUSHI IGARASHI
University of Tokyo
BENJAMIN C. PIERCE
University of Pennsylvania
and
PHILIP WADLER
Avaya Labs

Several recent studies have introduced lightweight versions of Java: reduced languages in which
complex features like threads and reflection are dropped to enable rigorous arguments about
key properties such as type safety. We carry this process a step further, omitting almost all fea-
tures of the full language (including interfaces and even assignment) to obtain a small calculus,
Featherweight Java, for which rigorous proofs are not only possible but easy. Featherweight
Java bears a similar relation to Java as the lambda-calculus does to languages such as ML
and Haskell. It offers a similar computational “feel,” providing classes, methods, fields, inheri-
tance, and dynamic typecasts with a semantics closely following Java’s. A proof of type safety for
Featherweight Java thus illustrates many of the interesting features of a safety proof for the full
language, while remaining pleasingly compact. The minimal syntax, typing rules, and operational
semantics of Featherweight Java make it a handy tool for studying the consequences of extensions
and variations. As an illustration of its utility in this regard, we extend Featherweight Java with
generic classes in the style of GJ (Bracha, Odersky, Stoutamire, and Wadler) and give a detailed
proof of type safety. The extended system formalizes for the first time some of the key features
of GJ.
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1. INTRODUCTION

“Inside every large language is a small language struggling to get out...”
T. Hoare1

Formal modeling can offer a significant boost to the design of complex real-world
artifacts such as programming languages. A formal model may be used to de-
scribe some aspect of a design precisely, to state and prove its properties, and
to direct attention to issues that might otherwise be overlooked. In formulating
a model, however, there is a tension between completeness and compactness:
The more aspects the model addresses at the same time, the more unwieldy
it becomes. Often it is sensible to choose a model that is less complete but
more compact, offering maximum insight for minimum investment. This strat-
egy may be seen in a flurry of recent papers on the formal properties of Java,
which omit advanced features such as concurrency and reflection and concen-
trate on fragments of the full language to which well-understood theory can
be applied.

We propose Featherweight Java, or FJ, as a new contender for a minimal core
calculus for modeling Java’s type system. The design of FJ favors compactness
over completeness almost obsessively, having just five forms of expression: ob-
ject creation, method invocation, field access, casting, and variables. Its syntax,
typing rules, and operational semantics fit comfortably on a few pages. Indeed,
our aim has been to omit as many features as possible—even assignment—
while retaining the core features of Java typing. There is a direct correspon-
dence between FJ and a purely functional core of Java, in the sense that every
FJ program is literally an executable Java program.

FJ is only a little larger than Church’s lambda calculus [Barendregt 1984]
or Abadi and Cardelli’s object calculus [1996], and is significantly smaller
than previous formal models of class-based languages like Java, including
those put forth by Drossopoulou et al. [1999], Syme [1997], Nipkow and
von Oheimb [1998], and Flatt et al. [1998a; 1998b]. Being smaller, FJ lets
us focus on just a few key issues. For example, we have discovered that

1We thank Tony Hoare, to whom the first quote below is attributed, for informing us of the second
one:

Inside every large program is a small program struggling to get out...
— T. Hoare, Efficient Production of Large Programs (1970)

I’m fat, but I’m thin inside.
Has it ever struck you that there’s a thin man inside every fat man?

—George Orwell, Coming Up For Air (1939)
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capturing the behavior of Java’s cast construct in a traditional “small-step”
operational semantics is trickier than we would have expected, a point that
has been overlooked or underemphasized in other models.

One use of FJ is as a starting point for modeling languages that extend Java.
Because FJ is so compact, we can focus attention on essential aspects of the
extension. Moreover, because the proof of soundness for pure FJ is very sim-
ple, a rigorous soundness proof for even a significant extension may remain
manageable. The second part of the article illustrates this utility by enriching
FJ with generic classes and methods à la GJ [Bracha et al. 1998]. The model
omits some important aspects of GJ (such as “raw types” and type argument
inference for generic method calls). Nonetheless, it led to the discovery and re-
pair of one bug in the GJ compiler and, more importantly, has been a useful
tool in clarifying our thought. Because the model is small, it is easy to con-
template further extensions, and we have begun the work of adding raw types
to the model; so far, this has revealed at least one corner of the design that
was underspecified.

Our main goal in designing FJ was to make a proof of type soundness (“well-
typed programs do not get stuck”) as concise as possible, while still capturing
the essence of the soundness argument for the full Java language. Any lan-
guage feature that made the soundness proof longer without making it sig-
nificantly different was a candidate for omission; we also dropped features
that did not appear to interact with polymorphism in significant ways. As in
previous studies of type soundness in Java, we do not treat advanced mecha-
nisms such as concurrency, inner classes, and reflection. In addition, the Java
features omitted from FJ include assignment, interfaces, overloading, mes-
sages to super, null pointers, base types (int, bool, etc.), abstract method
declarations, shadowing of superclass fields by subclass fields, access control
(public, private, etc.), and exceptions. The features of Java that we do model in-
clude mutually recursive class definitions, object creation, field access, method
invocation, method override, method recursion through this, subtyping,
and casting.

One key simplification in FJ is the omission of assignment. In essence, all
fields and method parameters in FJ are implicitly marked final: we assume
that an object’s fields are initialized by its constructor and never changed after-
ward. This restricts FJ to a “functional” fragment of Java, in which many com-
mon Java idioms, such as use of enumerations, cannot be represented. Nonethe-
less, this fragment is computationally complete (it is easy to encode the lambda
calculus into it), and is large enough to include many useful programs (many of
the programs in Felleisen and Friedman’s Java text [1998] use a purely func-
tional style). Moreover, most of the tricky typing issues in both Java and GJ are
independent of assignment. An important exception is that the type inference
algorithm for generic method invocation in GJ has some twists imposed on it
by the need to maintain soundness in the presence of assignment. This article
treats a simplified version of GJ without type inference.

The remainder of this article is organized as follows. Section 2 intro-
duces the main ideas of Featherweight Java, presents its syntax, type rules,
and reduction rules, and develops a type soundness proof. Section 3 extends
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Featherweight Java to Featherweight GJ, which includes generic classes and
methods. Section 4 presents an erasure map from FGJ to FJ, modeling the
techniques used to compile GJ into Java. Section 5 discusses related work, and
Section 6 concludes.

2. FEATHERWEIGHT JAVA

In FJ, a program consists of a collection of class definitions plus an expression
to be evaluated. (This expression corresponds to the body of the main method
in full Java.) Here are some typical class definitions in FJ.

class A extends Object {
A() { super(); }
}
class B extends Object {

B() { super(); }
}
class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd;

}
Pair setfst(Object newfst) {

return new Pair(newfst, this.snd);

}
}

For the sake of syntactic regularity, we always (1) include the supertype (even
when it is Object); (2) write out the constructor (even for the trivial classes A
and B); and (3) write the receiver for a field access (as in this.snd) or a method
invocation, even when the receiver is this. Constructors always take the same
stylized form: there is one parameter for each field, with the same name as
the field; the super constructor is invoked on the fields of the supertype; and
the remaining fields are initialized to the corresponding parameters. In this
example the supertype is always Object, which has no fields, so the invocations
of super have no arguments. Constructors are the only place where super or =
appears in an FJ program. Since FJ provides no side-effecting operations, a
method body always consists of return followed by an expression, as in the
body of setfst().

In the context of the above definitions, the expression

new Pair(new A(), new B()).setfst(new B())

evaluates to the expression

new Pair(new B(), new B()).

There are five forms of expression in FJ. Here, new A(), new B(), and
new Pair(e1, e2) are object constructors, and e3.setfst(e4) is a method
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invocation. In the body of setfst, the expression this.snd is a field access,
and the occurrences of newfst and this are variables. (The syntax of FJ differs
from Java in that this is a variable rather than a keyword). The remaining
form of expression is a cast. The expression

((Pair)new Pair(new Pair(new A(), new B()), new A()).fst).snd

evaluates to the expression

new B().

Here, ((Pair)e5), where e5 is new Pair(...).fst, is a cast. The cast is required
because e5 is a field access to fst, which is declared to contain an Object,
whereas the next field access, to snd, is only valid on a Pair. At run time, it is
checked whether the Object stored in the fst field is a Pair (and in this case
the check succeeds).

In Java, we may prefix a field or parameter declaration with the keyword
final to indicate that it may not be assigned to, and all parameters accessed
from an inner class must be declared final. Since FJ contains no assignment
and no inner classes, it matters little whether or not final appears, so we omit
it for brevity.

Dropping side effects has a pleasant side effect: evaluation can be easily for-
malized entirely within the syntax of FJ, with no additional mechanisms for
modeling the heap. Moreover, in the absence of side effects, the order in which
expressions are evaluated does not affect the final outcome (modulo nonter-
mination), so we can define the operational semantics of FJ straightforwardly
using a nondeterministic small-step reduction relation, following long-standing
tradition in the lambda calculus. Of course, Java’s call-by-value evaluation
strategy is subsumed by this more general relation, so the soundness properties
we prove for reduction will hold for Java’s evaluation strategy as a special case.

There are three basic computation rules: one for field access, one for method
invocation, and one for casts. Recall that, in the lambda calculus, the beta-
reduction rule for applications assumes that the function is first simplified to
a lambda abstraction. Similarly, in FJ the reduction rules assume the object
operated upon is first simplified to a new expression. Thus, just as the slogan for
the lambda calculus is “everything is a function,” here the slogan is “everything
is an object.”

The following example shows the rule for field access in action:

new Pair(new A(), new B()).snd→ new B()

Due to the stylized form for object constructors, we know that the constructor
has one parameter for each field, in the same order that the fields are declared.
Here the fields are fst and snd, and an access to the snd field selects the second
parameter.

Here is the rule for method invocation in action (/ denotes substitution):

new Pair(new A(), new B()).setfst(new B())

→
[
new B()/newfst,
new Pair(new A(),new B())/this

]
new Pair(newfst, this.snd)

i.e., new Pair(new B(), new Pair(new A(), new B()).snd)
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The receiver of the invocation is the object new Pair(new A(), new B()), so we
look up the setfst method in the Pair class, where we find that it has formal
parameter newfst and body new Pair(newfst, this.snd). The invocation
reduces to the body with the formal parameter replaced by the actual, and the
special variable this replaced by the receiver object. This is similar to the beta
rule of the lambda calculus, (λx.e0)e1→ [e1/x ]e0. The key differences are the
fact that the class of the receiver determines where to look for the body (support-
ing method override), and the substitution of the receiver for this (supporting
“recursion through self”). Readers familiar with Abadi and Cardelli’s Object
Calculus will see a strong similarity to their ζ reduction rule [Abadi and Cardelli
1996]. In FJ, as in the lambda calculus and the pure Abadi-Cardelli calculus, if a
formal parameter appears more than once in the body it may lead to duplication
of the actual, but since there are no side effects this causes no problems.

Here is the rule for a cast in action:

(Pair)new Pair(new A(), new B())→ new Pair(new A(), new B())

Once the subject of the cast is reduced to an object, it is easy to check that
the class of the constructor is a subclass of the target of the cast. If so, as is
the case here, then the reduction removes the cast. If not, as in the expression
(A)new B(), then no rule applies and the computation is stuck, denoting a run-
time error.

There are three ways in which a computation may get stuck: an attempt
to access a field not declared for the class; an attempt to invoke a method
not declared for the class (“message not understood”); or an attempt to cast to
something other than a superclass of an object’s runtime class. We prove that
the first two of these never happen in well-typed programs, and the third never
happens in well-typed programs that contain no downcasts (and no “stupid
casts”—a technicality explained below).

As usual, we allow reductions to apply to any subexpression of an expression.
Here is a computation for the second example expression above, where the next
subexpression to be reduced is underlined at each step.

((Pair)new Pair(new Pair(new A(), new B()), new A()).fst).snd
→ ((Pair)new Pair(new A(),new B())).snd
→ new Pair(new A(), new B()).snd
→ new B()

We prove a type soundness result for FJ: if a well-typed expression e reduces to
a normal form, an expression that cannot reduce any further, then the normal
form is either a well-typed value (an expression consisting only of new), whose
type is a subtype of the type of e, or stuck at a failing typecast.

With this informal introduction in mind, we may now proceed to a formal
definition of FJ.

2.1 Syntax

The abstract syntax of FJ class declarations, constructor declarations, method
declarations, and expressions is given at the top of Figure 1. The metavariables
A, B, C, D, and E range over class names; f and g range over field names; m ranges
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Fig. 1. FJ: Syntax, subtyping rules, and auxiliary functions.

over method names; x ranges over variables; d and e range over expressions;
L ranges over class declarations; K ranges over constructor declarations; and M
ranges over method declarations. We assume that the set of variables includes
the special variable this, which cannot be used as the name of an argument to
a method. (As we will see later, the restriction is imposed by the typing rules).
Instead, it is considered to be implicitly bound in every method declaration.
The evaluation rule for method invocation will have the job of substituting an
appropriate object for this, in addition to substituting the argument values for
the parameters. Note that since we treat this in method bodies as an ordinary
variable, no special syntax for it is required.

We write f̄ as shorthand for a possibly empty sequence f1,. . . ,fn (and
similarly for C̄, x̄, ē, etc.) and write M̄ as shorthand for M1. . .Mn (with no
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commas). We write the empty sequence as • and denote concatenation of
sequences using a comma. The length of a sequence x̄ is written #(x̄). We
abbreviate operations on pairs of sequences in the obvious way, writing
“C̄ f̄” for “C1 f1,. . . ,Cn fn”, where n is the length of C̄ and f̄, and similarly
“C̄ f̄;” as shorthand for the sequence of declarations “C1 f1;. . . Cn fn;” and
“this.f̄=f̄;” as shorthand for “this.f1=f1;. . . ;this.fn=fn;”. Sequences of
field declarations, parameter names, and method declarations are assumed to
contain no duplicate names. As in Java, we assume that casts bind less tightly
than other forms of expression.

The class declaration class C extends D {C̄ f̄; K M̄} introduces a class
named C with superclass D. The new class has fields f̄ with types C̄, a sin-
gle constructor K, and a suite of methods M̄. The instance variables declared
by C are added to the ones declared by D and its superclasses, and should
have names distinct from these. (In full Java, instance variables of super-
classes may be redeclared, in which case the redeclaration shadows the orig-
inal in the current class and its subclasses. We omit this feature in FJ).
The methods of C, on the other hand, may either override methods with
the same names that are already present in D or add new functionality
special to C.

The constructor declaration C(D̄ ḡ; C̄ f̄){super(ḡ); this.f̄=f̄;} shows how
to initialize the fields of an instance of C. Its form is completely determined by
the instance variable declarations of C and its superclasses: it must take exactly
as many parameters as there are instance variables, and its body must consist
of a call to the superclass constructor to initialize its fields from the parameters
ḡ, followed by an assignment of the parameters f̄ to the new fields of the same
names declared by C. (These constraints are actually enforced by the typing
rule for classes in Figure 2).

The method declaration D m(C̄ x̄){ return e; } introduces a method named
m with result type D and parameters x̄ of types C̄. The body of the method is the
single statement return e;. The variables x̄ and the special variable this are
bound in e. As we will see later, the typing rules prohibit this from appearing
as a method parameter name.

A class table CT is a mapping from class names C to class declarations L.
A program is a pair (CT ,e) of a class table and an expression. To lighten the
notation in what follows, we always assume a fixed class table CT .

Every class has a superclass, declared with extends. This raises a question:
What is the superclass of the class Object? There are various ways to deal
with this issue; the simplest one that we have found is to take Object as a
distinguished class name whose definition does not appear in the class table.
The auxiliary functions that look up fields and method declarations in the class
table are equipped with special cases for Object that return the empty sequence
of fields and the empty set of methods. (In full Java, the class Object does have
several methods. We ignore these in FJ).

By looking at the class table, we can read off the subtype relation between
classes. We write C <: D when C is a subtype of D, i.e., subtyping is the reflexive
and transitive closure of the immediate subclass relation given by the extends
clauses in CT . Formally, it is defined in the middle of Figure 1.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 3, May 2001.
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Fig. 2. FJ: Typing rules.

The given class table is assumed to satisfy some sanity conditions: (1)
CT (C)= class C . . . for every C∈dom(CT ); (2) Object /∈dom(CT ); (3) for every
class name C (except Object) appearing anywhere in CT , we have C ∈ dom(CT );
and (4) there are no cycles in the subtype relation induced by CT , i.e., the
relation <: is antisymmetric. Given these conditions, we can identify a class
table with a sequence of class declarations in an obvious way. Note that the
types defined by the class table are allowed to be recursive, in the sense that
the definition of a class A may use the name A in the types of its methods and
instance variables. Indeed, even mutual recursion between class definitions
is allowed.
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For the typing and reduction rules, we need a few auxiliary definitions, given
at the bottom of Figure 1. We write m /∈ M̄ to mean that the method definition
of the name m is not included in M̄. The fields of a class C, written fileds(C),
is a sequence C̄ f̄ pairing the class of each field with its name, for all the fields
declared in class C and all of its superclasses. The type of the method m in class
C, written mtype(m,C), is a pair, written B̄→ B, of a sequence of argument types
B̄ and a result type B. (In Java proper, method body lookup is based not only on
the method name but also on the static types of the actual arguments to deal
with overloading, which we drop from FJ). Similarly, the body of the method m in
class C, written mbody(m,C), is a pair, written x̄.e, of a sequence of parameters
x̄ and an expression e. Note that the functions mtype(m,C) and mbody(m,C) are
both partial functions: since Object is assumed to have no methods in FJ, both
mtype(m,Object) and mbody(m,Object) are undefined.

2.2 Typing

The typing rules for expressions, method declarations, and class declarations
are in Figure 2. An environment 0 is a finite mapping from variables to types,
written x̄:C̄. The typing judgment for expressions has the form 0 ` e : C, read
“in the environment 0, expression e has type C.” We abbreviate typing judg-
ments on sequences in the obvious way, writing 0 ` ē : C̄ as shorthand for 0 `
e1 : C1, . . . , 0 ` en : Cn and writing C̄ <: D̄ as shorthand for C1 <: D 1, . . . , Cn <: D n.
The typing rules are syntax directed, with one rule for each form of expression,
save that there are three rules for casts. Most of them are straightforward
adaptations of the rules in Java; the typing rules for constructors and method
invocations check that each actual parameter has a type that is a subtype of
the corresponding formal parameter type.

One technical innovation in FJ is the introduction of “stupid” casts. There
are three rules for type casts: in an upcast the subject is a subclass of the target;
in a downcast the target is a subclass of the subject; and in a stupid cast the
target is unrelated to the subject. The Java compiler rejects as ill typed an
expression containing a stupid cast, but we must allow stupid casts in FJ if we
are to formulate type soundness as a subject reduction theorem for a small-step
semantics. This is because an expression without stupid casts may reduce to
one containing a stupid cast. For example, consider the following, which uses
classes A and B as defined in the previous section:

(A)(Object)new B()→ (A)new B()

We indicate the special nature of stupid casts by including the hypothesis stupid
warning in the type rule for stupid casts (T-SCAST); an FJ typing corresponds
to a legal Java typing only if it does not contain this rule. (Stupid casts were
omitted from Classic Java [Flatt et al. 1998a], causing its published proof of type
soundness to be incorrect; this error was discovered independently by ourselves
and the Classic Java authors).

The typing judgment for method declarations has the form M OK IN C, read
“method declaration M is ok when it occurs in class C.” It uses the expression
typing judgment on the body of the method, where the free variables are the
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parameters of the method with their declared types, plus the special variable
thiswith type C. (Thus, a method with a parameter of name this is not allowed,
as the type environment is ill formed.) In case of overriding, if a method with
the same name is declared in the superclass, then it must have the same type.

The typing judgment for class declarations has the form L OK, read “class
declaration L is ok.” It checks that the constructor applies super to the fields
of the superclass and initializes the fields declared in this class, and that each
method declaration in the class is ok.

The type of an expression may depend on the type of any methods it invokes,
and the type of a method depends on the type of an expression (its body); so, it
behooves us to check that there is no ill-defined circularity here. Indeed there is
none: the circle is broken because the type of each method is explicitly declared.
It is possible to load the class table and define the auxiliary functions mtype,
mbody, and fields before all the classes in it are checked. Thus, each method body
can independently typecheck, without inspecting the bodies of other methods
it may invoke.

2.3 Reduction

The reduction relation is of the form e→ e′, read “expression e reduces
to expression e′ in one step.” We write→∗ for the reflexive and transitive
closure of→.

The reduction rules are given in Figure 3. There are three reduction rules,
one for field access, one for method invocation, and one for casting. These were
already explained in the introduction to this section. We write [d̄/x̄, e/y]e0 for
the result of replacing x1 by d1, . . . , xn by dn, and y by e in expression e0.

The reduction rules may be applied at any point in an expression, so we
also need the obvious congruence rules (if e→e′ then e.f→ e′.f, and the like),
which also appear in the figure.2

2.4 Properties

Formal definitions are fun, but the proof of the pudding is in . . .well, the proof. If
our definitions are sensible, we should be able to prove a type soundness result,
which relates typing to computation. Indeed, we can prove such a result: if a
term is well typed and it reduces to a normal form, then it is either a value
of a subtype of the original term’s type, or an expression that gets stuck at a
downcast. The type-soundness theorem (Theorem 2.4.3) is proved by using the
standard technique of subject reduction and progress theorems [Wright and
Felleisen 1994].

THEOREM 2.4.1 (Subject Reduction). If 0 ` e : C and e → e′, then 0 ` e′ :
C′ for some C′ <: C.

PROOF. See Appendix A.1.

2We have chosen here to work with a nondeterministic reduction relation, similar to the full beta-
reduction relation of the lambda-calculus. Naturally, more restricted reduction strategies can also
be defined. For example, a call-by-value variant of FJ can be found in Pierce [2002].

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 3, May 2001.



P1: IBD
CM026A-03 ACM-TRANSACTION January 23, 2002 17:39

Featherweight Java • 407

Fig. 3. FJ: Reduction rules.

We can also show that if a program is well-typed, then the only way it can
get stuck is if it reaches a point where it cannot perform a downcast.

THEOREM 2.4.2 (Progress). Suppose e is a well-typed expression.

(1) If e includes new C0(ē).f as a subexpression, then fields(C0) = C̄ f̄ and f ∈ f̄
for some C̄ and f̄.

(2) If e includes new C0(ē)·m(d̄) as a subexpression, then mbody(m, C0) = x̄.e0
and #(x̄) = #(d̄) for some x̄ and e0.

PROOF. If e has new C0(ē).f as a subexpression, then, by well-typedness of
the subexpression, it is easy to check that fields(C0) is well defined and f appears
in it. Similarly, if e has new C0(ē).m(d̄) as a subexpression, then, it is also easy
to show mbody(m, C)= x̄.e0 and #(x̄)= #(d̄) from the fact that mtype(m, C)= C̄→ D
where #(x̄) = #(C̄).

To state type soundness formally, we give the definition of values, given by
the following syntax:

v ::= new C(v̄).
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THEOREM 2.4.3 (FJ Type Soundness). If ∅ ` e : C and e →∗ e′ with e′ a
normal form, then e′ is either a value v with ∅ ` v : D and D <: C, or an expression
containing (D)new C(ē) where C <: D.

PROOF. Immediate from Theorems 2.4.1 and 2.4.2.

To state a similar property for casts, we say that an expression e is cast-
safe in 0 if the type derivations of the underlying CT and 0 ` e : C contain no
downcasts or stupid casts (uses of rules T-DCast or T-SCast). In other words, a
cast-safe program includes only upcasts. Then we see that a cast-safe expression
always reduces to another cast-safe expression, and, moreover, typecasts in a
cast-safe expression never fail, as shown in the following pair of theorems. (The
proofs are straightforward).

THEOREM 2.4.4 (Reduction Preserves Cast-Safety). If e is cast-safe in 0 and
e → e′, then e′ is cast-safe in 0.

THEOREM 2.4.5 (Progress of Cast-Safe Programs). Suppose e is cast-safe in
0. If e has (C)new C0(ē) as a subexpression, then C0 <: C.

COROLLARY 2.4.6 (No Typecast Errors in Cast-Safe Programs). If e is cast-
safe in ∅ and e →∗ e′ with e′ a normal form, then e′ is a value v.

3. FEATHERWEIGHT GJ

Just as GJ adds generic types to Java, Featherweight GJ (or FGJ, for short)
adds generic types to FJ. Here is the class definition for pairs in FJ, rewritten
with generic type parameters in FGJ.

class A extends Object {
A() { super(); }
}
class B extends Object {

B() { super(); }
}
class Pair<X extends Object, Y extends Object> extends Object {

X fst;

Y snd;

Pair(X fst, Y snd) {
super(); this.fst=fst; this.snd=snd;

}
<Z extends Object> Pair<Z,Y> setfst(Z newfst) {

return new Pair<Z,Y>(newfst, this.snd);

}
}

Both classes and methods may have generic type parameters. Here X and Y are
parameters of the class, and Z is a parameter of the method setfst. Each type
parameter has a bound; here X, Y, and Z are each bounded by Object.
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In the context of the above definitions, the expression

new Pair<A,B>(new A(), new B()).setfst<B>(new B())

evaluates to the expression

new Pair<B,B>(new B(), new B())

If we were being extraordinarily pedantic, we would write A<> and B<> instead
of A and B, but we allow the latter as an abbreviation for the former in order
that FJ is a proper subset of FGJ.

In GJ, type parameters to generic method invocations are inferred. Thus, in
GJ the expression above would be written

new Pair<A,B>(new A(), new B()).setfst(new B())

with no <B> in the invocation of setfst. So while FJ is a subset of Java, FGJ is not
quite a subset of GJ. We regard FGJ as an intermediate language—the form that
would result after type parameters have been inferred. (In fact, type arguments
are not even optional in GJ: it is not allowed to supply explicit type arguments
to a generic method, due to a parsing problem. For example, the GJ expression
e.m<A,B>(e′) is parsed as the two expressions “e.m < A” and “B > (e′)”, separated
by a comma. One possible way to have control over inferred type arguments is
to change the (static) types of (value) arguments by inserting upcasts on them;
see the GJ paper by Bracha et al. [1998] for details.) While parameter inference
is an important aspect of GJ, we chose in FGJ to concentrate on modeling other
aspects of GJ.

The bound of a type variable may not be a type variable, but may be a type
expression involving type variables, and may be recursive (or even, if there are
several bounds, mutually recursive). For example, if C<X> and D<Y> are classes
with one parameter each, one may have bounds such as <X extends C<X>>
or even <X extends C<Y>, Y extends D<X>>. For more on bounds, includ-
ing examples of the utility of recursive bounds, see the GJ paper by
Bracha et al. [1998].

GJ and FGJ are intended to support either of two implementation styles.
They may be implemented by type-passing, augmenting the runtime system
to carry information about type parameters, or they may be implemented by
erasure, removing all information about type parameters at runtime. This
section explores the first style, giving a direct semantics for FGJ that maintains
type parameters, and proving a type soundness theorem. Section 4 explores
the second style, giving an erasure mapping from FGJ into FJ and showing a
correspondence between reductions on FGJ expressions and reductions on FJ
expressions. The second style corresponds to the current implementation of GJ,
which compiles GJ into the Java Virtual Machine (JVM), which of course main-
tains no information about type parameters at runtime; the first style would
correspond to using an augmented JVM that maintains information about
type parameters.
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Fig. 4. FJ: Syntax.

3.1 Syntax

The abstract syntax of FGJ is given in Figure 4. In what follows, for the sake of
conciseness we abbreviate the keyword extends to the symbol �. The metavari-
ables X, Y, and Z range over type variables; S, T, U, and V range over types; and
N, P, and Q range over nonvariable types (types other than type variables). We
write X̄ as shorthand for X1,. . . ,Xn (and similarly for T̄, N̄, etc.), and assume se-
quences of type variables contain no duplicate names. We allow C<> and m<> to
be abbreviated as C and m, respectively.

As before, we assume a fixed class table CT, a mapping from class names C to
class declarations L and the essentially same sanity conditions. (For condition
(4), we use the relation CE D between class names, defined in Figure 5, as the
reflexive and transitive closure induced by the clause C<X̄� N̄>� D<T̄>.)

As in FJ, for the typing and reduction rules, we need a few auxiliary def-
initions, given in Figure 5; these are fairly straightforward adaptations of
the lookup rules given previously. The fields of a nonvariable type N, written
fields(N), are a sequence of corresponding types and field names, T̄ f̄. The type
of the method invocation m at nonvariable type N, written mtype(m, N), is a type
of the form <X̄� N̄>Ū→ U. In this form, the variables X̄ are bound in N̄, Ū, and U,
and we regard α-convertible ones as equivalent; application of type substitution
[T̄/X̄] is defined in the customary manner. When X̄� N̄ is empty, we abbreviate
<>Ū→ U to Ū→ U. The body of the method invocation m at nonvariable type Nwith
type parameters V̄, written mbody(m<V̄>, N), is a pair, written x̄.e, of a sequence
of parameters x̄ and an expression e.

3.2 Typing

An environment0 is a finite mapping from variables to types, written x̄:T̄; a type
environment 1 is a finite mapping from type variables to nonvariable types,
written X̄ <: N̄, which takes each type variable to its bound. The main judgments
of the FGJ type system consist of one for subtyping1 ` S <: T, one for type well-
formedness 1 ` T ok, and one for typing 1;0 ` e : T. We abbreviate a sequence
of judgments in the obvious way: 1 ` S1 <: T1, . . . , 1 ` Sn <: Tn to 1 ` S̄ <: T̄;
1 ` T1 ok, . . . , 1 ` Tn ok to 1 ` T̄ ok; and 1;0 ` e1:T1, . . . , 1;0 ` en:Tn
to 1;0 ` ē : T̄.
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Fig. 5. FGJ: Auxiliary functions.

Bounds of types. We write bound1(T) for the upper bound of T in1, as defined
in Figure 6. Unlike calculi such as F≤ [Cardelli et al. 1994], this promotion
relation does not need to be defined recursively: the bound of a type variable is
always a nonvariable type.

Subtyping. The subtyping relation 1 ` S <: T, read as “S is subtype of T in
1,” is defined in Figure 6. As before, subtyping is the reflexive and transitive
closure of the extends relation. Type parameters are invariant with regard to
subtyping (for the usual reasons; a type parameter can be both argument and
result type of one method), so 1 ` T̄ <: Ū does not imply 1 ` C<T̄> <: C<Ū>.

Well-formed types. If the declaration of a class C begins class C<X̄� N̄>,
then a type like C<T̄> is well formed only if substituting T̄ for X̄ respects the
bounds N̄, i.e., if T̄ <: [T̄/X̄]N̄. We write 1 ` T ok if type T is well formed in
context 1. The rules for well-formed types appear in the middle of Figure 6.
Note that we perform a simultaneous substitution, so any variable in X̄ may
appear in N̄, permitting recursion and mutual recursion between variables
and bounds.
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Fig. 6. FGJ: Subtyping and type well-formedness rules.

A type environment 1 is well formed if 1 ` 1(X) ok for all X in dom(1).
We also say that an environment 0 is well formed with respect to 1, written
1 ` 0 ok, if 1 ` 0(x) ok for all x in dom(0).

Typing rules. Typing rules for expressions, methods, and classes appear in
Figure 7. The typing judgment for expressions is of the form 1;0 ` e:T, read
as “in the type environment 1 and the environment 0, the expression e has
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Fig. 7. FGJ: Typing rules.

type T.” Most of the subtleties are in the field and method lookup relations that
we have already seen; the typing rules themselves are straightforward.

In the rule GT-DCAST, the last premise dcast(C, D) ensures that the result
of the cast will be the same at runtime, no matter whether we use the high-
level (type-passing) reduction rules defined later in this section or the erasure
semantics considered in Section 4. Intuitively, when C<T̄> <: D<Ū> holds, all the
type arguments T̄ of C must “contribute” for the relation to hold. For example,
suppose we have defined the following two classes:
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class List<X� Object>� Object {. . . }
class LinkedList<X� Object>� List<X> {. . . }

Now, if o has type Object, then the cast (List<C>)o is not permitted. (If, at run-
time, o is bound to new List<D>(), then the cast would fail in the type-passing
semantics but succeed in the erasure semantics, since (List<C>)o erases to
(List)o while both new List<C>() and new List<D>() erase to new List().)
On the other hand, if cl has type List<C>, then the cast (LinkedList<C>)cl
is permitted, since the type-passing and erased versions of the cast are guar-
anteed to either both succeed or both fail. The formal definition of dcast(C, D)
appears in Figure 6. (In GJ, raw types are provided to overcome the lack of
expressiveness caused by this restriction. In the above example, programmers
could write an expression like (List)o, instead of (List<C>)o, though type ar-
gument information is lost at that point; here, the type List is called the raw
type from the class List. For simplicity, we do not model raw types in this article
and are currently working on them [Igarashi et al. 2001].)

The typing rule for methods contains one additional subtlety. In FGJ (and
GJ), unlike in FJ (and Java), covariant overriding on the method result type
is allowed (see the rule for valid method overriding at the bottom of Figure 6),
i.e., the result type of a method may be a subtype of the result type of the
corresponding method in the superclass, although the bounds of type variables
and the argument types must be identical (modulo renaming of type variables).

As before, a class table is ok if all its class definitions are ok.

3.3 Reduction

The operational semantics of FGJ programs is only a little more compli-
cated than what we had in FJ. The rules appear in Figure 8. In the
rule GR-CAST, the empty environment ∅ indicates the fact that whether or
not N is a subtype of P must be checked without information on runtime
type arguments.

3.4 Properties

Type Soundness. FGJ programs enjoy subject reduction, progress prop-
erties, and thus a type soundness property exactly like programs in FJ
(Theorems 3.4.1, 3.4.2, and 3.4.3), The basic structures of the proofs are simi-
lar to those of Theorems 2.4.1 and 2.4.2. For subject reduction, however, since
we now have parametric polymorphism combined with subtyping, we need a
few more lemmas The main lemmas required are a term substitution lemma
as before, plus similar lemmas about the preservation of subtyping and typ-
ing under type substitution. (Readers familiar with proofs of subject reduction
for typed lambda-calculi like F≤ [Cardelli et al. 1994] will notice many simi-
larities). The required lemmas include three substitution lemmas, which are
proved by straightforward induction on a derivation of 1 ` S <: T or 1;0 ` e:T.
In the following proof, the underlying class table is assumed to be ok.

THEOREM 3.4.1 (Subject Reduction). If 1;0 ` e:T and e→ e′, then 1;0 `
e′:T′, for some T′ such that 1 ` T′ <: T.
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Fig. 8. FGJ: Reduction rules.

PROOF. See Appendix A.2.

THEOREM 3.4.2 (Progress). Suppose e is a well-typed expression.

(1) If e includes new N0(ē).f as a subexpression, then fields(N0) = T̄ f̄ and f∈ f̄
for some T̄ and f̄.

(2) If e includes new N0(ē).m<V̄>(d̄) as a subexpression, then mbody(m<V̄>, N0) =
x̄.e0 and #(x̄) = #(d̄) for some x̄ and e0.

PROOF. Similar to the proof of Theorem 2.4.2.

As we did for FJ, we will give the definition of FGJ values below, to state FGJ
type soundness formally:

w ::= new N(w̄).

THEOREM 3.4.3 (FGJ Type Soundness). If ∅; ∅ ` e : T and e→∗ e′ with e′ a
normal form, then e′ is either (1) an FGJ value w with ∅; ∅ ` w : S and ∅ ` S <: T
or (2) an expression containing (P)new N(ē) where ∅ ` N <: P.

PROOF. Immediate from Theorems 3.4.1 and 3.4.2.
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Backward compatibility. FGJ is backward compatible with FJ. Intuitively,
this means that an implementation of FGJ can be used to typecheck and execute
FJ programs without changing their meaning. In the following statements, we
use subscripts FJ or FGJ to show which set of rules is used.

LEMMA 3.4.4. If CT is an FJ class table, then fieldsFJ(C) = fieldsFGJ(C) for
all C∈dom(CT).

LEMMA 3.4.5. Suppose CT is an FJ class table. Then, mtypeFJ(m, C)= C̄→ C
if and only if mtypeFGJ(m,C)= C̄→ C. Similarly, mbodyFJ(m, C)= x̄.e if and only
if mbodyFGJ(m, C) = x̄.e.

PROOF. Both lemmas are easy. Note that in an FJ class table all substitutions
in the derivations are empty and that there are no polymorphic methods.

We can show that a well-typed FJ program is always a well-typed FGJ pro-
gram and that FJ and FGJ reduction correspond. (Note that it is not quite the
case that the well-typedness of an FJ program under the FGJ rules implies its
well-typedness in FJ, because FGJ allows covariant overriding and FJ does not.
In other words, FGJ is not a conservative extension of FJ).

THEOREM 3.4.6 (Backward Compatibility). If an FJ program (e, CT) is well
typed under the typing rules of FJ, then it is also well typed under the rules
of FGJ. Moreover, for all FJ programs e and e′ (whether well typed or not),
e→FJ e′ if and only if e→FGJ e′.

PROOF. The first half is shown by straightforward induction on the deriva-
tion of 0 ` e : C (using FJ typing rules), followed by an analysis of the rules
T-METHOD and T-CLASS. In the proof of the second half, both directions are shown
by induction on a derivation of the reduction relation, with a case analysis on
the last rule used.

4. COMPILING FGJ TO FJ

We now explore the second implementation style for GJ and FGJ. The current
GJ compiler works by translation into the standard JVM, which maintains no
information about type parameters at runtime. We model this compilation in
our framework by an erasure translation from FGJ into FJ. We show that this
translation maps well-typed FGJ programs into well-typed FJ programs, and
that the behavior of a program in FGJ matches (in a suitable sense) the behavior
of its erasure under the FJ reduction rules.

A program is erased by replacing types with their erasures, inserting down-
casts where required. A type is erased by removing type parameters, and re-
placing type variables with the erasure of their bounds. For example, the class
Pair<X,Y> in the previous section erases to the following:

class Pair extends Object {
Object fst;

Object snd;

Pair(Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd;
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}
Pair setfst(Object newfst) {

return new Pair(newfst, this.snd);

}
}

Similarly, the field selection

new Pair<A,B>(new A(), new B()).snd

erases to

(B)new Pair(new A(), new B()).snd

where the added downcast (B) recovers type information of the original pro-
gram. We call such downcasts inserted by erasure synthetic. A key property of
the erasure transformation is that it satisfies a so-called cast-iron guarantee:
if the FGJ program is well typed, then no downcast inserted by the erasure
transformation will fail at runtime. In the following discussion, we often dis-
tinguish synthetic casts from typecasts derived from original FGJ programs
by superscripting typecast expressions, writing (C)se. Otherwise, they behave
exactly the same as ordinary typecasts.

4.1 Erasure of Types

To erase a type, we remove any type parameters and replace type variables with
the erasure of their bounds. Write |T|1 for the erasure of type T with respect to
type environment 1, defined by

|T|1= C

where bound1(T)= C<T̄>.

4.2 Field and Method Lookup

In FGJ (and GJ), a subclass may extend an instantiated superclass. This means
that, unlike in FJ (and Java), the types of the fields and the methods in the
subclass may not be identical to the types in the superclass. In order to specify
a type-preserving erasure from FGJ to FJ, it is necessary to define additional
auxiliary functions that look up the type of a field or method in the highest
superclass in which it is defined.

For example, consider a slight variant of the generic class Pair<X,Y>, where
the method setfst is not declared to be polymorphic, taking an argument of
the same element type X:

class Pair<X extends Object, Y extends Object> extends Object {
X fst; Y snd;

Pair(X fst, Y snd) {
super(); this.fst=fst; this.snd=snd;

}
Pair<X,Y> setfst(X newfst) {
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return new Pair<X,Y>(newfst, this.snd);

}
}

Note that the erasure of this class is the same as above. Then, a subclass
PairOfA, declared below as a subclass of the instantiation Pair<A,A>, instanti-
ates both X and Y.

class PairOfA extends Pair<A,A> {
PairOfA(A fst, A snd) { super(fst, snd); }
PairOfA setfst(A newfst) {

return new PairOfA(newfst, this.snd);

}
}

In the setfst method, the argument type A matches the argument type of
setfst in Pair<A,A>, while the result type PairOfA is a subtype of the result
type in Pair<A,A>; this is permitted by FGJ’s covariant subtyping, as discussed
in the previous section. Erasing the class PairOfA yields the following:

class PairOfA extends Pair {
PairOfA(Object fst, Object snd) { super(fst, snd); }
Pair setfst(Object newfst) {

return new PairOfA((A)newfst, (A)this.snd);

}
}

Here, arguments to the constructor and the method are given type Object, even
though the erasure of A is itself; and the result of the method is given type Pair,
even though the erasure of PairOfA is itself. In both cases, the types are chosen
to correspond to types in Pair, the highest superclass in which the fields and
methods are defined. Notice that the synthetic cast (A) is inserted at where
the parameter newfst appears: it is required to recover type information of the
original program, as well as the one at this.snd.

We define variants of the auxiliary functions that find the types of fields and
methods in the highest superclass in which they are defined. The maximum
field types of a class C, written fieldsmax(C), is the sequence of pairs of a type
and a field name defined as follows:

fieldsmax(Object) = •

class C<X̄� N̄>� D<Ū> {T̄ f̄; ... }
1= X̄<:N̄ C̄ ḡ=fieldsmax(D)

fieldsmax(C)= C̄ ḡ, |T̄|1 f̄

The maximum method type of m in C, written mtypemax(m, C), is defined
as follows:

class C<X̄� N̄>� D<Ū> {...} <Ȳ� P̄>T̄→ T=mtype(m, D<Ū>)
mtypemax(m, C)=mtypemax(m, D)
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class C<X̄� N̄>� D<Ū> {... M̄ } mtype(m, D<Ū>) undefined
<Ȳ� P̄> T m(T̄ x̄){ return e; } ∈ M̄ 1= X̄ <: N̄, Ȳ <: P̄

mtypemax(m, C)= |T̄|1→|T|1
We also need a way to look up the maximum type of a given field. If
fieldsmax(C) = D̄ f̄, then we set fieldsmax(C) (fi) = Di.

4.3 Erasure of Expressions

The erasure of an expression depends on the typing of that expression, since
the types are used to determine which downcasts to insert. The erasure rules
are optimized to omit casts when it is trivially safe to do so; this happens when
the maximum type is equal to the erased type.

Write |e|1,0 for the erasure of a well-typed expression e with respect to en-
vironment 0 and type environment 1:

|x|1,0 = x (E-VAR)

1;0 ` e0.f:T 1;0 ` e0 : T0

fieldsmax(|T0|1)(f) = |T|1
|e0.f|1,0 = |e0|1,0.f

(E-FIELD)

1;0 ` e0.f : T 1;0 ` e0:T0

fieldsmax(|T0|1)(f) 6= |T|1
|e0.f|1,0 = (|T|1)s|e0|1,0.f

(E-FIELD-CAST)

1;0 ` e0.m<V̄>(ē):T 1;0 ` e0:T0

mtypemax(m, |T0|1) = C̄→ D D = |T|1
|e0.m<V̄>(ē)|1,0 = |e0|1,0.m(|ē|1,0)

(E-INVK)

1;0 ` e0.m<V̄>(ē) : T 1;0 ` e0 : T0

mtypemax(m, |T0|1) = C̄→ D D 6= |T|1
|e0.m<V̄>(ē)|1,0 = (|T|1)s|e0|1,0.m(|ē|1,0)

(E-INVK-CAST)

|new N(ē)|1,0 = new |N|1(|ē|1,0) (E-NEW)

|(N)e0|1,0 = (|N|1) |e0|1,0 (E-CAST)

(Strictly speaking, we should think of the erasure operation as acting on typing
derivations rather than expressions. Since well-typed expressions are in 1-1
correspondence with their typing derivations, the abuse of notation creates
no confusion).
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4.4 Erasure of Methods and Classes

The erasure of a method mwith respect to type environment1 in class C, written
|M|1,C, is defined as follows:

0 = x̄:T̄, this : C<X̄> 1 = X̄ <: N̄, Ȳ<:P̄

mtypemax(m, C) = D̄→ D ei =
{
xi
′ if Di = |Ti|1

(|Ti|1)sxi
′ otherwise

|<Ȳ� P̄> T m(T̄ x̄){ return e0; }|X̄<:N̄,C = D m(D̄ x̄′){ return [ē/x̄]|e0|1,0; }
(E-METHOD)

The erasure of a method definition involves one subtlety, as discussed in the
example of PairOfA. When the erasure |Ti|1 of the type of a parameter is differ-
ent from the corresponding argument type from mtypemax, the synthetic cast
(|Ti|1)s has to be inserted everywhere the parameter appears.

Remark. In GJ, the actual erasure is somewhat more complex, involving
the introduction of bridge methods, so that one ends up with two overloaded
methods: one with the maximum type and one with the instantiated type. For
example, the erasure of PairOfA would be

class PairOfA extends Pair {
PairOfA(Object fst, Object snd) {

super(fst, snd);

}
Pair setfst(A newfst) {

return new PairOfA(newfst, (A)this.snd);

}
Pair setfst(Object newfst) {

return this.setfst((A)newfst);

}
}

where the second definition of setfst is the bridge method, which over-
rides the definition of setfst in Pair. We do not model that extra complex-
ity here, because it depends on overloading of method names, which is not
modeled in FJ; here, instead, the rule E-METHOD merges two methods into
one by inline-expanding the body of the actual method into the body of the
bridge method.

The erasure of constructors and classes is

|C(Ū ḡ, T̄ f̄) {super(ḡ); this.f̄ = f̄;}|C (E-CONSTRUCTOR)= C(fieldsmax(C)) {super(ḡ); this.f̄ = f̄;}

1 = X̄<:N̄

|class C<X̄ extends N̄> extends N {T̄ f̄; K M̄}|
= class C extends |N|1{|T̄|1 f̄; |K|C |M̄|1,C}

(E-CLASS)

We write |CT| for the erasure of a class table CT, defined in the obvious way.
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Fig. 9. Commuting diagram.

4.5 Properties of Compilation

Having defined erasure, we may investigate some of its properties. As in the
discussion of backward compatibility, we often use subscripts FJ or FGJ to
avoid confusion.

Preservation of typing. First, a well-typed FGJ program erases to a well-
typed FJ program, as expected; moreover, synthetic casts are not stupid.

THEOREM 4.5.1 (Erasure Preserves Typing). If an FGJ class table CT is ok
and 1;0 `FGJ e:T, then |CT| is ok using the FJ typing rules and |0|1 `FJ
|e|1,0:|T|1. Moreover, every synthetic cast in |CT| and |e|1,0 does not involve a
stupid warning.

PROOF. See Appendix A.3.

Preservation of execution. More interestingly, we would intuitively expect
that erasure from FGJ to FJ should also preserve the reduction behavior of FGJ
programs, as in the commuting diagram shown in Figure 9. Unfortunately, this
is not quite true. For example, consider the FGJ expression

e = new Pair<A,B>(a,b).fst,

where a and b are expressions of type A and B, respectively, and consider its
erasure

|e|1,0 = (A)snew Pair(|a|1,0,|b|1,0).fst.

In FGJ, e reduces to a, while the erasure |e|1,0 reduces to (A)s|a|1,0 in FJ; it does
not reduce to |a|1,0 when a is not a new expression. (Note that it is not an artifact
of our nondeterministic reduction strategy: it happens even if we adopt a call-
by-value reduction strategy, since, after method invocation, we may obtain an
expression like (A)se where e is not a new expression.) Thus, the above diagram
does not commute even if one-step reduction (→) at the bottom is replaced with
many-step reduction (→∗ ). In general, synthetic casts can persist for a while
in the FJ expression, although we expect those casts will eventually turn out
to be upcasts when a reduces to a new expression.

In the example above, an FJ expression d reduced from |e|1,0 had more syn-
thetic casts than |e′|1,0. However, this is not always the case: d may have less
casts than |e′|1,0 when the reduction step involves method invocation. Consider
the FGJ expression

e = new Pair<A,B>(a, b).setfst<B>(b′)
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and its erasure

|e|1,0 = new Pair(|a|1,0,|b|1,0).setfst(|b′|1,0)

where a is an expression of type A and b and b′ are of type B. In FGJ,

e→FGJ new Pair<B,B>(b′,new Pair<A,B>(a,b).snd).

In FJ, on the other hand,

|e|1,0→FJ new Pair(|b′|1,0,new Pair(|a|1,0,|b|1,0).snd)

which has fewer synthetic casts than

new Pair(|b′|1,0,(B)
snew Pair(|a|1,0,|b|1,0).snd),

which is the erasure of the reduced expression in FGJ. The subtlety we observe
here is that when the erased term is reduced, synthetic casts may become
“coarser” than the casts inserted when the reduced term is erased, or may be
removed entirely as in this example. (Removal of downcasts can be considered
as a combination of two operations: replacement of (A)s with the coarser cast
(Object)s and removal of the upcast (Object)s, which does not affect the result
of computation.)

To formalize both of these observations, we define an auxiliary relation that
relates FJ expressions differing only by the addition and replacement of some
synthetic casts. Suppose 0 `FJ e:C. Let us call an expression d an expansion of
e under 0, written 0 ` e

exp⇒ d, if d is obtained from e by some combination of (1)
addition of zero or more synthetic upcasts; (2) replacement of some synthetic
casts (D)s with (C)s, where C is a supertype of D; or (3) removal of some synthetic
casts, and 0 `FJ d:D for some D.

Example 4.5.2. Suppose 0 = x:A, y:B, z:B for given classes A and B. Then,

0 ` x
exp⇒ (A)sx

and

0 ` new Pair(z,(B)snew Pair(x,y).snd)
exp⇒ new Pair(z,new Pair(x,y).snd).

Then, reduction commutes with erasure modulo expansion:

THEOREM 4.5.3 (Erasure Preserves Reduction Modulo Expansion). If
1;0 ` e:T and e→ ∗

FGJ e′, then there exists some FJ expression d′ such that
|0|1 ` |e′|1,0

exp⇒ d′ and |e|1,0→∗FJ d
′. In other words, the diagram in Figure 10

commutes.

PROOF. See Appendix A.4.

Conversely, for the execution of an erased expression, there is a correspond-
ing execution in FGJ semantics:

THEOREM 4.5.4 (Erased Program Reflects FGJ Execution). Suppose that
1;0 ` e:T and |0|1 ` |e|1,0

exp⇒ d. If d reduces to d′ with zero or more steps
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Fig. 10.

Fig. 11.

by removing synthetic casts, followed by one step by other kinds of reduction,
then e→FGJ e′ for some e′ and |0|1 ` |e′|1,0

exp⇒ d′. In other words, the diagram
shown in Figure 11 commutes.

PROOF. Also see Appendix A.4.

As easy corollaries of these theorems, it can be shown that, if an FGJ expres-
sion e reduces to a “fully evaluated expression,” then the erasure of e reduces
to exactly its erasure and vice versa. Similarly, if FGJ reduction gets stuck at
a stupid cast, then FJ reduction also gets stuck because of the same typecast
and vice versa.

COROLLARY 4.5.5 (Erasure Preserves Execution Results). If 1;0 ` e:T and
e→ ∗

FGJ w, then |e|1,0→ ∗
FJ |w|1,0. Similarly, if 1;0 ` e:T and |e|1,0→ ∗

FJ v,
then there exists an FGJ value w such that e→ ∗

FGJ w and |w|1,0 = v.

PROOF. By Theorem 4.5.3, there must exist an FJ expression d such that
|e|1,0 → ∗

FGJ d and |0|1 ` |w|1,0
exp⇒ d. Since the FJ value |w|1,0 does not include

any typecasts, d is obtained only by adding some (synthetic) upcasts. Therefore,
d reduces to |w|1,0.

The second part follows from a similar argument using Theorem 4.5.4.

COROLLARY 4.5.6 (Erasure Preserves Typecast Errors). If 1;0 ` e:T and
e→ ∗

FGJ e′, where e′ has a stuck subexpression (C < S̄>)new D<T̄>(ē), then
|e|1,0→ ∗

FJ d′ such that d′ has a stuck subexpression (C)new D(d̄), where d̄
are expansions of the erasures of ē, at the same position (modulo synthetic
casts) as the erasure of e′. Similarly, if 1;0 ` e:T and |e|1,0→ ∗

FJ e′, where
e′ has a stuck subexpression (C)new D(ē), then there exists an FGJ expression
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d such that e→ ∗
FGJ d and |0|1 ` |d|1,0

exp⇒ e′ and d has a stuck subexpression
(C<S̄>)new D<T̄>(d̄), where ē are expansions of the erasures of d̄, at the same
position (modulo synthetic casts) as e′.

PROOF. Similar to the proof of Corollary 4.5.5 using Theorem 4.5.4.

5. RELATED WORK

Core calculi for Java. There are several known proofs in the literature of
type soundness for subsets of Java. In the earliest, Drossopoulou et al. [1999]
(using a technique later mechanically checked by Syme [1997]) prove soundness
for a fairly large subset of sequential Java. Like us, they use a small-step op-
erational semantics, but they avoid the subtleties of “stupid casts” by omitting
casting entirely. Nipkow and von Oheimb [1998] give a mechanically checked
proof of soundness for a somewhat larger core language. Their language does in-
clude casts, but it is formulated using a “big-step” operational semantics, which
sidesteps the stupid cast problem. Flatt et al. [1998a; 1998b] use a small-step
semantics and formalize a language with both assignment and casting. Their
system is somewhat larger than ours (the syntax, typing, and operational se-
mantics rules take perhaps three times the space), and the soundness proof,
though correspondingly longer, is of similar complexity. Their published proof
of subject reduction in the earlier version is slightly flawed—the case that moti-
vated our introduction of stupid casts is not handled properly—but the problem
can be repaired by applying the same refinement we have used here.

Of these three studies, that of Flatt et al. is closest to ours in an important
sense: the goal there, as here, is to choose a core calculus that is as small as
possible, capturing just the features of Java that are relevant to some particular
task. In their case, the task is analyzing an extension of Java with Common
Lisp style mixins—in ours, extensions of the core type system. The goal of the
other two systems, on the other hand, is to include as large a subset of Java as
possible, since their primary interest is proving the soundness of Java itself.

Other class-based object calculi. The literature on foundations of object-
oriented languages contains many papers formalizing class-based object-
oriented languages, either taking classes as primitive (e.g., Wand [1989], Bruce
[1994], Bono et al. [1999a; 1999b]) or translating classes into lower-level
mechanisms (e.g., Fisher and Mitchell [1998], Bono and Fisher [1998], Abadi
and Cardelli [1996], and Pierce and Turner [1994]). Some of these systems
(e.g., Pierce and Turner [1994] and Bruce [1994]) include generic classes and
methods, but only in fairly simple forms.

Generic extensions of Java. A number of extensions of Java with generic
classes and methods have been proposed by various groups, including the lan-
guage of Agesen et al. [1997]; PolyJ, by Myers et al. [1997]; Pizza, by Odersky
and Wadler [1997]; GJ, by Bracha et al. [1998]; NextGen, by Cartwright and
Steele Jr. [1998]; and LM, by Viroli and Natali [2000]. While all these languages
are believed to be typesafe, our study of FGJ is the first to give rigorous proof
of soundness for a generic extension of Java. We have used GJ as the basis

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 3, May 2001.



P1: IBD
CM026A-03 ACM-TRANSACTION January 23, 2002 17:39

Featherweight Java • 425

for our generic extension, but similar techniques should apply to the forms of
genericity found in the rest of these languages.

Recently, Duggan [1999] has proposed a technique to translate monomorphic
classes to parametric classes by inferring type argument information. He has
also defined a polymorphic extension of Java, slightly less expressive than GJ
(for example, polymorphic methods are not allowed, and a subclass must have
the same number of type arguments as its superclass). The type soundness
theorem of the language is mentioned, but the stupid cast problem is not taken
into account.

6. DISCUSSION

We have presented Featherweight Java, a core language for Java modeled
closely on the lambda-calculus and embodying many of the key features of
Java’s type system. FJ’s definition and proof of soundness are both concise and
straightforward, making it a suitable arena for the study of ambitious exten-
sions to the type system, such as the generic types of GJ. We have developed
this extension in detail, stated some of its fundamental properties, and given
their proofs.

It was pleasing to discover that FGJ could be formulated as a straightforward
extension of FJ, giving us additional confidence that the design of GJ was on the
right track. Our investigation of FGJ led us to uncover one bug in the compiler,
involving a subtle relation between subtyping and raw types (see below). Most
importantly, however, FGJ has given us useful vocabulary and notation for
thinking about the design of GJ.

FJ itself is not quite complete enough to model some of the interesting sub-
tleties found in GJ. In particular, the full GJ language allows some parameters
to be instantiated by a special “bottom type” *, using a delicate rule to avoid
unsoundness in the presence of assignment. Moreover, nonstandard subtyping
like C<*> <: C<T> is allowed when the type argument of the left-hand side is *
(recall that type constructors are invariant). Capturing the relevant issues in
FGJ would require extending it with assignment and null values (both of these
extensions seem straightforward, but cost us some of the pleasing compactness
of FJ as it stands). Another subtle aspect of GJ that is not accurately modeled
in FGJ is the use of bridge methods in the compilation from GJ to JVM byte-
codes. To treat this compilation exactly as GJ does, we would need to extend FJ
with overloading.

The present formalization of GJ also does not include raw types, a unique
aspect of the GJ design that supports compatibility between old, unparameter-
ized code and new, parameterized code. We are currently experimenting with
an extension of FGJ with raw types. A preliminary result [Igarashi et al. 2001]
has already uncovered that the currently implemented typing system (version
0.6m, as of August 1999) of raw types is unsound; a repaired version of the type
system to be incorporated in the next release is proved to be sound.

Formalizing generics has proven to be a useful application domain for FJ,
but there are other areas where its extreme simplicity may yield significant
leverage. Igarashi and Pierce [2000] formalized a core of Java 1.1’s inner classes
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on top of FJ; League, et al. [2001] have developed type-preserving compilation
of FJ to a typed intermediate language; Studer [2000] studied a recursion-
theoretic denotational semantics of FJ; Schultz [2001] has used a variant of FJ
as a formal basis of partial evaluation for class-based object-oriented languages;
and Ancona and Zucca [2001] have developed a module language for Java, where
its core language used for formalization is very close to FJ.

APPENDIX

A.1 Proof of Theorem 2.4.1

Before giving the proof, we develop a number of required lemmas.

LEMMA A.1.1. If mtype(m, D)= C̄→ C0, then mtype(m, C)= C̄→ C0 for all C <: D.

PROOF. Straightforward induction on the derivation of C <: D. Note that
whether m is defined in CT(C) or not, mtype(m, C) should be the same as
mtype(m, E) where class C� E {...}.

LEMMA A.1.2 (Term Substitution Preserves Typing). If 0, x̄ : B̄ ` e : D, and
0 ` d̄:Ā where Ā <: B̄, then 0 ` [d̄/x̄]e : C for some C <: D.

PROOF. By induction on the derivation of 0, x̄ : B̄ ` e : D. The intuitions
are exactly the same as for the lambda-calculus with subtyping (details vary a
little, of course).

Case T-VAR. e = x D = 0(x)

If x 6∈ x̄, then the conclusion is immediate, since [d̄/x̄]x = x. On the other hand,
if x = xi and D = Bi, then, since [d̄/x̄]x = [d̄/x̄]xi = di, letting C = Ai finishes
the case.

Case T-FIELD. e = e0.fi 0, x̄ : B̄ ` e0 : D0
fields(D0) = C̄ f̄ D = Ci

By the induction hypothesis, there is some C0 such that 0 ` [d̄/x̄]e0:C0 and
C0 <: D0. Then, it is easy to show that

fields(C0) = fields(D0), D̄ ḡ

for some D̄ ḡ. Therefore, by the rule T-FIELD, 0 ` ([d̄/x̄]e0).fi:Ci.

Case T-INVK. e = e0.m(ē) 0, x̄ : B̄ ` e0 : D0 mtype(m, D0) = Ē→ D
0, x̄ : B̄ ` ē : D̄ D̄ <: Ē

By the induction hypothesis, there are some C0 and C̄ such that

0 ` [d̄/x̄]e0 : C0 C0 <: D0
0 ` [d̄/x̄]ē : C̄ C̄ <: D̄

By Lemma A.1.1, mtype(m, C0) = Ē→ D. Then, C̄ <: Ē by the transitivity of <:.
Therefore, by the rule T-INVK, 0 ` [d̄/x̄]e0.m([d̄/x̄]ē) : D.

Case T-NEW. e = new D(ē) fields(D) = D̄ f̄
0, x̄ : B̄ ` ē : C̄ C̄ <: D̄
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By the induction hypothesis, there are Ē such that0 ` [d̄/x̄]ē : Ē and Ē <: C̄. Then,
Ē <: D̄, by transitivity of <:. Therefore, by the rule T-NEW, 0 ` new D([d̄/x̄]ē) : D.

Case T-UCAST. e = (D)e0 0, x̄ : B̄ ` e0 : C C <: D

By the induction hypothesis, there is some E such that 0 ` [d̄/x̄]e0:E and
E <: C. Then, E <: D by transitivity of <:; this yields 0 ` (D)([d̄/x̄]e0):D by the
rule T-UCAST.

Case T-DCAST. e = (D)e0 0, x̄ : B̄ ` e0:C D <: C D 6= C

By the induction hypothesis, there is some E such that 0 ` [d̄/x̄]e0 : E and E <: C.
If E <: D or D <: E, then 0 ` (D)([d̄/x̄]e0) : D by the rule T-UCAST or T-DCAST, re-
spectively. On the other hand, if both D </: E and E </: D, then 0 ` (D)([d̄/x̄]e0) : D
(with a stupid warning) by the rule T-SCAST.

Case T-SCAST. e = (D)e0 0, x̄ : B̄ ` e0:C D </: C C </: D

By the induction hypothesis, there is some E such that 0 ` [d̄/x̄]e0:E and E <: C.
This means that E </: D. (To see this, note that each class in FJ has just one
superclass. It follows that if both E <: C and E <: D, then either C <: D or D <: C). So
0 ` (D)([d̄/x̄]e0) : D (with a stupid warning), by T-SCAST.

LEMMA A.1.3 (Weakening). If 0 ` e : C, then 0, x : D ` e : C.

PROOF. Straightforward induction.

LEMMA A.1.4. If mtype(m, C0) = D̄→ D, and mbody(m, C0) = x̄.e, then, for
some D0 with C0 <: D0, there exists C <: D such that x̄ : D̄, this : D0 ` e : C.

PROOF. By induction on the derivation of mbody(m, C0). The base case (where
m is defined in C0) is easy, since m is defined in CT(C0) and x̄ : D̄, this : C0 ` e : C
by the T-METHOD. The induction step is also straightforward.

We are now ready to give the proof of the subject reduction theorem.

PROOF OF THEOREM 2.4.1. By induction on a derivation of e→ e′, with a case
analysis on the reduction rule used.

Case R-FIELD. e = (new C0(ē)).fi e′ = ei fields(C0) = D̄ f̄

By rule T-FIELD, we have

0 ` new C0(ē) : D0 C = Di

for some D0. Again, by the rule T-NEW,

0 ` ē : C̄ C̄ <: D̄ D0 = C0

In particular, 0 ` ei : Ci, finishing the case, since Ci <: Di.

Case R-INVK. e = (new C0(ē)).m(d̄) mbody(m, C0) = x̄.e0
e′ = [d̄/x̄, new C0(ē)/this]e0

By the rules T-INVK and T-NEW, we have

0 ` new C0(ē) : C0 mtype(m, C0) = D̄→ C
0 ` d̄ : C̄ C̄ <: D̄
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for some C̄ and D̄. By Lemma A.1.4, x̄ : D̄, this : D0 ` e0 : B for some D0 and
B where C0 <: D0 and B <: C. By Lemma A.1.3, 0, x̄ : D̄, this : D0 ` e0 : B. Then,
by Lemma A.1.2, 0 ` [d̄/x̄, new C0(ē)/this]e0 : E for some E <: B. Then E <: C by
transitivity of <:. Finally, letting C′ = E finishes this case.

Case R-CAST. e = (D)(new C0(ē)) C0 <: D e′ = new C0(ē)

The proof of 0 ` (D)(new C0(ē)) : C must end with the rule T-UCAST, since the
derivation ending with T-SCAST or T-DCAST contradicts the assumption C0 <: D.
By the rules T-UCAST and T-NEW, we have 0 ` new C0(ē):C0 and D = C, which
finish the case.

The cases for congruence rules are easy. We show just one:

Case RC-CAST. e = (D)e0 e′ = (D)e0
′ e0 → e0

′

There are three subcases, according to the last typing rule used.

Subcase T-UCAST. 0 ` e0 : C0 C0 <: D D = C

By the induction hypothesis, 0 ` e0
′ : C0

′ for some C0
′ <: C0. Then, C0

′ <: C, by
transitivity of <: . Therefore, by the rule T-UCAST, 0 ` (C)e0

′ : C (without any
additional stupid warning).

Subcase T-DCAST. 0 ` e0 : C0 D <: C0 D = C 6= C0

By the induction hypothesis, 0 ` e0
′:C0

′ for some C0
′ <: C0. If either C0

′ <: C
or C <: C0

′, then 0 ` (C)e0
′:C by the rule T-UCAST or T-DCAST (without any

additional stupid warning). On the other hand, if both C0
′ </: C and C </: C0

′, then,
0 ` (C)e0

′:C with stupid warning by the rule T-SCAST.

Subcase T-SCAST. 0 ` e0 : C0 D </: C0 C0 </: D D = C

By the induction hypothesis, 0 ` e0
′ : C0

′ for some C0
′ <: C0. Then, both C0

′<:C
and C </: C0

′ also hold, following the same argument found in the proof of
Lemma A.1.2 (the case for T-SCAST). Therefore, 0 ` (C)e0

′ : C with stupid
warning.

A.2 Proof of Theorem 3.4.1

Before giving the proof, we develop a number of required lemmas.

LEMMA A.2.1 (Weakening). Suppose 1, X̄ <: N̄ ` N̄ ok and 1 ` U ok.

(1) If 1 ` S <: T, then1, X̄ <: N̄ ` S <: T.

(2) If 1 ` S ok, then1, X̄ <: N̄ ` S ok.
(3) If 1;0 ` e : T, then1;0, x : U ` e : T and1, X̄ <: N̄;0 ` e : T.

PROOF. Each of them is proved by straightforward induction on the deriva-
tion of 1 ` S <: T and 1 ` S ok and 1;0 ` e : T.

LEMMA A.2.2. If 1 ` E<V̄> <: D<Ū> and D5 C and C5 D, then E5 C and C5 E.

PROOF. It is easy to see that 1 ` E<V̄> <: D<Ū> implies EE D. The conclusions
are easily proved by contradiction. (A similar argument is found in the proof of
Lemma A.1.2.)
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LEMMA A.2.3. Suppose dcast(C, D) and1 ` C<T̄> <: D<Ū>. If1 ` C<T̄′> <: D<Ū>,
then T̄′ = T̄.

PROOF. The case where dcast(C, D) because dcast(C, E) and dcast(E, D) is easy:
Note that from every derivation of 1 ` C<T̄> <: D<Ū> we can also derive 1 `
C<T̄> <: E<V̄> and1 ` E<V̄> <: D<Ū> for some V̄. Finally, if D is the direct superclass
of C, by the rule S-CLASS, D<Ū> = [T̄/X̄]D<V̄> where class C<X̄� N̄>� D<V̄> {...}
for some V̄. Similarly, D<Ū> = [T̄′/X̄]D<V̄>, since FV(V̄) = X̄. Then, it must be the
case that T̄ = T̄′, finishing the proof.

LEMMA A.2.4 If dcast(C, E) and CE DE E with C 6= D 6= E, then dcast(C, D) and
dcast(D, E).

PROOF. Easy.

LEMMA A.2.5 (Type Substitution Preserves Subtyping). If 11, X̄ <: N̄,12 `
S <: T and 11 ` Ū <: [Ū/X̄]N̄ with 11 ` Ū ok and none of X̄ appearing in 11, then
11, [Ū/X̄]12 ` [Ū/X̄]S <: [Ū/X̄]T.

PROOF. By induction on the derivation of 11, X̄ <: N̄,12 ` S <: T.

Case S-REFL. Trivial.
Case S-TRANS, S-CLASS. Easy.
Case S-VAR. S = X T = (11, X̄ <: N̄,12)(X)

If X∈dom(11)∪dom(12), then the conclusion is immediate. On the other hand,
if X = Xi, then, by assumption, we have 11 ` Ui <: [Ū/X̄]Ni. Finally, Lemma A.2.1
finishes the case.

LEMMA A.2.6 (Type Substitution Preserves Type Well-Formedness). If
11, X̄ <: N̄,12 ` T ok and 11 ` Ū <: [Ū/X̄]N̄ with 11 ` Ū ok and none of X̄ ap-
pearing in 11, then 11, [Ū/X̄]12 ` [Ū/X̄]T ok.

PROOF. By induction on the derivation of 11, X̄ <: N̄,12 ` T ok, with a case
analysis on the last rule used.

Case WF-OBJECT. Trivial.
Case WF-VAR. T = X X∈dom(11, X̄<:N̄,12)

The case X ∈ Xi follows from 11 ` Ū ok and Lemma A.2.1; otherwise immediate.

Case WF-CLASS. T = C<T̄> 11, X̄<:N̄,12 ` T̄ ok
11, X̄ <: N̄,12 ` T̄ <: [T̄/Ȳ]P̄
class C<Ȳ� P̄>� N {...}

By the induction hypothesis,

11, [Ū/X̄]12 ` [Ū/X̄]T̄ ok.

On the other hand, by Lemma A.2.5, 11, [Ū/X̄]12 ` [Ū/X̄]T̄ <: [Ū/X̄][T̄/Ȳ]P̄. Since
Ȳ <: P̄ ` P̄ by the rule GT-CLASS, P̄ does not include any of X̄ as a free variable.
Thus, [Ū/X̄][T̄/Ȳ]P̄ = [[Ū/X̄]T̄/Ȳ]P̄, and finally, we have 11, [Ū/X̄]12 ` C<[Ū/X̄]T̄> ok
by WF-CLASS.
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LEMMA A.2.7. Suppose 11, X̄ <: N̄,12 ` T ok and 11 ` Ū <: [Ū/X̄]N̄
with 11 ` Ū ok and none of X̄ appearing in 11. Then, 11, [Ū/X̄]12 `
bound11,[Ū/X̄]12 ([Ū/X̄]T) <: [Ū/X̄](bound11,X̄ <: N̄,12 (T)).

PROOF. The case where T is a nonvariable type is trivial. The case where
T is a type variable X and X∈dom(11) ∪ dom(12) is also easy. Finally, if T is a
type variable Xi, then bound11,[Ū/X̄]12 ([Ū/X̄]T) = Ui and [Ū/X̄](bound11,X̄ <: N̄,12 (T)) =
[Ū/X̄]Ni; the assumption 11 ` Ū <: [Ū/X̄]N̄ and Lemma A.2.1 finish the proof.

LEMMA A.2.8. If 1 ` S <: T and fields(bound1(T)) = T̄ f̄, then
fields(bound1(S)) = S̄ ḡ and Si = Ti and gi = fi for all i ≤ #(f̄).

PROOF. By straightforward induction on the derivation of 1 ` S <: T.

Case S-REFL. Trivial.
Case S-VAR. Trivial because bound1(S) = bound1(T).
Case S-TRANS. Easy.
Case S-CLASS. S = C<T̄> T = [T̄/X̄]N

class C<X̄� N̄>� N {S̄ ḡ; ...}
By the rule F-CLASS, fields(C<T̄>) = Ū f̄, [T̄/X̄]S̄ ḡ where Ū f̄ = fields([T̄/X̄]N).

LEMMA A.2.9 If 1 ` T ok and mtype(m, bound1(T))= <Ȳ� P̄>Ū→U0, then for
any S such that 1 ` S <: T and 1 ` S ok, we have mtype(m, bound1(S)) =
<Ȳ� P̄>Ū→U0

′ and 1, Ȳ <: P̄ ` U0
′<:U0.

PROOF. By straightforward induction on the derivation of 1 ` S <: T with a
case analysis by the last rule used.

Case S-REFL. Trivial.
Case S-VAR. Trivial because bound1(S) = bound1(T).
Case S-TRANS. Easy.
Case S-CLASS. S = C<T̄> T = [T̄/X̄]N

class C<X̄� N̄>� N {... M̄}
If M̄ do not include a declaration of m, it is easy to show the conclusion, since

mtype(m, bound1(S)) = mtype(m, bound1(T))

by the rule MT-SUPER.
On the other hand, suppose M̄ includes a declaration of m. By straightforward

induction on the derivation of mtype(m, T), we can show

mtype(m, T) = [T̄/X̄](<Ȳ� P̄′>Ū′→U0
′′)

where <Ȳ� P̄′>Ū′→U0
′′ =mtype(m, N). Without loss of generality, we can assume

that X̄ and Ȳ are distinct and, in particular, that [T̄/X̄]U0
′′ = U0. By GT-METHOD,

it must be the case that

<Ȳ� P̄′> W0
′ m(Ū′ x̄){...} ∈ M̄

and

X̄<:N̄, Ȳ<:P̄′ ` W0
′<:U0

′′.
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By Lemmas A.2.5 and A.2.1, we have

1, Ȳ<:P̄ ` [T̄/X̄]W0
′<:U0.

Since mtype(m, bound1(S)) = mtype(m, S) = [T̄/X̄](<Ȳ� P̄′>Ū′→W0
′) by MT-CLASS,

letting U0
′ = [T̄/X̄]W0

′ finishes the case.

LEMMA A.2.10 (Type Substitution Preserves Typing). If 11, X̄<:N̄,12; 0 `
e:T and 11 ` Ū <: [Ū/X̄]N̄ where 11 ` Ū ok and none of X̄ appears in 11, then
11, [Ū/X̄]12; [Ū/X̄]0 ` [Ū/X̄]e:S for some S such that 11, [Ū/X̄]12 ` S <: [Ū/X̄]T.

PROOF. By induction on the derivation of 11, X̄<:N̄,12;0 ` e:T with a case
analysis on the last rule used.

Case GT-VAR. Trivial.
Case GT-FIELD. e = e0.fi 11, X̄<:N̄,12;0 ` e0:T0

fields(bound11,X̄<:N̄,12 (T0)) = T̄ f̄ T = Ti

By the induction hypothesis, 11, [Ū/X̄]12; [Ū/X̄]0 ` [Ū/X̄]e0:S0 and 11, [Ū/X̄]12 `
S0 <: [Ū/X̄]T0 for some S0. By Lemma A.2.7,

11, [Ū/X̄]12 ` bound11,[Ū/X̄]12 ([Ū/X̄]T0) <: [Ū/X̄](bound11,X̄<:N̄,12 (T0)).

Then, it is easy to show

11, [Ū/X̄]12 ` bound11,[Ū/X̄]12 (S0) <: [Ū/X̄](bound11,X̄<:N̄,12 (T0)).

By Lemma A.2.8, fields(bound11,[Ū/X̄]12 (S0)) = S̄ ḡ, and we have f j = g j and S j =
[Ū/X̄]T j for j ≤ #(f̄). By the rule GT-FIELD, 11, [Ū/X̄]12; [Ū/X̄]0 ` [Ū/X̄]e0.fi:Si.
Letting S = Si (= [Ū/X̄]Ti) finishes the case.

Case GT-INVK. e = e0.m<V̄>(ē) 11, X̄<:N̄,12;0 ` e0:T0
mtype(m, bound11,X̄<:N̄,12 (T0)) = <Ȳ� P̄>W̄→W0
11, X̄<:N̄,12 ` V̄ ok 11, X̄<:N̄,12 ` V̄ <: [V̄/Ȳ]P̄
11, X̄<:N̄,12;0 ` ē:S̄11, X̄<:N̄,12 ` S̄ <: [V̄/Ȳ]W̄
T = [V̄/Ȳ]W0

By the induction hypothesis,

11, [Ū/X̄]12; [Ū/X̄]0 ` [Ū/X̄]e0:S0
11, [Ū/X̄]12 ` S0 <: [Ū/X̄]T0

and
11, [Ū/X̄]12; [Ū/X̄]0 ` [Ū/X̄]ē:S̄′

11, [Ū/X̄]12 ` S̄′ <: [Ū/X̄]S̄.

By using Lemma A.2.7, it is easy to show

11, [Ū/X̄]12 ` bound11,[Ū/X̄]12 (S0) <: [Ū/X̄](bound11,X̄<:N̄,12 (T0)).

Then, by Lemma A.2.9,

mtype(m, bound11,[Ū/X̄]12 (S0)) = <Ȳ� [Ū/X̄]P̄>[Ū/X̄]W̄→W0
′

11, [Ū/X̄]12, Ȳ<:[Ū/X̄]P̄ ` W0
′ <: [Ū/X̄]W0.

By Lemma A.2.6,

11, [Ū/X̄]12 ` [Ū/X̄]V̄ ok
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Without loss of generality, we can assume that X̄ and Ȳ are distinct and that
none of Ȳ appear in Ū; then [Ū/X̄][V̄/Ȳ] = [[Ū/X̄]V̄/Ȳ][Ū/X̄]. By Lemma A.2.5,

11, [Ū/X̄]12 ` [Ū/X̄]V̄ <: [Ū/X̄][V̄/Ȳ]P̄ (= [[Ū/X̄]V̄/Ȳ][Ū/X̄]P̄)
11, [Ū/X̄]12 ` [Ū/X̄]S̄ <: [Ū/X̄][V̄/Ȳ]W̄ (= [[Ū/X̄]V̄/Ȳ][Ū/X̄]W̄).

By the rule S-TRANS,

11, [Ū/X̄]12 ` S̄′ <: [[Ū/X̄]V̄/Ȳ][Ū/X̄]W̄.

By Lemma A.2.5, we have

11, [Ū/X̄]12 ` [V̄/Ȳ]W0
′ <: [Ū/X̄][V̄/Ȳ]W0 (= [[Ū/X̄]V̄/Ȳ][Ū/X̄]W0).

Finally, by the rule GT-INVK,

11, [Ū/X̄]12, [Ū/X̄]0 ` ([Ū/X̄]e0).m<[Ū/X̄]V̄>([Ū/X̄]d̄):S

where S = [V̄/Ȳ]W0
′, finishing the case.

Case GT-NEW, GT-UCAST. Easy.
Case GT-DCAST. e = (N)e0 1 = 11, X̄<:N̄,12

1;0 ` e0:T0 1 ` N <: bound1(T0)
N = C<T̄> bound1(T0)= E<V̄> dcast(C, E)

By the induction hypothesis, 11, [Ū/X̄]12; [Ū/X̄]0 ` [Ū/X̄]e0:S0 for some S0 such
that 11, [Ū/X̄]12 ` S0 <: [Ū/X̄]T0. Let 1′ = 11, [Ū/X̄]12. We have three subcases
according to a relation between S0 and [Ū/X̄]N.

Subcase. 1′ ` bound1′ (S0) <: [Ū/X̄]N

By the rule GT-UCAST, 1′;0 ` [Ū/X̄]((N)e0):[Ū/X̄]N.

Subcase. 1′ ` [Ū/X̄]N <: bound1′ (S0) [Ū/X̄]N 6= bound1′ (S0)

By using Lemma A.2.7 and the fact that 1 ` S <: T implies 1 `
bound1(S) <: bound1(T), we have 1′ ` bound1′ (S0) <: [Ū/X̄]bound1(T0). Then,
CE DE E where bound1′ (S0) = D<W̄>. If C 6= D 6= E, we have, by Lemma A.2.4,
dcast(C, D); the rule GT-DCAST finishes the subcase. The case C = D cannot hap-
pen, since it implies [Ū/X̄]N = bound1′ (S0). Finally, the other case D = E is trivial.

Subcase. 1′ ` [Ū/X̄]N </: bound1′ (S0) 1′ ` bound1′ (S0) </: [Ū/X̄]N

By using Lemma A.2.7 and the fact that 1′ ` S <: T implies 1′ `
bound1′ (S) <: bound1′ (T), we have 1′ ` bound1′ (S0) <: [Ū/X̄](bound1(T0)).

Let bound1′ (S0) = D<W̄>. We show below that, by contradiction, neither
CE D nor DE C holds. Suppose CE D. Then, there exist some V̄′ such that
1′ ` C<V̄′> <: bound1′ (S0). By Lemma A.2.4, we have dcast(C, D); it follows
from Lemma A.2.3 that C<V′> = [Ū/X̄]N, contradicting the assumption 1′ `
[Ū/X̄]N </: bound1′ (S0); thus, C5 D. On the other hand, suppose DE C. Since we
have 1′ ` bound1′ (S0) <: [Ū/X̄](bound1(T0)), we can have C<V̄′> such that 1′ `
bound1′ (S0) <: C<V̄′> and 1′ ` C<V̄′> <: [Ū/X̄](bound1(T0)). Then, [Ū/X̄]N = C<V̄′>
by Lemma A.2.3, contradicting the assumption 1′ ` bound1′ (S0) </: [Ū/X̄]N;
thus, D5 C.
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Finally, by the rule GT-SCAST, 1;0 ` [T̄/X̄]((N)e0):[T̄/X̄]N with stupid warn-
ing.

Case GT-SCAST. e = (N)e0 1 = 11, X̄<:N̄,12 1;0 ` e0:T0
N = C<T̄> bound1(T0)= E<V̄> C5 E E5 C

By the induction hypothesis, 11, [Ū/X̄]12; [Ū/X̄]0 ` [Ū/X̄]e0:S0 for some S0 such
that 11, [Ū/X̄]12 ` S0 <: [Ū/X̄]T0. Using Lemma A.2.7, we have 11, [Ū/X̄]12 `
bound11,[Ū/X̄]12 (S0) <: [Ū/X̄](bound1(T0)). Let bound11,[Ū/X̄]12 (S0) = D<W̄>. Since it is
the case that [Ū/X̄](bound1(T0)) = E<[Ū/X̄]V̄>, by Lemma A.2.2, D ≤/ C and C ≤/ D. By
the rule GT-SCAST,11, [Ū/X̄]12; [Ū/X̄]0 ` [Ū/X̄](N)e0:[Ū/X̄]Nwith stupid warning,
finishing the case.

LEMMA A.2.11 (Term Substitution Preserves Typing). If 1;0, x̄ : T̄ ` e:T
and 1;0 ` d̄:S̄ where 1 ` S̄<:T̄, then 1;0 ` [d̄/x̄]e:S for some S such that 1 `
S<:T.

PROOF. By induction on the derivation of 1;0, x̄ : T̄ ` e:T with a case anal-
ysis on the last rule used.

Case GT-VAR. e = x

If x∈dom(0), then the conclusion is immediate, since [d̄/x̄]x = x. On the other
hand, if x = xi and T = Ti, then letting S = Si finishes the case.

Case GT-FIELD. e = e0.fi 1;0, x̄ : T̄ ` e0:T0
fields(bound1(T0)) = T̄ f̄ T = Ti

By the induction hypothesis,1;0 ` [d̄/x̄]e0:S0 for some S0 such that1 ` S0 <: T0.
By Lemma A.2.8, fields(bound1(S0)) = S̄ ḡ such that S j = T j and f j = g j for all
j ≤ #(T̄). Therefore, by the rule GT-FIELD, 1;0 ` [d̄/x̄]e0.fi:T

Case GT-INVK. e = e0.m<V̄>(ē) 1;0, x̄ : T̄ ` e0:T0
mtype(m, bound1(T0)) = <ȲE P̄>Ū→U 1 ` V̄ ok
1 ` V̄ <: [V̄/Ȳ]P̄ 1;0, x̄ : T̄ ` ē:S̄
1 ` S̄ <: [V̄/Ȳ]Ū T = [V̄/Ȳ]U

By the induction hypothesis,1;0 ` [d̄/x̄]e0:S0 for some S0 such that1 ` S0 <: T0
and 1;0 ` [d̄/x̄]ē:W̄ for some W̄ such that 1 ` W̄ <: S̄. By Lemma A.2.9,
mtype(m, bound1(S0)) = <Ȳ� P̄>Ū→U′ and 1, Ȳ<:P̄ ` U′<:U. By Lemma A.2.5,
1 ` [V̄/Ȳ]U′<:[V̄/Ȳ]U. By the rule GT-METHOD, 1;0 ` [d̄/x̄](e0.m<V̄>(ē)):[V̄/Ȳ]U′.
Letting S = [V̄/Ȳ]U′ finishes the case.

CaseGT-NEW, GT-UCAST. Easy.
Case GT-DCAST. e = (N)e0 1;0, x̄ : T̄ ` e0:T0

1 ` N <: bound1(T0) N = C<Ū>
bound1(T0) = E<V̄> dcast(C, E)

By the induction hypothesis,1;0 ` [d̄/x̄]e0:S0 for some S0 such that1 ` S0 <: T0.
We have three subcases according to a relation between S0 and N.

Subcase. 1 ` bound1(S0) <: N
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By the rule GT-UCAST, 1;0 ` [d̄/x̄]((N)e0):N.

Subcase. 1 ` N <: bound1(S0) N 6= bound1(S0)

By using Lemma A.2.7 and the fact that 1 ` S <: T implies 1 `
bound1(S) <: bound1(T), we have1 ` bound1(S0) <: bound1(T0). Then, CE DE E
where bound1(S0) = D<W̄>. If C 6= D 6= E, we have, by Lemma A.2.4, dcast(C, D);
the rule GT-DCAST finishes the subcase. The case C = D cannot happen, since it
implies N = bound1(S0), and the other case, D = E, is trivial.

Subcase. 1 ` N </: bound1(S0) 1 ` bound1(S0) </: N

Let bound1(S0) = D<W̄>. We show that, by contradiction, C5 D and D5 C.
Suppose CE D. Then, we can have C<Ū′> such that1 ` C<Ū′> <: D<W̄>. By tran-

sitivity of <: and the fact that1 ` S0 <: T0 implies1 ` bound1(S0) <: bound1(T0),
we have 1 ` C<Ū′> <: bound1(T0). Thus, Ū′ = Ū, contradicting the assump-
tion 1 ` N </: bound1(S0) (= D<W̄>). On the other hand, suppose DE C.
Since we have 1 ` bound1(S0) <: bound1(T0), we can have C<V̄′> such that
1 ` bound1(S0) <: C<V̄′> and 1′ ` C<V̄′> <: bound1(T0). Then, N = C<V̄′> by
Lemma A.2.3, contradicting the assumption 1 ` bound1(S0) <: N; thus, D6 C.

Finally, by the rule GT-SCAST, 1;0 ` [d̄/x̄]((N)e0):N with stupid warning.

Case GT-SCAST. 1;0, x̄ : T̄ ` e0:T0 N = C<Ū> bound1(T0) = E<V̄>
C5 E E5 C

By the induction hypothesis,1;0 ` [d̄/x̄]e0:S0 for some S0 such that1 ` S0 <: T0,
which implies 1 ` bound1(S0) <: bound1(T0). Let bound1(S0) = D<W̄>. By
Lemma A.2.2, we have D5C and C5D. Then, by the rule GT-SCAST, 1;0 `
[d̄/x̄]((N)e0):N again with stupid warning.

LEMMA A.2.12 If mtype(m, C<T̄>) = <Ȳ� P̄>Ū→U and mbody(m<V̄>, C<T̄>) =
x̄.e0 where 1 ` C<T̄> ok and 1 ` V̄ ok and 1 ` V̄<:[V̄/Ȳ]P̄, then there exist
some N and S such that 1 ` C<T̄> <: N and 1 ` N ok and 1 ` S <: [V̄/Ȳ]U and
1 ` S ok and 1; x̄ : [V̄/Ȳ]Ū, this : N ` e0:S.

PROOF. By induction on the derivation of mbody(m<V̄>, C<T̄>) = x̄.e using
Lemmas A.2.5 and A.2.10.

Case MB-CLASS. class C<X̄� N̄>� P {... M̄}
<Ȳ� Q̄> T0 m(S̄ x̄){ return e; } ∈ M̄

Let 0 = x̄ : S̄, this : C<X̄> and 1′ = X̄<:N̄, Ȳ<:Q̄. By the rules GT-CLASS and
GT-METHOD, we have 1′;0 ` e:S0 and 1′;0 ` S0 <: T0 for some S0. Since 1 `
C<T̄> ok, we have1 ` T̄ <: [T̄/X̄]N̄ by the rule WF-CLASS. By Lemmas A.2.1, A.2.5,
and A.2.10,

1, Ȳ<:[T̄/X̄]Q̄ ` [T̄/X̄]S0 <: [T̄/X̄]T0

and

1, Ȳ<:[T̄/X̄]Q̄; x̄ : [T̄/X̄]S̄, this : C<T̄> ` [T̄/X̄]e:S0
′

where

1, Ȳ<:[T̄/X̄]Q̄ ` S0
′ <: [T̄/X̄]S0.
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Now, we can assume X̄ and Ȳ are distinct without loss of generality. By the rule
MT-CLASS, we have

[T̄/X̄]Q̄ = P̄ [T̄/X̄]S̄ = Ū [T̄/X̄]T0 = U.

Again, by rule S-TRANS and Lemmas A.2.5 and A.2.10,

1 ` [V̄/Ȳ]S0
′ <: [V̄/Ȳ]U

and

1; x̄ : [V̄/Ȳ]Ū, this : C<T̄> ` [V̄/Ȳ][T̄/X̄]e:S0
′′

where

1 ` S0
′′ <: [V̄/Ȳ]S0

′.

Since we can assume that any of Ȳ does not occur in T̄ without loss of generality,

e0 = [T̄/X̄, V̄/Ȳ]e = [V̄/Ȳ][T̄/X̄]e.

Letting N = C<T̄> and S = S0
′′ finishes the case.

Case MB-SUPER. class C<X̄� N̄>� N {... M̄} m 6∈ M̄
Immediate from the induction hypothesis and the fact that 1 `
C<T̄> <: [T̄/X̄]N.

PROOF OF THEOREM 3.4.1. By induction on the derivation of e → e′ with a
case analysis on the reduction rule used. We show the main cases.

Case GR-FIELD. e = new N(ē).fi fields(N) = T̄ f̄ e′ = ei

By the rules GT-FIELD and GT-NEW, we have

1;0 ` new N(ē):N
1;0 ` ē:S̄
1 ` S̄ <: T̄.

In particular, 1;0 ` ei:Si finishes the case.

Case GR-INVK. e = new N(ē).m<V̄>(d̄) mbody(m<V̄>, N) = x̄.e0
e′ = [d̄/x̄, new N(ē)/this]e0

By the rules GT-INVK and GT-NEW, we have

1;0 ` new N(ē):N mtype(m, bound1(N)) = <Ȳ� P̄>Ū→U
1 ` V̄ ok 1 ` V̄ <: [V̄/Ȳ]P̄
1;0 ` d̄:S̄ 1 ` S̄ <: [V̄/Ȳ]Ū
T = [V̄/Ȳ]U 1 ` N ok

By Lemma A.2.12, 1; x̄ : [V̄/Ȳ]Ū, this : P ` e0:S for some P and S such that
1 ` N <: P where 1 ` P ok, and 1 ` S <: [V̄/Ȳ]U where 1 ` S ok. Then, by
Lemmas A.2.1 and A.2.11, 1;0 ` [d̄/x̄, new N(ē)/this]e0:T0 for some T0 such
that1 ` T0 <: S. By the rule S-TRANS, we have1 ` T0 <: T. Finally, letting T′ = T0
finishes the case.

Case GR-CAST. Easy.
Case GRC-FIELD. e = e0.f e′ = e0

′.f e0 → e0
′
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By the rule GT-FIELD, we have

1;0 ` e0:T0
fields(bound1(T0)) = T̄ f̄
T = Ti

By the induction hypothesis, 1;0 ` e0
′:T0

′ for some T0
′ such that 1 ` T0

′ <: T0.
By Lemma A.2.8, fields(bound1(T0

′)) = T̄′ ḡ and, for j ≤ #(f̄), we have gi = fi
and Ti

′ = Ti. Therefore, by the rule GT-FIELD, 1;0 ` e0
′.f:Ti

′. Letting T′ = Ti
′

finishes the case.

Case GRC-INV-RECV. e = e0.m<V̄>(ē) e′ = e0
′.m<V̄>(ē)

e0 → e0
′

By the rule GT-INVK, we have

1;0 ` e0:T0 mtype(m, bound1(T0)) = <Ȳ1 P̄>T̄→U
1 ` V̄ ok 1 ` V̄<:[V̄/Ȳ]P̄
1 ` ē:S̄ 1 ` S̄<:[V̄/Ȳ]T̄
T = [V̄/Ȳ]U

By the induction hypothesis, 1;0 ` e0
′:T0

′ for some T0
′ such that 1 ` T0

′ <:
T0. By Lemma A.2.9, mtype(m, bound1(T0

′)) = <Ȳ� P̄>T̄→V and 1, Ȳ<:P̄ ` V <: U.
By Lemma A.2.5, 1 ` [V̄/Ȳ]V <: [V̄/Ȳ]U. Then, by the rule GT-INVK, 1;0 `
e0
′.m<V̄>(ē):[V̄/Ȳ]V. Letting T0

′ = [V̄/Ȳ]V finishes the case.

Case GRC-CAST. e = (N)e0 e′ = (N)e0
′ e0 → e0

′

There are three subcases according to the last typing rule: GT-UCAST, GT-DCAST,
and GT-SCAST. These subcases are similar to the subcases in the case for
GT-DCAST in the proof of Lemma A.2.11.

Case GRC-INV-ARG, GRC-NEW-ARG. Easy.

A.3 Proof of Theorem 4.5.1

First, we show that if an expression is well typed, then its type is well formed
(Lemma A.3.4). Note that we assume that the underlying GJ class table CT
is ok.

LEMMA A.3.1. If 1 ` S <: T and 1 ` S ok for some well-formed type environ-
ment 1, then 1 ` T ok.

PROOF. By induction on the derivation of 1 ` S <: T with a case analysis on
the last rule used. The cases for S-REFL and S-TRANS are easy.

Case S-VAR. S = X T = 1(X)

T must be well formed, since 1 is well formed.

Case S-CLASS. S = C<T̄> T = [T̄/X̄]N
class C<X̄� N̄>� N {...}
1 ` T̄ ok 1 ` T̄ <: [T̄/X̄]N̄

Since CT(C) is ok, we also have X̄<:N̄ ` N ok by the rule GT-CLASS. Then, by
Lemmas A.2.1 and A.2.6, 1 ` [T̄/X̄]N ok.
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LEMMA A.3.2. If fieldsFGJ(N) = Ū f̄ and 1 ` N ok for some well-formed type
environment 1, then 1 ` Ū ok.

PROOF. By induction on the derivation of fieldsFGJ(N) with a case analysis
on the last rule used.

Case F-OBJECT. Trivial.
Case F-CLASS. N = C<T̄>

class C<X̄� N̄>� P {S̄ ḡ′; K M̄}
fieldsFGJ([T̄/X̄]P) = V̄ ḡ
Ū f̄ = V̄ ḡ, [T̄/X̄]S̄ ḡ′

Since CT(C) is ok, by the rule GT-CLASS, X̄<:N̄ ` P ok. By Lemmas A.2.1 and A.2.6,
1 ` [T̄/X̄]P ok. Then, by the induction hypothesis, 1 ` V̄ ok. Since 1 ` C<T̄> ok,
we have 1 ` T̄ ok and 1 ` T̄ <: [T̄/X̄]N̄ by the rule WF-CLASS. On the other hand,
by the rule GT-CLASS, we have X̄<:N̄ ` S̄ ok. Finally, by Lemmas A.2.1 and A.2.6,
1 ` [T̄/X̄]S̄ ok, finishing the case.

LEMMA A.3.3. If mtypeFGJ(m, N) = <Ȳ� P̄>Ū→U0 and 1 ` N ok for some well-
formed type environment 1, then 1, Ȳ<:P̄ ` U0 ok.

PROOF. By induction on the derivation of mtypeFGJ(m, N) with a case analysis
on the last rule used.

Case MT-CLASS. N = C<T̄>
class C<X̄� N̄>� P {... M̄}
<Ȳ� Q̄> S0 m(S̄ x̄){ return e0; } ∈ M̄
[T̄/X̄](<Ȳ� Q̄>S̄→S0) = <Ȳ� P̄>Ū→ U0

Without loss of generality, we can assume that X̄ and Ȳ are distinct and that
[T̄/X̄]Q̄ = P̄ and [T̄/X̄]S0 = U0. By the rules GT-CLASS and GT-METHOD, we have

X̄<:N̄, Ȳ<:Q̄ ` S0 ok.

On the other hand, since 1 ` N ok, we have 1 ` T̄ ok and 1 ` T̄ <: [T̄/X̄]N̄ by the
rule WF-CLASS. Then, by Lemmas A.2.1 and A.2.6,

1, Ȳ<:[T̄/X̄]Q̄ ` [T̄/X̄]S0 ok,

finishing the case.
Case MT-SUPER. Since CT(C)is ok, by the rule GT-CLASS, X̄<:N̄ ` P ok. By

Lemmas A.2.1 and A.2.6, 1 ` [T̄/X̄]P ok. The induction hypothesis finishes
the case.

LEMMA A.3.4. If 1 ` 0 ok and 1;0 `FGJ e:T for some well-formed type
environment 1, then 1 ` T ok.

PROOF. By induction on the derivation of 1;0 `FGJ e:T with a case analysis
on the last rule used.

Case GT-VAR. Immediate from the definition of the well-formedness of 0.

Case GT-FIELD. 1;0 `FGJ e0:T0 fieldsFGJ(bound1(T0)) = T̄ f̄
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By the induction hypothesis, 1 ` T0 ok. Since 1 is well formed, 1 `
bound1(T0) ok. Then, by Lemma A.3.2, we have 1 ` T̄ ok, finishing the case.

Case GT-INVK. 1;0 `FGJ e0:T0
mtypeFGJ(m, bound1(T0)) = <Ȳ� P̄>Ū→U0
1 ` V̄ ok 1 ` V̄ <: [V̄/Ȳ]P̄
1;0 `FGJ ē:S̄ 1 ` S̄ <: [V̄/Ȳ]Ū T = [V̄/Ȳ]U0

By the induction hypothesis, 1 ` T0 ok. Since 1 is well formed, 1 `
bound1(T0) ok. Then, by Lemma A.3.3,1, Ȳ<:P̄ ` U0 ok. Finally, by Lemma A.2.6,
we have 1 ` [V̄/Ȳ]U0 ok, finishing the case.

Case GT-UCAST. 1;0 `FGJ e0:T0 1 ` T0 <: N N = T

By the induction hypothesis, 1 ` T0 ok. By Lemma A.3.1, 1 ` N ok, finishing
the case.

Case GT-NEW, GT-DCAST, GT-SCAST. Immediate, from the fact that T is
well formed by a premise of the rules.

After developing several lemmas about erasure, we prove Theorem 4.5.1.
Note that in the following discussions the erased class table |CT| is not assumed
to be ok; even so, however, if CT is ok, then the erased class table |CT| itself is
well defined, and thus fieldsFJ, mtypeFJ, mbodyFJ, and <:FJ can be defined from
|CT|.

LEMMA A.3.5. If 1 ` S <:FGJT, then |S|1 <:FJ|T|1.

PROOF. Straightforward induction on the derivation of 1 ` S <:FGJT.

LEMMA A.3.6. If 11, X̄<:N̄,12 ` U ok where none of X̄ appear in 11, and
11 ` T̄ <:FGJ[T̄/X̄]N̄, then |[T̄/X̄]U|11,[T̄/X̄]12 <:FJ|U|1.

PROOF. If U is nonvariable or a type variable Y 6∈ X̄, then the result is trivial.
If U is a type variable Xi, it is also easy, since [T̄/X̄]U = Ti and, by Lemma A.3.5,
|Ti|11,[T̄/X̄]12 = |Ti|11 <:FJ|[T̄/X̄]Ni|11 = |Ni|1 = |X|1.

LEMMA A.3.7. If 1 ` C<Ū> ok and fieldsFGJ(C<Ū>) = V̄ f̄, then fieldsmax(C) =
D̄ f̄ and |V̄|1 <:FGJD̄.

PROOF. By induction on the derivation of fieldsFGJ(C<Ū>) using Lemma A.3.6
and the fact that 1 ` Ū <: [Ū/X̄]N̄, where class C<X̄� N̄> ..., derived from the
rule WF-CLASS.

LEMMA A.3.8. If 1 ` C<T̄> ok and mtypeFGJ(m, C<T̄>) = <Ȳ� P̄>Ū→U0 where
1 ` V̄ <:FGJ [V̄/Ȳ]P̄, then mtypemax(m, C) = C̄→ C0 and |[V̄/Ȳ]Ū|1 <:FJ C̄ and
|[V̄/Ȳ]U0|1 <:FJ C0.

PROOF. Since 1 ` C<T̄> ok, we can have a sequence of type S̄ such that
S1 = C<T̄> and Sn = Object and1 ` Si <:FGJ Si+1 derived by the rule S-CLASS for
any i. We prove by induction on the length n (≥2) of the sequence.
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Case. n = 2. It must be the case that
class C<X̄� N̄>� Object { ...
<Ȳ� Q̄>W0 m (W̄ x̄) {...} ...}.

By the definition of mtypemax, C̄ = |W̄|X̄<:N̄,Ȳ<:Q̄ and C0 = |W0|X̄<:N̄,Ȳ<:Q̄. Without loss
of generality, we can assume X̄ and Ȳ are distinct. By the definition of mtypeFGJ,

[T̄/X̄]Q̄ = P̄
[T̄/X̄]W̄ = Ū
[T̄/X̄]W0 = U0,

and therefore

1 ` V̄ <:FGJ [V̄/Ȳ][T̄/X̄]Q̄.

Moreover, by the rule WF-CLASS, we have

1 ` T̄ <: [T̄/X̄]N̄ (= [V̄/Ȳ][T̄/X̄]N̄, since Ȳ does not appear in [T̄/X̄]N̄).

By Lemma A.3.6, |[V̄/Ȳ][T̄/X̄]W̄|1 <:FJ C and |[V̄/Ȳ][T̄/X̄]W0|1 <:FJ C0, finishing the
case.

Case. n = k + 1. Suppose
class C<X̄� N̄>� N {...}.

Note that 1 ` C<T̄> <:FGJ [T̄/X̄]N by the rule S-CLASS. Now, we have three sub-
cases:

Subcase. mtypeFGJ(m, [T̄/X̄]N) is undefined. The method m must be declared
in C. Similarly for the base case above.

Subcase. mtypeFGJ(m, [T̄/X̄]N) is well defined, and m is defined in C. By the
rule GT-METHOD, it must be the case that

mtypeFGJ(m, [T̄/X̄]N) = <Ȳ� P̄>Ū→ U0
′

where 1, Ȳ<:P̄ ` U0 <:FGJ U0
′. By Lemmas A.2.5 and A.3.5, |[V̄/Ȳ]U0|1

<:FJ |[V̄/Ȳ]U0
′|1. The induction hypothesis and transitivity of <:FJ finish the

subcase.
Subcase. mtypeFGJ(m, [T̄/X̄]N) is well defined, and m is not defined in C. It

is easy because mtypeFGJ(m, [T̄/X̄]N) = mtypeFGJ(m, C<T̄>) by the rule MT-SUPER.
The induction hypothesis finishes the subcase.

PROOF OF THEOREM 4.5.1. We prove the theorem in two steps: first, it is
shown that if1;0 `FGJ e:T then |0|1 `FJ |e|1,0:|T|1; and second, we show |CT|
is ok.

The first part is proved by induction on the derivation of 1;0 `FGJ e:T with
a case analysis on the last rule used.

Case GT-FIELD. e = e0.fi 1;0 `FGJ e0:T0
fieldsFGJ(bound1(T0)) = T̄ f̄ T = Ti

By the induction hypothesis, we have |0|1 `FJ |e0|1:|T0|1. By Lemma A.3.4,
1 ` T0 ok. Then, whether T0 is a type variable or not, we have by Lemma A.3.7
fieldsmax(|T0|1) = C̄ f̄ and |T̄|1 <: C̄. Note that by definition it is obvious that
fieldsFJ(C) = fieldsmax(C). By the rule T-FIELD, we have |0|1 `FJ |e0|1,0.fi:Ci.
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If |Ti|1 = Ci, then the equation |e0.fi|1,0 = |e0|1,0.fi derived from the rule
E-FIELD finishes the case. On the other hand, if |Ti|1 6= Ci, then

|e0.fi|1,0 = (|Ti|1)s|e0|1,0.fi

by the rule E-FIELD-CAST and |0|1 `FJ (|T|1)s|e0|1,0.fi:|T|1 by the rule T-DCAST,
finishing the case. Note that the synthetic cast is not stupid.

Case GT-INVK. Similar to the case above.

Case GT-New, GT-UCAST, GT-DCAST, GT-SCAST. Easy. Notice that the na-
ture of the cast (up, down, or stupid) is also preserved.

The second part (|CT| is ok) follows from the first part with examination
of the rules GT-METHOD and GT-CLASS. We show that if M OK IN C<X̄� N̄>, then
|M|X̄<:N̄,C OK IN C. Suppose

M = <Ȳ� P̄> T m(T̄ x){ return e0; }
|M|X̄<:N̄,C = D m(D̄ x′){ return e0

′; }
mtypemax(m, C) = D̄→ D
0 = x̄ : T̄
1 = X̄<:N̄, Ȳ<:P̄

ei =
{
xi
′ if Di = |Ti|1

(|Ti|1)sxi
′ otherwise

e0
′ = [ē/x̄](|e0|1,(0,this:C<X̄>)).

By the rule GT-METHOD, we have

1 ` T̄, T, P̄ ok
1;0, this : C<X̄> `FGJ e0:S
1 ` S <:FGJ T
if mtypeFGJ(m, N) = <Z̄� Q̄>Ū→U, then P̄, T̄ = [Ȳ/Z̄](Q̄, Ū) and 1 ` T <:FGJ [Ȳ/Z̄]U

where class C<X̄� N̄>� N {· · ·}. We must show that

x̄′ : D, this : C `FJ e′:E
E <:FJ D
if mtypeFJ(m, |N|1) = Ē→D′, then Ē = D̄ and D′ = D

for some E. By the result of the first part, |0|1, this : C `FJ |e|1,0:|S|1. Since,
by Lemma A.3.8, |Ti|1 <: Di, we have xi

′ : Di ` ei:|Ti|1. By Lemma A.2.11,

x̄′ : D̄, this : C ` e0
′:C0

for some C0 where C0 <:FJ |S|1. On the other hand, by Lemma A.3.8, |T|1 <:FJ D.
Since we have |S|1 <:FJ |T|1 by Lemma A.3.5, C0 <:FJ D by transitivity of <:. Let E
be C0. Finally, suppose mtypemax(m, |N|1) is well defined. Then, mtypeFGJ(m, N) is
also well defined. By definition, mtypemax(m, |N|1) = D̄→ D = mtypeFJ(m, |N|1).

It is easy to show that L OK in FGJ implies |L| OK in FJ.

A.4 Proof of Theorems 4.5.3 and 4.5.4

In the rest of this section, we prove these theorems and corollaries; we first
prove the required lemmas.
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Lemma A.4.1. If 0, x̄:B̄ ` e
exp⇒ e′ and 0 `FJ d̄:Ā where Ā <:FJ B̄, then 0 `

[d̄/x̄]e
exp⇒ [d̄/x̄]e′.

PROOF. By induction on the derivation of 0, x̄:B̄ `FJ e:C.

Lemma A.4.2. Suppose dom(0) = dom(0′) and1 = 11, X̄<:N̄,12 where none
of X̄ appears in 11. If 1;0 `FGJ e:T and 11 ` Ū <:FGJ [Ū/X̄]N̄ where 11 ` Ū ok,
and11, [Ū/X̄]12 ` 0′(x) <:FGJ [Ū/X̄]0(x) for all x ∈ dom(0), then |e|1,0 is obtained
from |[Ū/X̄]e|11,[Ū/X̄]12,0′ by some combination of replacements of some synthetic
casts (D)s with (C)s where D <: C, or removals of some synthetic casts.

PROOF. By induction on the derivation of 1;0 ` e:T with a case analysis on
the last rule used.

Case GT-VAR. Trivial.
Case GT-FIELD. e = e0.f 1;0 ` e0:T0

fieldsFGJ(bound1(T0)) = T̄ f̄ T = Ti

By the induction hypothesis, |e0|1,0 is obtained from |[Ū/X̄]e0|11,[Ū/X̄]12,0′ by
some combination of replacements of some synthetic casts (D)s with (C)s

where D<:FJC, or removals of some synthetic casts. By Theorem 4.5.1, |0|1 `FJ
|e0|1,0:|T0|1. By Lemma A.3.7, fieldsmax(|T0|1) = C̄ f̄ and |T̄|1 <:FJ C̄.

We now have two subcases.

Subcase. |Ti|1 6= Ci

By the rule E-FIELD-CAST,

|e|1,0 = (|Ti|1)s|e0|1,0.fi.

Now we must show that |[Ū/X̄]e|11,[Ū/X̄]12,0′ = (D)s|[Ū/X̄]e0|11,[Ū/X̄]12,0′.fi for some
D <:FJ |T|1. By Lemmas A.2.10 and A.2.11,

11, [Ū/X̄]12;0′ `FGJ [Ū/X̄]e0:S0
11, [Ū/X̄]12 ` S0 <:FGJ [Ū/X̄]T0.

By Lemmas A.2.7 and A.2.8,

fieldsFGJ(bound11,[Ū/X̄]12 (S0)) = ([Ū/X̄]T̄ f̄), T̄′ ḡ.

Then, by Lemma A.3.6,

|[Ū/X̄]Ti|11,[Ū/X̄]12 <:FJ |Ti|1.
On the other hand,

fieldsmax(|S0|11,[Ū/X̄]12 ) = C̄ f̄, D̄ ḡ

for some D̄. Therefore, by the rule E-FIELD-CAST,

|[Ū/X̄]e|11,[Ū/X̄]12,0′ =
(|[Ū/X̄]Ti|11,[Ū/X̄]12

)s|[Ū/X̄]e|11,[Ū/X̄]12,0′.fi,

finishing the subcase.

Subcase. |Ti|1 = Ci
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Similar to the subcase above.

Case GT-METHOD. e = e0.m<V̄>(d̄) 1;0 `FGJ e0:T0
mtypeFGJ(mbound1 (T0)) = <Ȳ� P̄>Ū→ U0
1 ` V̄ ok 1 ` V̄ <:FGJ [V̄/Ȳ]P̄
1;0 `FGJ d̄:S̄ 1 ` S̄ <:FGJ [V̄/Ȳ]Ū
T = [V̄/Ȳ]U0

By the induction hypothesis, |d̄|1,0 are obtained from |[Ū/X̄]d̄|11,[Ū/X̄]12,0′ by some
combination of replacements of some synthetic casts (D)s with (C)s where
D <:FJ C, or removals of some synthetic casts. By Theorem 4.5.1, |0|1 `FJ
|e0|1,0:|T0|1. By Lemma A.3.8, mtypemax(m, |T0|1) = Ē→ E0 and |T|1 <:FJ E0.

We now have two subcases:

Subcase. |T|1 6= E0

By the rule E-INVK-CAST,

|e|1,0 = (|T|1)s|e0|1,0.m(|d̄|1,0).

Now, we must show that

|[Ū/X̄]e|11,[Ū/X̄]12,0′ = (D)s|[Ū/X̄]e0|11,[Ū/X̄]12,0′.m(|[Ū/X̄]d̄|11,[Ū/X̄]12,0′)

for some D <:FJ |T|1. By Lemmas A.2.10 and A.2.11,

11, [Ū/X̄]12;0′ `FGJ [Ū/X̄]e0:S0
11, [Ū/X̄]12 ` S0 <:FGJ [Ū/X̄]T0.

Without loss of generality, we can assume X̄ and Ȳ are distinct. By Lemmas A.2.7
and A.2.9, we have

mtypeFGJ(m, bound11,[Ū/X̄]12 (S0)) = <Ȳ� [Ū/X̄]P̄>[Ū/X̄]Ū→U0
′

11, [Ū/X̄]12, Ȳ<:[Ū/X̄]P̄ ` U0
′ <:FGJ [Ū/X̄]U0.

By Lemma A.2.5,

11, [Ū/X̄]12 ` [Ū/X̄]V̄<:FGJ[Ū/X̄][V̄/Ȳ]P̄ (= [[Ū/X̄]V̄/Ȳ]([Ū/X̄]P̄))

and by the same lemma,

11, [Ū/X̄]12 ` [[Ū/X̄]V̄/Ȳ]U0
′ <:FGJ [[Ū/X̄]V̄/Ȳ][Ū/X̄]U0 (= [Ū/X̄][V̄/Ȳ]U0 = [Ū/X̄]T).

Then, by Lemmas A.3.5 and A.3.6,

|[[Ū/X̄]V̄/Ȳ]U0
′|11,[Ū/X̄]12 <:FJ |[Ū/X̄]T|11,[Ū/X̄]12<:FJ|T|1.

On the other hand, it is easy to show that

mtypemax(m, |S0|11,[Ū/X̄]12 ) = mtypemax(m, |[Ū/X̄]T0|11,[Ū/X̄]12 ) = Ē→E0.

Then, by the rule E-INVK-CAST,

|[Ū/X̄]e|11,[Ū/X̄]12,0′

= (|[[Ū/X̄]V̄/Ȳ]U0
′|11,[Ū/X̄]12

)s|[Ū/X̄]e0|11,[Ū/X̄]12,0′.m
(|[Ū/X̄]d̄|11,[Ū/X̄]12,0′

)
,

finishing the subcase.

Subcase. |T|1,0 = E0
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Similar to the subcase above.
Case GT-NEW, GT-UCAST, GT-DCAST, GT-SCAST. Immediate from the induc-

tion hypothesis.

LEMMA A.4.3. Suppose

(1) mbodyFGJ(m<V̄>, C<T̄>) = x̄.e,
(2) mtypeFGJ(m, C<T̄>) = <Ȳ� P̄>Ū→ U0,
(3) 1 ` C<T̄> ok,
(4) 1 ` V̄ <:FGJ [V̄/Ȳ]P̄,
(5) 1 ` W̄ <:FGJ [V̄/Ȳ]Ū, and
(6) mbodyFJ(m, C) = x̄.e′.

Then, |x̄ : W̄, this : C<T̄>|1 ` |e|1,x̄:W̄,this:C<T̄>
exp⇒ e′.

PROOF. By induction on the derivation of mbodyFGJ(m<V̄>, C<T̄>), with a case
analysis on the last rule used.

Case MB-Class. class C<X̄� N̄>� N { ...
<Ȳ� Q̄> S0 m(S̄ x){ return e0;} }

[T̄/X̄, V̄/Ȳ]e0 = e
[T̄/X̄]Q̄ = P̄
[T̄/X̄]S̄ = Ū
[T̄/X̄]S0 = U0

Let 1′ = X̄<:N̄, Ȳ<:Q̄ and 0 = x̄ : S̄, this : C<X̄>. By the rule WF-CLASS,
1 ` T̄ <:FGJ [T̄/X̄]N̄ (= [V̄/Ȳ][T̄/X̄]N̄). By Lemma A.4.2, |e0|1′,x̄:S̄,this:C<X̄> is ob-
tained from |e|1,x̄:W̄,this:C<T̄> by some combination of replacements of some syn-
thetic casts (B)s with (A)s where B <:FJ A, or removals of some synthetic casts.
By Theorem 4.5.1,

|x̄ : S̄, this : C<X̄>|1′ `FJ |e0|1′,x̄:S̄,this:C<X̄>:|S0|1′ .
Now, let mtypemax(m, C) = D̄→ D and

ei =
{
xi if Di = |Si|1′
(|Si|1′)sxi otherwise

for i = 1, . . . , #(x̄). Since e′ = [ē/x̄]|e0|1′,0 and |W̄|1<:FJ|[V̄/Ȳ]Ū|1<:FJ|S̄|1′ , by
Lemmas A.3.5 and A.3.6, each ei is either a variable or a variable with an
upcast under the environment |x̄ : W̄, this : C<T̄>|1. Then, we have

|x̄ : W̄, this : C<T̄>|1 `FJ e′:D

for some D such that D <:FJ |S0|1′ by Lemma A.1.2. Therefore, we have

|x̄ : W̄, this : C<T̄>|1 ` |e|1,x̄:W̄,this:C<T̄>
exp⇒ e′,

finishing the case.

Case MB-SUPER. class C<X̄� N̄>� D<S̄> { ... M̄ } m /∈ M̄
By the induction hypothesis,
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|x̄ : W̄, this : [T̄/X̄]D<S̄>|1 ` |e|1,x̄:W̄,this:D<[T̄/X̄]S̄>
exp⇒ e′.

By Lemma A.4.1,

|x̄ : W̄, this : C<T̄>|1 ` |e|1,x̄:W̄,this:D<[T̄/X̄]S̄>
exp⇒ e′.

Then, by Lemma A.4.2, |e|1,x̄:W̄,this:D<[T̄/X̄]S̄> is obtained from |e|1,x̄:W̄,this:C<T̄> by
some combination of replacements of some synthetic casts (B)s with (A)s

where B <:FJ A, or removals of some synthetic casts. On the other hand, by
Lemma A.1.2,

|x̄ : W̄, this : C<T̄>|1 `FJ e′:E

for some E. Therefore,

|x̄ : W̄, this : C<T̄>|1 ` |e|1,x̄:W̄,this:C<T̄>
exp⇒ e′,

finishing the case.

LEMMA A.4.4. If 1;0 `FGJ e:T and e →FGJ e′, then there exists some FJ
expression d′ such that |0|1 `FJ |e′|1,0

exp⇒ d′ and |e|1,0 →FJ d′. In other words,
the diagram shown in Figure 12 commutes.

PROOF. By induction on the derivation of e→FGJ e′ with a case analysis on
the last reduction rule used. We show the main base cases.

Case GR-FIELD. e = new N(ē).fi fieldsFGJ(N) = T̄ f̄ e′ = ei

We have two subcases depending on the last erasure rule used.

Subcase E-FIELD-CAST. |e|1,0 = (D)s(new C(|ē|1,0).fi)

We have |N|1 = C by definition of erasure. Since fieldsFJ(C) = C̄ f̄ for some
C̄, we have |e|1,0 →FJ (D)s|ei|1,0. On the other hand, by Theorem 3.4.1,
1;0 `FGJ ei:Ti such that 1 ` Ti <:FGJ T. By Theorem 4.5.1, |T|1 = D and
|0|1 `FJ |ei|1,0:|Ti|1. Since |Ti|1 <:FJ D by Lemma A.3.5, (D)s|ei|1,0 is obtained
by adding an upcast to |ei|1,0.

Subcase E-FIELD. |e|1,0 = new C(|ē|1,0).fi

Follows from the induction hypothesis.
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Case GR-INVK. e = new C<T̄>(ē).m<V̄>(d̄)
mbodyFGJ(m<V̄>, C<T̄>) = x̄.e0
e′ = [d̄/x̄, new C<T̄>(ē)/this]e0

We have two subcases, depending on the last erasure rule used.

Subcase E-INVK-CAST. |e|1,0 = (D)s(new C(|ē|1,0).m(|d̄|1,0))

Since mbodyFGJ(m<V̄>, C<T̄>) is well defined, mbodyFJ(m, C) is also well defined.
Let mbodyFJ(m, C) = x̄.e0

′ and 0′ = x̄ : Ū, this : C<T̄> where Ū are types of d̄.
Then, by Lemma A.4.3,

|0′|1 ` |e0|1,0′
exp=⇒ e0

′.

By Lemma A.4.1,

|0|1 ` |e′|1,0
exp=⇒ [|d̄|1,0/x̄, |new C<T̄>(ē)|1,0/this]e0

′.

Note that |e′|1,0 = [|d̄|1,0/x̄, |new C<T̄>(ē)|1,0/this]|e0|1,0′ . By Theorems 3.4.1
and 4.5.1,

|0|1 `FJ |e′|1,0:|T′|1
for some T′ such that 1 ` T′ <:FGJ T. By Lemma A.3.5, |T′|1 <:FJ D. Thus,

|0|1 ` |e′|1,0
exp=⇒ (D)s|e′|1,0.

Finally,

|0|1 ` |e′|1,0
exp=⇒ (D)s[|d̄|1,0/x̄, |new C<T̄>(ē)|1,0/this]e0

′.

Subcase E-INVK. Similarly to the subcase above.

Case GR-CAST. Easy.

LEMMA A.4.5. If 0 `FJ e:C and e →FJ e′ and 0 ` e
exp⇒ d, then there exists

some FJ expression d′ such that 0 ` e′
exp⇒ d′ and d→FJ

∗d′. In other words, the
diagram shown in Figure 13 commutes.

PROOF. By induction on the derivation of e →FJ e′ with a case analysis on
the last reduction rule used.

Case R-FIELD. e = new C(ē).fi fieldsFJ(C) = C̄ f̄ e′ = ei
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Fig. 14.

The expansion d must have a form of ((D1)
s · · · (Dn)

snew C(d̄)).fi where 0 `
ē

exp⇒ d̄ and C<:FJDi for 1 ≤ i ≤ n because each Di is introduced as an upcast.
Thus, d→FJ

∗new C(d̄).fi →FJ di.
The other base cases are similar, and the cases for induction steps are

straightforward.

PROOF OF THEOREM 4.5.3. By induction on the length n of reduction sequence
e→FGJ

∗e′.

Case. n = 0

Trivial.

Case. e→FGJ e′→FGJ
∗e′′

We have the commuting diagram shown in Figure 14. Commutation (1)
is proved by Lemma A.4.4, (2) by the induction hypothesis and (3) by
Lemma A.4.5.

LEMMA A.4.6. Suppose1;0 `FGJ e:T. If |e|1,0 →FJ d, then e→FGJ e′ for some
e′ and |0|1 ` |e′|1,0

exp⇒ d. In other words, the diagram in Figure 15 commutes.

PROOF. By induction on the derivation of |e|1,0 →FJ d with a case analysis
by the last rule used. We show only a few main cases.

Case RC-CAST. We have two subcases according to whether the cast is
synthetic (|e|1,0 = (C)se0) or not (|e|1,0 = (C)e0). The latter case follows from
the induction hypothesis. We show the former case, where

|e|1,0 = (C)se0
e0 →FJ d0
d = (C)sd0.

Then e0 must be either a field access or a method invocation. We have another
case analysis with the last reduction rule for the derivation of e0 →FJ d0. The
cases for RC-FIELD, RC-INVK-RECV, and RC-INVK-ARG are omitted, since they
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Fig. 15.

follow from the induction hypothesis.

Subcase R-FIELD. e0 = new D(ē).fi
d0 = ei
fieldsFJ(D) = C̄ f̄

By inspecting the derivation of |e|1,0, it must be the case that

e = new D<T̄>(ē′).fi
|ē′|1,0 = ē
fieldsmax(D) = C̄ f̄
|T|1 = C 6= Ci.

By Theorems 3.4.2 and 3.4.1, we have e →FGJ ei
′ and 1;0 `FGJ ei

′:S and
1 ` S <:FGJ T. By Theorem 4.5.1, |0|1 `FJ |ei

′|1,0:|S|1. By Lemma A.3.5,
|S|1 <:FJ |T|1. Then, |0|1 ` ei

exp⇒ (|T|1)ei, finishing the case.

Subcase R-INVK. e0 = new D(d̄).m(ē)
mbodyFJ(m, D) = x̄.em
d0 = [ē/x̄, new D(d̄)/this]em

By inspecting the derivation of |e|1,0, it must be the case that

e = new D<T̄>(d̄′).m<V̄>(ē′) |d̄′|1,0 = d̄ |ē′|1,0 = ē
mtypeFGJ(m, D<T̄>) = <Ȳ� P̄>Ū→U0 [V̄/Ȳ]U0 = T
mtypemax(m, D) = C̄→C0 |T|1 = C 6= C0.

By Theorems 3.4.2. and 3.4.1, it must be the case that

e→FGJ [ē′/x̄, new D<T̄>(d̄′)/this]em
′

mbodyFGJ(m<V̄>, D<T̄>) = x̄.em
′

1;0 `FGJ [ē′/x̄, new D<T̄>(d̄′)/this]em
′:S

for some S such that 1 ` S<:T. By Theorem 4.5.1 and the fact that

|[ē′/x̄, new D<T̄>(d̄′)/this]em
′|1,0 = [ē/x̄, new D(d̄)/this]|em

′|1,x̄:W̄,this:D<T̄>

where W̄ are the types of ē′, we have

|0|1 `FJ [ē/x̄, new D(d̄)/this]|em
′|1,x̄:W̄,this:D<T̄>:|S|1.

Since |S|1 <:FJ |T|1 by Lemma A.3.5,

|0|1 ` [ē/x̄, new D(d̄)/this]|em
′|1,x̄:W̄,this:D<T̄>

exp⇒ (|T|1)s[ē/x̄, new D(d̄)/this]|em
′|1,x̄:W̄,this:D<T̄>.
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Fig. 16.

On the other hand, by Lemma A.4.3,

|x̄ : W̄, this : D<T̄>|1 ` |em
′|1,x̄:W̄,this:D<T̄>

exp⇒ em.

By Lemma A.4.1,

|0|1 ` [ē/x̄, new D(d̄)/this]|em
′|1,x̄:W̄,this:D<T̄>

exp⇒ [ē/x̄, new D(d̄)/this]em.

Then,

|0|1 ` (|T|1)s[ē/x̄, new D(d̄)/this]|em
′|1,x̄:W̄,this:D<T̄>

exp⇒ (|T|1)s[ē/x̄, new D(d̄)/this]em.

Finally, we have, by the fact that C = |T|1 and transitivity of the expansion
relation,

|0|1 ` |[ē′/x̄, new D<T̄>(d̄′)/this]em
′|1,0

exp⇒ (C)[ē/x̄, new D(d̄)/this]em
′.

Case R-FIELD. Similar to the subcase for R-FIELD in the case for RC-CAST

above.

Case R-INVK. Similar to the subcase for R-INVK in the case for RC-CAST

above. The case for R-CAST and the other cases for induction steps are straight-
forward.

LEMMA A.4.7. Suppose 1;0 `FGJ e : T and |0|1 ` |e|1,0
exp⇒ d. If d reduces to

d′ with zero or more steps by removing synthetic casts, followed by one step by
other kinds of reduction, then |e|1,0 →FJ e′ and |0|1 ` e′

exp⇒ d′. In other words,
the diagram in Figure 16 commutes.

PROOF. By induction on the derivation of the last reduction step with a case
analysis by the last rule used.

Case R-FIELD. d→FJ
∗new C(ē).fi fieldsFJ(C) = C̄ f̄ d′ = ei

The expression d must be of the form ((D1)
s . . . (Dn)

snew C(ē′)).fi where C <: Di
for any i and each ei

′ reduces to ei by removing upcasts (in several steps). In
other words, |0|1 ` ē′

exp⇒ ē. Moreover, since |0|1 ` |e|1,0
exp⇒ d, the expression

|e|1,0 must be of either the form new C(ē′′).fi or (D)snew C(ē′′).fi, where |0|1 `
ē′′

exp⇒ ē′. Therefore, |e|1,0 →FJ ei
′′ or |e|1,0 →FJ (D)sei

′′. It is easy to see

|0|1 ` (D)sei
′′ exp⇒ ei

and

|0|1 ` ei
′′ exp⇒ ei.
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Other base cases are similar; induction steps are straightforward.

PROOF OF THEOREM 4.5.4. Follows from Lemmas A.4.6 and A.4.7.
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