
Hierarchical Hybrid Modeling of
Embedded Systems

Rajeev Alur

Systems Design Research Lab
University of Pennsylvania
www.cis.upenn.edu/~alur/

EMSOFT, Tahoe City, October 2001

Programming Interacting Autonomous Robots

Low level
Analysis of vision data
Control laws for legs
Wireless cards

Current programming
How to implement Go-to-ball
Real-time scheduling

High level
Modes: Attack, Defend
How to switch? Strategies
Communication to collaborate

Trends in Model-Based Design

q Emerging notations: UML-RT,Stateflow
Visual, Hierarchical, Object oriented
Simulation, code generation

q Formal models and Model checking tools
q Programming languages (Esterel, FRP…)
q Control engineer’s tools (Matlab…)
q Design/Simulation environments

SHIFT, Ptolemy-II, Modelica ….

Guiding Themes for CHARON

q Integrated modeling of control program and
physical environment (hybrid)

Programming language technology in Control tools
Continuous modeling in Programming environments

q Foundations for hybrid systems in presence
of concurrency, hierarchy, exceptions …

Compositionality, refinement, ….

q Models need to be analyzable
uModel checking
u Exploit modeling constructs for efficiency

CHARON Team
Faculty

Rajeev Alur (CIS)
Vijay Kumar (MEAM)
Insup Lee (CIS)
George Pappas (EE)

Research Associates
Thao Dang
Salvatore La Torre
Supratik Mukhopadhyay
Oleg Sokolsky

PhD Students
Joel Esposito
Yerang Hur
Franjo Ivancic
P K Mishra
Usa Sammapun

Collaborators

Rafael Fierro (U Oklahoma)
Radu Grosu (SUNY StonyBrook)

Funding: DARPA Mobies, NSF

Talk Outline

ü Motivation
Ü CHARON Summary
q Compositional Refinement
q Model Checking via Predicate Abstraction
q Conclusions

Hybrid Modeling

State machines

offon

+ Dynamical systems

dx=kx
x<70

dx=-k’x
x>60

x>68

x<63

Behavioral Hierarchy

awTarget
dPlan
iAway

atTarget
dStop
iAt

arrive

pos == target

moving
dSteer
aOmega
iFreq

sensing
dStop
iConst

sense

move

arrive

pos.x = v * cos(phi)

pos.y = v * sin(phi)

.

.

CHARON Language Features

q Individual components described as agents
Composition, instantiation, and hiding

q Individual behaviors described as modes
Encapsulation, instantiation, and Scoping

q Support for concurrency
Shared variables as well as message passing

q Support for discrete and continuous behavior
Differential as well as algebraic constraints

Discrete transitions can call Java routines

Syntax: Modes and Agents

q Modes describe sequential behavior
q Agents describe concurrency

local t, rate
global level, infusion

Agent Controller Agent Tank

infusion

global level
global infusion

{level = f(infusion)}
•

level

Emergency

{t = 1}•

dx de

{ level∈∈[2,10] }

level∈∈[2,10]

level∈∈[4,8]

dxde

Compute

Normal

e

dedx

xt=10
t:=0

Maintain
{t<10}

Example: V2V model
A

ge
n

t
In

te
rV

eh
ic

le
C

om
m

u
n

ic
at

io
n

_I
N

Agent Vehicle

Agent
RegulationLayer

Agent CarSensor

Agent VehiclePlant

A
ge

n
t

In
te

rV
eh

ic
le

C
om

m
u

n
ic

at
io

n
_O

U
T

Agent VehiclePlant
A

ge
n

t
C

om
m

u
n

ic
at

io
n

_I
N

Agent VehiclePlant
Agent DynamicController Agent DynamicSensor

Agent VehicleDynamics

A
ge

n
t

C
om

m
u

n
ic

at
io

n
_O

U
T

mode
Brake

Controller

mode
Torque

Controller

Agent
Brake

Agent
Rigid
Body

Agent
Moments

Agent
SI_Engine

Agent
GearShift

Agent PowerTrain

Agent
Torque

Converter

Agent
WheelSet

u_isl

steering
p_mcc

throttle_des

xDot_lls

xDDot_lls
p_man_lls
p_wheel_lls
w_wheel_ll
sthrottle_lls
gearRatio_lls
we_lls

xDot

xDDot

Agent RegulationLayer
Agent RegulationLayer

m
od

e
C

ru
is

e

m
od

e
D

ec
el

er
at

e
m

od
e

A
cc

el
er

at
e

m
od

e
B

ra
k

in
g

m
od

e
C

ol
li

si
on

_W
_O

ff

mode
Cruise_Cntrl

mode
Join_ACC

mode
ACC

mode
CACC

mode
Join_CACC

mode
FCW

mode
CFCW

mode Collision_W_ON

mode
Warning

mode
No_Warning

mode VehicleLeader mode VehicleFollower

CHARON Toolkit

Talk Outline

ü Motivation
ü CHARON Summary
Ü Compositional Refinement
q Model Checking via Predicate Abstraction
q Conclusions

What is Compositionality ?

Mode should have a precise interface spec that would

permit composition of behaviors

Which properties are preserved?

Can we restrict reasoning to modified parts of design?

Mode Executions

(ctl,t,level,infusion,rate,h)

(dx,0,5.1,1,0.2,Maintain)

(dx,10,15.1,3,0.2,Maintain)

Flow Step

(de,10,15.1,5,0.2,Maintain)

Env Step

(dx,10,15.1,5,0.1,Compute)

Discrete Mode Step

{t = 1}
•

dx

{ level∈∈[2,10] }

de

Compute

Normal

e

dedx

xt=10
t:=0

Maintain
{t<10}

Semantics of modes

q Semantics of a mode consists of:
control interface: entry and exit points
data interface: global variables
traces (sequences over observable states)

q Key Thm: Semantics is compositional
traces of a mode can be computed from
traces of its sub-modes

Refinement

Refinement is trace inclusion

dx

Compute

Normal

e

dedx

x

t=10 t:=0

Maintain
{t<10} dx

Compute

Normal’

e

dedx

x

t ≤≤ 10 t:=0

Maintain
{t<10}

de de
<

{t = 1}•

{ level∈∈[2,10] }
{t = 1}•

{ level ≤≤ 10 }

• Same control
points and
global variables

• Guards and
constraints are
relaxed

Normal Normal’

Sub-mode refinement

Normal

Controller

dx

de

Normal’

Controller’

dx

Emergency

de

level∈∈[2,10]

level∈∈[4,8]

dx

Emergency

de

level∈∈[2,10]

level∈∈[4,8]

dx

de

Refines

Compositional Reasoning

N N’< M
<

M’

N

M

N’

M
<

Sub-mode refinement

N

M
< N

M’

Context refinement

Automated refinement checking for discrete systems
Pipelined processors, Network protocols

Talk Outline

ü Motivation
ü CHARON Summary
üCompositional Refinement
Ü Model Checking via Predicate Abstraction
q Conclusions

Model Checking of Hybrid Systems

q Goal: Given an initial region, compute
whether a bad state can be reached

q Existing tools: HyTech, d/dt, Checkmate
q Key step is to compute Reach(X) for a given

set X under dx = Ax+Bu (expensive !!!)

X

Reach(X)

Polyhedral Flow Pipe Approximations

A. Chutinan and B. H. Krogh, Computing polyhedral approximations to
dynamic flow pipes, IEEE CDC, 1998

X0

t1

t2

t3

t4
t5

t6 t7

t8

t9

• divide R[0,T](X0) into [tk,tk+1] segments

• enclose each segment with a convex polytope

• RM
[0,T](X0) = union of polytopes

Predicate Abstraction
qInput is a hybrid automaton and a set of k boolean

predicates, e.g. x+y > 5-z.
qThe partitioning of the concrete state space is

specified by the user-defined k predicates.

t

x

Concrete Space:
L x R n

Abstract Space:
L x {0,1} k

Overview of the Approach

Safety
property

Hybrid
system

Boolean
predicates

Search in abstract space

Analyze counter-example

Property
holds

No!
Counter-example

Real
counter-
example
found

additional
predicates

Why use this approach?

q Reach(X) needs to be computed only for abstract
states X and not intermediate regions of
unpredictable shapes/complexity

q No need to compute Reach (X). Goal is to find one
new abstract state reachable from X, partial
results are of great use

Simulate vertices
Consider time-slices at discrete times

q Our focus is on search strategies to make progress
in the abstract state-space

q Initial implementation in C++ with promising results

Case-study: V2V
q Platoon controller for 3 vehicles scenario
qFirst step: make the model linear (feedback

linearization)
q Initial predicates from model description. E.g.

§ from LowLevelController:
§ u_isl < 0, u_isl > 0

§ from BrakeControl:
§ u_isl < max_brake_pressure

§ from ThrottleControl:
§ u_isl < max_throttle

q Safety of the controller verified using the tool
(17 predicates, 4 continuous vars, < 1 min)

Talk Outline

ü Motivation
ü CHARON Summary
üCompositional Refinement
üModel Checking via Predicate Abstraction
Ü Conclusions

Ongoing Activities

qResearch
Distributed simulation
Qualitative abstractions of hybrid systems
Model-based test generation
Accurate event detection for simulation
Exploiting hierarchy for efficient simulation

q Applications/Case-studies
Multiple autonomous robots
MoBIES challenge problems
Animation
Biomolecular networks…

Wrap-Up

q Modeling and Analysis in symbiosis
q Common themes in many modeling proposals

Hierarchy
Concurrency and Communication
Component interfaces
Formal semantics and compositionality
Integration: Discrete + Continuous + Stochastic

q Automating formal verification is hard, but not
impossible, and there is steady progress

q Biological systems: emerging application for
modeling with similarities to embedded software

