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Programming Interacting Autonomous Robots

Low level
Analysis of vision data
Control laws for legs
Wireless cards

Current programming

How to implement Go-to-ball
Real-time scheduling

High level

Modes: Attack, Defend
How to switch? Strategies
Communication to collaborate




Trends Iin Model-Based Design

d Emerging notations: UML-RT,Stateflow

¢ Visual, Hierarchical, Object oriented
¢ Simulation, code generation

J Formal models and Model checking tools
J Programming languages (Esterel, FRP..)
1 Control engineer’s tools (Matlab...)

1 Design/Simulation environments
¢ SHIFT, Ptolemy-11, Modelica ....



Guiding Themes for CHARON

d Integrated modeling of control program and
physical environment (hybrid)

¢ Programming language technology in Control tools
¢ Continuous modeling in Programming environments

d Foundations for hybrid systems in presence
of concurrency, hierarchy, exceptions ..

+ Compositionality, refinement, ...

d Models need to be analyzable
¢ Model checking
¢ Exploit modeling constructs for efficiency
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Hybrid Modeling

State machines + Dynamical systems
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Behavioral Hierarchy
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CHARON Language Features

d Individual components described as agents
¢ Composition, instantiation, and hiding

d Individual behaviors described as modes
¢+ Encapsulation, instantiation, and Scoping

d Support for concurrency
¢ Shared variables as well as message passing

1 Support for discrete and continuous behavior
¢ Differential as well as algebraic constraints

+ Discrete transitions can call Java routines



Syntax: Modes and Agents
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1 Modes describe sequential behavior
1 Agents describe concurrency




Example: V2V model
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Agent VehiclePlant

Agent VehiclePlant
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CHARON Toolkit
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What i1s Compositionality ?

@ .

Which properties are preserved?

Can we restrict reasoning to modified parts of design?

Mode should have a precise interface spec that would

permit composition of behaviors



Mode Executions
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Semantics of modes

d Semantics of a mode consists of:
¢ control interface: entry and exit points
¢ data interface: global variables
+ traces (sequences over observable states)
d Key Thm: Semantics is compositional

¢ traces of a mode can be computed from
traces of its sub-modes
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Sub-mode refinement

Controller’
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Compositional Reasoning
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Sub-mode refinement Context refinement

Automated refinement checking for discrete systems
Pipelined processors, Network protocols
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Model Checking of Hybrid Systems

4 Goal: Given an initial region, compute
whether a bad state can be reached

 Existing tools: HyTech, d/dt, Checkmate

d Key step Is to compute Reach(X) for a given
set X under dx = Ax+Bu (expensive !!l)

Reach(X)




Polyhedral Flow Pipe Approximations

« divide Ry 1(X,) into [t,.t,.,] seg

» enclose each segment with a convex polytope

* R (X,) = union of polytopes

A. Chutinan and B. H. Krogh, Computing polyhedral approximations to
dynamic flow pipes, IEEE CDC, 1998



Predicate Abstraction

d Input is a hybrid automaton and a set of k boolean
predicates, e.g. Xty > 5-z.

U The partitioning of the concrete state space Is
specified by the user-defined k predicates.

YA

1

Concrete Space: Abstract Space:
LxR" L x {0,1} k



Overview of the Approach

Hybrid Boolean
system predicates <

@ @ additional
predicates
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Why use this approach?

d Reach(X) needs to be computed only for abstract
states X and not intermediate regions of
unpredictable shapes/complexity

d No need to compute Reach (X). Goal is to find one
new abstract state reachable from X, partial
results are of great use

¢ Simulate vertices
¢ Consider time-slices at discrete times

d Our focus is on search strategies to make progress
In the abstract state-space
d Initial implementation in C++ with promising results



Case-study: V2V

d Platoon controller for 3 vehicles scenario

dFirst step: make the model linear (feedback
linearization)

d Initial predicates from model description. E.g.
* from LowLevelController:
"y id< 0,uid>0
= from BrakeControl:
» U _id <max_brake pressure
* from ThrottleControl:
* u_id <max_throttle
 Safety of the controller verified using the tool
(17 predicates, 4 continuous vars, <1 min)
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Ongoing Activities

JResearch

* & & & #»

Distributed simulation

Qualitative abstractions of hybrid systems
Model-based test generation

Accurate event detection for simulation
Exploiting hierarchy for efficient simulation

1 Applications/Case-studies

&

&
&
&

Multiple autonomous robots
MoBIES challenge problems
Animation

Biomolecular networks...



DO

Wrap-Up

Modeling and Analysis in symbiosis
Common themes in many modeling proposals

¢+ Hierarchy

¢ Concurrency and Communication

¢ Component interfaces

¢ Formal semantics and compositionality

¢+ Integration: Discrete + Continuous + Stochastic

Automating formal verification is hard, but not
Impossible, and there is steady progress
Biological systems: emerging application for
modeling with similarities to embedded software



