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Abstract 
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We propose timed (j&e) automata to model the behavior of real-time systems over time. Our 

definition provides a simple, and yet powerful, way to annotate state-transition graphs with timing 

constraints using finitely many real-valued clocks. A timed automaton accepts timed words-infinite 

sequences in which a real-valued time of occurrence is associated with each symbol. We study timed 

automata from the perspective of formal language theory: we consider closure properties, decision 

problems, and subclasses. We consider both nondeterministic and deterministic transition struc- 

tures, and both Biichi and Muller acceptance conditions. We show that nondeterministic timed 

automata are closed under union and intersection, but not under complementation, whereas 

deterministic timed Muller automata are closed under all Boolean operations. The main construc- 

tion of the paper is an (PSPACE) algorithm for checking the emptiness of the language of 

a (nondeterministic) timed automaton. We also prove that the universality problem and the 

language inclusion problem are solvable only for the deterministic automata: both problems are 

undecidable (II i-hard) in the nondeterministic case and PSPACE-complete in the deterministic case. 

Finally, we discuss the application of this theory to automatic verification of real-time requirements 

of finite-state systems. 
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Modal logics and w-automata for qualitative temporal reasoning about concurrent 

systems have been studied in great detail (selected references: [37, 33, 17, 29,48,44, 35, 

121). These formalisms abstract away from time, retaining only the sequencing of 

events. In the linear time mode/, it is assumed that an execution can be completely 

modeled as a sequence of states or system events, called an execution truce (or just 

truce). The behavior of the system is a set of such execution sequences. Since a set of 

sequences is a formal language, this leads naturally to the use of automata for the 
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specification and verification of systems. When the systems are finite-state, as many 

are, we can use finite automata, leading to effective constructions and decision 

procedures for automatically manipulating and analyzing system behavior. The 

universal acceptance of finite automata as the canonical model of finite-state compu- 

tation can be attributed to the robustness of the model and to the appeal of its theory. 

In particular, a variety of competing formalisms - nondeterministic Biichi automata, 

deterministic and nondeterministic Muller automata, u-regular expressions, modal 

formulas of (extended) temporal logic, and second-order formulas of the monadic 

theory of one successor (SlS)- have the same expressiveness, and define the class of 

o-regular languages [7, 10, 34, 46, 431. Consequently, many verification theories are 

based on the theory of w-regular languages. 

Although the decision to abstract away from quantitative time has had many 

advantages, it is ultimately counterproductive when reasoning about systems that 

must interact with physical processes; the correct functioning of the control system of 

airplanes and toasters depends crucially upon real-time considerations. We would like 

to be able to specify and verify models of real-time systems as easily as qualitative 

models. Our goal is to modify finite automata for this task and develop a theory of 

timed finite automata, similar in spirit to the theory of o-regular languages. We believe 

that this should be the first step in building theories for the real-time verification 

problem. 

For simplicity, we discuss models that consider executions to be infinite sequences 

of events, not states (the theory with state-based models differs only in details). Within 

this framework, it is possible to add timing to an execution trace by pairing it with 

a sequence of times, where the ith element of the time sequence gives the time of 

occurrence of the ith event. At this point, however, a fundamental question arises: 

what is the nature of time? 

1.1. Modeling time 

One alternative, which leads to the discrete-time model, requires the time sequence 

to be a monotonically increasing sequence of integers. This model is appropriate for 

certain kinds of synchronous digital circuits, where signal values are considered to 

have changed exactly when a clock signal arrives. One of the advantages of this model 

is that it can be transformed easily into an ordinary formal language. Each timed trace 

can be expanded into a trace where the times increase by exactly one at each step, by 

inserting a special silent event as many times as necessary between events in the 

original trace. Once this transformation has been performed, the time of each event is 

the same as its position, so the time sequence can be discarded, leaving an ordinary 

string. Hence, discrete time behaviors can be manipulated using ordinary finite 

automata. Of course, in physical processes, events do not always happen at integer- 

valued times. The discrete-time model requires that continuous time be approximated 

by choosing some fixed quantum CI priori, which limits the accuracy with which 

physical systems can be modeled. 
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The jictitious-clock model is similar to the discrete-time model, except that it only 

requires the sequence of integer times to be nondecreasing. The interpretation of 

a timed execution trace in this model is that events occur in the specified order at 

real-valued times, but only the (integer) readings of the actual times with respect to 

a digital clock are recorded in the trace. This model is also easily transformed into 

a conventional formal language. First, add to the set of events a new one, called tick. 
The untimed trace corresponding to a timed trace will include all of the events from 

the timed trace, in the same order, but with ti+ 1 - ti number of ticks inserted between 

the ith and the (i+ 1)th events (note that this number may be 0). Once again, it is 

conceptually simple to manipulate these behaviors using finite automata, but the 

compensating disadvantage is that it represents time only in an approximate sense. 

We prefer a dense-time model, in which time is a dense set, because it is a more 

natural model for physical processes operating over continuous time. In this model, 

the times of events are real numbers, which increase monotonically without bound. 

Dealing with dense time in a finite-automata framework is more difficult than the 

other two cases, because it is not obvious how to transform a set of dense-time traces 

into an ordinary formal language. Instead, we have developed a theory of timed formal 

languages and timed automata to support automated reasoning about such systems. 

1.2. Overview 

To augment finite o-automata with timing constraints, we propose the formalism 

of timed automata. Timed automata accept timed words-infinite sequences in which 

a real-valued time of occurrence is associated with each symbol. A timed automaton is 

a finite automaton with a finite set of real-valued clocks. The clocks can be reset to 

0 (independently of each other) with the transitions of the automaton, and keep track 

of the time elapsed since the last reset. The transitions of the automaton put certain 

constraints on the clock values: a transition may be taken only if the current values of 

the clocks satisfy the associated constraints. With this mechanism we can model 

timing properties such as “the channel delivers every message within 3 to 5 time units 

of its receipt”. Timed automata can capture several interesting aspects of real-time 

systems: qualitative features such as liveness, fairness, and nondeterminism; and 

quantitative features such as periodicity, bounded response, and timing delays. 

We study timed automata from the perspective of formal language theory. We 

consider both deterministic and nondeterministic varieties, and for acceptance criteria 

we consider both Biichi and Muller conditions. We show that nondeterministic timed 

automata are closed under union and intersection, but surprisingly, not under comp- 

lementation. The closure properties for the deterministic classes are similar to their 

untimed counterparts: deterministic timed Muller automata are closed under all 

Boolean operations, whereas deterministic timed Biichi automata are closed under 

only the positive Boolean operations. These results imply that, unlike the untimed 

case, deterministic timed Muller automata are strictly less expressive than their 

nondeterministic counterparts. 
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We study a variety of decision problems for the different types of timed automata. 

The main positive result is an untiming construction for timed automata. Due to the 

real-valued clock variables, the state space of a timed automaton is infinite, and the 

untiming algorithm constructs a finite quotient of this space. This is used to prove that 

the set of untimed words consistent with the timing constraints of a timed automaton 

forms an w-regular set. It also leads to a PSPACE decision procedure for testing 

emptiness of the language of a timed automaton. We also show that the dual problem 

of testing whether a timed automaton accepts all timed words (i.e. the universality 

question) is undecidable (II:-hard) for nondeterministic automata. This also implies 

the undecidability of the language inclusion problem. However, both these problems 

can be solved in PSPACE for the deterministic versions. 

Finally, we show how to apply the theory of timed automata to prove correctness of 

finite-state real-time systems. We give a PSPACE verification algorithm to test 

whether a system modeled as a product of timed automata satisfies its specification 

given as a deterministic timed Muller automaton. 

1.3. Related work 

Different ways of incorporating timing constraints in the qualitative models of 

a system have been proposed recently, however, no attempt has been made to develop 

a theory of timed languages and no algorithms for checking real-time properties in the 

dense-time model have been developed. 

Perhaps, the most standard way of introducing timing information in a process 

model is by associating lower and upper bounds with transitions. Examples of these 

include timed Petri nets [39], timed transition systems [36,22], timed I/O automata 

[32], and Modecharts [26]. In a timed automaton, unlike these other models, a bound 

on the time taken to traverse a path in the automaton, not just the time interval 

between the successive transitions, can be directly expressed. Our model is based on 

an earlier model proposed by Dill that employs timers [14]. A model similar to Dill’s 

was independently proposed and studied by Lewis [31]. He defines state-diagrams, 
and gives a way of translating a circuit description to a state-diagram. A state-diagram 

is a finite-state machine where every edge is annotated with a matrix of intervals 

constraining various delays. Lewis also develops an algorithm for checking consist- 

ency of the timing information for a special class of state-diagrams; the ones for which 

there exists a constant K such that at most K transitions can happen in a time interval 

of unit length. Our untiming construction does not need the latter assumption, and 

has a better worst-case complexity. We note that the decidability and lower bound 

results presented here carry over to his formalism also. 

There have been a few attempts to extend temporal logics with quantitative time 

[6,25, 27,36, 18, 5,201. Most of these logics employ the discrete-time or the fictitious- 

clock semantics. In the case of the dense-time model the only previously known result 

is an undecidability result: in [S] it is shown that the satisfiability problem for 
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a real-time extension of the linear-time temporal logic PTL is undecidable (Xi-hard) 

in the dense-time model. 

2. w-automata 

In this section we will briefly review the relevant aspects of the theory of o-regular 
languages. 

The more familiar definition of a formal language is as a set of finite words over 

some given (finite) alphabet (see, for example, [24]). As opposed to this, an o-language 

consists of infinite words. Thus, an o-language over a finite alphabet C is a subset of 

C” ~ the set of all infinite words over C. o-automata provide a finite representation for 

certain types of o-languages. An w-automaton is essentially the same as a nondeter- 

ministic finite-state automaton, but with the acceptance condition modified suitably 

so as to handle infinite input words. Various types of w-automata have been studied in 

the literature [7, 34, 10,431. We will mainly consider two types of o-automata: Biichi 

automata and Muller automata. 

A transition table d is a tuple (C, S, So, E), where C is an input alphabet, S is 

a finite set of automaton states, So G S is a set of start states, and E c S x S x C is a set 

of edges. The automaton starts in an initial state, and if (s, s’, U)EE then the 

automaton can change its state from s to s’ reading the input symbol a. 
For a word c=c1c2... over the alphabet C, we say that 

is a run of d over G, provided sO~SO, and (s~-~, si, oi)eE for all ia 1. For such a run, 

the set inf(r) consists of the states SES such that s =si for infinitely many i>O. 

Different types of w-automata are defined by adding an acceptance condition to 

the definition of a transition table. A Biichi automaton d is a transition table 

(C, S, S,,, E) with an additional set FcS of accepting states. A run r of & over 

a word ~EJ?Y is an accepting run iff inf(r) n F #@. In other words, a run r is accepting iff 

some state from the set F repeats infinitely often along r. The language L(d) accepted 

by & consists of the words CJE.Y’ such that d has an accepting run over 0. 

Example 2.1. Consider the 2-state automaton of Fig. 1 over the alphabet {a, b}. The 

state s0 is the start state and s1 is the accepting state. Every accepting run of the 

automaton has the form 

with aiE{ a, b} for 1 <i < n for some n 20. The automaton accepts all words with only 

a finite number of b’s; i.e., the language Lo =(a + b)*a”. 
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a,b a 

Fig. 1. Biichi automaton accepting (a + b)*a”. 

An o-language is called o-regular iff it is accepted by some Biichi automaton. Thus, 

the language L,, of Example 2.1 is an a-regular language. 

The class of o-regular languages is closed under all the Boolean operations. 

Language intersection is implemented by a product construction for Biichi automata 

[ 10,481. There are known constructions for complementing Biichi automata [42,41]. 

When Biichi automata are used for modeling finite-state concurrent processes, the 

verification problem reduces to that of language inclusion. The inclusion problem for 

w-regular languages is decidable. To test whether the language of one automaton is 

contained in the other, we check for emptiness of the intersection of the first automa- 

ton with the complement of the second. Testing for emptiness is easy; we only need to 

search for a cycle that is reachable from a start state and includes at least one 

accepting state. In general, complementing a Biichi automaton involves an exponen- 

tial blowup in the number of states, and the language inclusion problem is known to 

be PSPACE-complete [42]. However, checking whether the language of one automa- 

ton is contained in the language of a deterministic automaton can be done in 

polynomial time [28]. 

A transition table & = (C, S, So, E) is deterministic iff (i) there is a single start state, 

i.e., ) So I= 1, and (ii) the number of u-labeled edges starting at s is at most one for all 

states SES and for all symbols UEC. Thus, for a deterministic transition table, the 

current state and the next input symbol determine the next state uniquely. Conse- 

quently, a deterministic automaton has at most one run over a given word. Unlike the 

automata on finite words, the class of languages accepted by deterministic Biichi 

automata is strictly smaller than the class of o-regular languages. For instance, there 

is no deterministic Biichi automaton which accepts the language Lo of Example 2.1. 

Muller automata (defined below) avoid this problem at the cost of a more powerful 

acceptance condition. 

A Muller automaton ~2 is a transition table (C, S, So, E) with an acceptance family 
9 G 2’. A run r of .d over a word crsCW is an accepting run iff inf(r)E4. That is, a run 

r is accepting iff the set of states repeating infinitely often along r equals some set in 9;. 

The language accepted by & is defined as in the case of Biichi automata. 

The class of languages accepted by Muller automata is the same as that accepted by 

Biichi automata, and also equals that accepted by deterministic Muller automata. 

Example 2.2. The deterministic Muller automaton of Fig. 2 accepts the language 

Lo consisting of all words over {a, b} with only a finite number of b’s The Muller 
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b a 

Fig. 2. Deterministic Muller automaton accepting (a+b)*a”. 

acceptance family is { {si}}. Th us, every accepting run can visit the state s0 only 

finitely often. 

Thus, deterministic Muller automata form a strong candidate for representing 

o-regular languages: they are as expressive as their nondeterministic counterpart, 

and they can be complemented in polynomial time. Algorithms for constructing 

the intersection of two Muller automata and for checking language inclusion are 

known [ 111. 

3. Timed automata 

In this section we define timed words by coupling a real-valued time with each 

symbol in a word. Then we augment the definition of o-automata so that they accept 

timed words, and use them to develop a theory of timed regular languages analogous 

to the theory of o-regular languages. 

3.1. Timed languages 

We define timed words so that a behavior of a real-time system corresponds to 

a timed word over the alphabet of events. As in the case of the dense-time model, the 

set of nonnegative real numbers, R, is chosen as the time domain. A word 0 is coupled 

with a time sequence z as defined below: 

Definition 3.1. A time sequence z = 7l z2.. is an infinite sequence of time values TiER 

with Zi > 0, satisfying the following constraints: 

(1) Monotonicity: z increases strictly monotonically; i.e., ri<ti+ 1 for all i3 1. 

(2) Progress: For every PER, there is some i> 1 such that ri>t. 

A timed word over an alphabet C is a pair (a, r) where cr = c1 g2.. . is an infinite word 

over C and r is a time sequence. A timed language over C is a set of timed words over C. 

If a timed word (a, t) is viewed as an input to an automaton, it presents the symbol 

(Ti at time pi. If each symbol (TV is interpreted to denote an event occurrence then the 



A theory of timed automata 191 

corresponding component ri is interpreted as the time of occurrence of Oi. Under 

certain circumstances it may be appropriate to allow the same time value to be 

associated with many consecutive events in the sequence. To accommodate this 

possibility one could use a slightly different definition of timed words by requiring 

a time sequence to increase only monotonically (i.e., require ri 6 ri + 1 for all i 3 1). All 

our results continue to hold in this alternative model also. 

Let us consider some examples of timed languages. 

Example 3.2. Let the alphabet be {a, b3. Define a timed language L1 to consist of all 

timed words (a, r) such that there is no b after time 5.6. Thus, the language L1 is given 

by 

Ll= {(a, Z) [Vi. ((Zi>5.6) + (c~=u))}. 

Another example is the language L2 consisting of timed words in which a and 

b alternate, and for the successive pairs of a and b, the time difference between a and 

b keeps increasing. The language L2 is given as 

The language-theoretic operations such as intersection, union, and complementa- 

tion are defined for timed languages as usual. In addition we define the Untime 

operation which discards the time values associated with the symbols, i.e., it considers 

the projection of a timed trace (a, r) on the first component. 

Definition 3.3. For a timed language L over C, Untime (L) is the w-language consist- 

ing of (TEP such that (0, ~)EL for some time sequence r. 

For instance, referring to Example 3.2, Untime (L,) is the o-language (a+ b)*uw, 

and Untime(L2) consists of a single word (ub)“. 

3.2. Transition tables with timing constraints 

Now we extend transition tables to timed transition tables so that they can read 

timed words. When an automaton makes a state-transition, the choice of the next 

state depends upon the input symbol read. In case of a timed transition table, we want 

this choice to depend also upon the time of the input symbol relative to the times of 

the previously read symbols. For this purpose, we associate a finite set of (real-valued) 

clocks with each transition table. A clock can be set to zero simultaneously with any 

transition. At any instant, the reading of a clock equals the time elapsed since the last 

time is was reset. With each transition we associate a clock constraint, and require 

that the transition may be taken only if the current values of the clocks satisfy this 

constraint. Before we define the timed transition tables formally, let us consider some 

examples. 
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Example 3.4. Consider the timed transition table of Fig. 3. The start state is so. There 

is a single clock x. An annotation of the form x:=0 on an edge corresponds to the 

action of resetting the clock x when the edge is traversed. Similarly an annotation of 

the form (x<2)? on an edge gives the clock constraint associated with the edge. 

The automaton starts in state so, and moves to state s1 reading the input symbol a. 

The clock x gets set to 0 along with this transition. While in state s1 , the value of the 

clock x shows the time elapsed since the occurrence of the last a symbol. The 

transition from state s1 to so is enabled only if this value is less than 2. The whole cycle 

repeats when the automaton moves back to state so. Thus, the timing constraint 

expressed by this transition table is that the delay between a and the following b is 

always less than 2; more formally, the language is 

{((ab)“,T)IV’i. (Tzi<Tzi-1+2)}. 

Thus to constrain the delay between two transitions e, and e2, we require a particu- 

lar clock to be reset on eI , and associate an appropriate clock constraint with e2. Note 

that clocks can be set asynchronously of each other. This means that different clocks 

can be restarted at different times, and there is no lower bound on the difference 

between their readings. Having multiple clocks allows multiple concurrent delays, as 

in the next example. 

Example 3.5. The timed transition table of Fig. 4 uses two clocks x and y, and accepts 

the language 

L3=(((abcd)“, ~)l Q. ((Tbj+J <z4j+ I + 1) A (r-+j+4>S4j+z +2))}. 

The automaton cycles among the states s o, sr, s2, and s3. The clock x gets set to 

0 each time it moves from so to s1 reading a. The check (xc l)? associated with the 

a, x:=0 

b, (x<2) ? 

Fig. 3. Example of a timed transition table. 

d, (Y>2) 7’ 

Fig. 4. Timed transition table with 2 clocks 
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c-transition from s2 to s3 ensures that c happens within time 1 of the preceding a. 

A similar mechanism of resetting another independent clock y while reading b and 

checking its value while reading d, ensures that the delay between b and the following 

d is always greater than 2. 

Notice that in the above example, to constrain the delay between a and c and 

between b and d the automaton does not put any explicit bounds on the time 

difference between a and the following b, or c and the following d. This is an important 

advantage of having multiple clocks which can be set independently of each other. The 

above language L, is the intersection of the two languages L: and L: defined as 

Each of the languages L: and L: can be expressed by an automaton which uses just 

one clock; however, to express their intersection we need two clocks. 

We remark that the clocks of the automaton do not correspond to the local clocks 

of different components in a distributed system. All the clocks increase at the uniform 

rate counting time with respect to a fixed global time frame. They are fictitious clocks 

invented to express the timing properties of the system. Alternatively, we can consider 

the automaton to be equipped with a finite number of stop-watches which can be 

started and checked independently of one another, but all stop-watches refer to the 

same clock. 

3.3. Clock constraints and clock interpretations 

To define timed automata formally, we need to say what type of clock constraints 

are allowed on the edges. The simplest form of a constraint compares a clock value 

with a time constant. We allow only the Boolean combinations of such simple 

constraints. Any value from Q, the set of nonnegative rationals, can be used as a time 

constant. Later, in Section 5.5, we will show that allowing more complex constraints, 

such as those involving addition of clock values, leads to undecidability. 

Definition 3.6. For a set X of clock variables, the set @(X) of clock constraints 6 is 

defined inductively by 

6:= x<c 1 c<x 116 I6,A6,, 

where x is a clock in X and c is a constant in Q. 

Observe that constraints such as true, (x = c), XE [2, 5) can be defined as abbrevi- 

ations. 

A clock interpretation v for a set X of clocks assigns a real value to each clock; that 

is, it is a mapping from X to R. We say that a clock interpretation v for X satisfies 

a clock constraint 6 over X iff 6 evaluates to true using the values given by v. 
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For HER, v + t denotes the clock interpretation which maps every clock x to the 

value v(x) + t, and the clock interpretation t. v assigns to each clock x the value t. v(x). 

For Y L X, [ YH t] v denotes the clock interpretation for X which assigns t to each 

XE Y, and agrees with v over the rest of the clocks. 

3.4. Timed transition tables 

Now we give the precise definition of timed transition tables. 

Definition 3.7. A timed transition table d is a tuple (C, S, So, C, E), where 

C is a finite alphabet, 

S is a finite set of states, 

So L S is a set of start states, 

C is a finite set of clocks, and 

E E S x S x C x 2’ x Q(C) gives the set of transitions. An edge (s, s’, a, A, 13) repres- 

ents a transition from state s to state s’ on input symbol a. The set 2 c C gives the 

clocks to be reset with this transition, and 6 is a clock constraint over C. 

Given a timed word (G, r), the timed transition table & starts in one of its start 

states at time 0 with all its clocks initialized to 0. As time advances, the values of all 

clocks change, reflecting the elapsed time. At time Zi, d changes state from s to s’ 

using some transition of the form (s, s’, ci, 2, S) reading the input gi, if the current 

values of clocks satisfy 6. With this transition the clocks in i are reset to 0, and thus 

start counting time with respect to the time of occurrence of this transition. This 

behavior is captured by defining runs of timed transition tables. A run records the 

state and the values of all the clocks at the transition points. For a time sequence 

t=rrrz... we define TV =O. 

Definition 3.8. A run r, denoted by (i, V), of a timed transition table (C, S, So, C, E) 
over a timed word (a, r) is an infinite sequence of the form 

with Sips and Vi~[C + R], for all i>O, satisfying the following requirements: 

l Initiation: sO~SO, and vO(x)=O for all XEC. 

l Consecution: for all i> 1, there is an edge in E of the form (si_ 1, si, Ci, ii, Si) such 

that (vi_,+Zi-~i_,) satisfies 6i and vi equals [niHO](Vi_1+Zi_Zi_l). 

The set inf(r) consists of those states SES such that s = si for infinitely many i > 0. 

Example 3.9. Consider the timed transition table of Example 3.5. Consider a timed 

word 

(a, 2) + (b, 2.7) -+ (c, 2.8) + (d, 5) + . . . 
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Below we give the initial segment of the run. A clock interpretation is represented by 

listing the values [x, y]. 

Along a run r =(s, v) over (0, z), the values of the clocks at time t between ri and 

ri+ 1 are given by the interpretation (Vi + t - Ti). When the transition from state si to 

si + 1 occurs, we use the value (vi + ti+ 1 -zi) to check the clock constraint; however, at 

time Zi+ 1, the value of a clock that gets reset is defined to be 0. 

Note that a transition table d= (C, S, So, E) can be considered to be a timed 

transition table &“. We choose the set of clocks to be the empty set, and replace every 

edge (s, s’, a) by (s, s’, a, 8, true ). The runs of .d’ are in an obvious correspondence 

with the runs of &. 

3.5. Timed regular languages 

We can couple acceptance criteria with timed transition tables, and use them to 

define timed languages. 

Definition 3.10. A timed Bikhi automaton (in short TBA) is a tuple ( C, S, So, C, E, F), 
where (C, S, So, C, E) is a timed transition table, and F G S is a set of accepting states. 

A run r=(s, v) of a TBA over a timed word (a, t) is called an accepting run iff 

inf(r) n F = 8. 
For a TBA &, the language L(d) of timed words it accepts is defined to be the set 

((0, T) 1 d has an accepting run over (a, r)}. 

In analogy with the class of languages accepted by Biichi automata, we call the class 

of timed languages accepted by TBAs timed regular languages. 

Definition 3.11. A timed language L is a timed regular language iff L = L(d) for some 

TBA &. 

Example 3.12. The language L3 of Example 3.5 is a timed regular language. The timed 

transition table of Fig. 4 is coupled with the acceptance set consisting of all the states. 

For every o-regular language L over C, the timed language {(a, r) / aeLj is regular. 

A typical example of a nonregular timed language is the language L2 of Example 

3.2. It requires that the time difference between the successive pairs of a and b form an 

increasing sequence. 

Another nonregular language is { (aw, t) 1 Vi. (Tic 2’)}. 
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The automaton of Example 3.13 combines the Biichi acceptance condition with the 

timing constraints to specify an interesting convergent response property: 

Example 3.13. The automaton of Fig. 5 accepts the timed language L,,, over the 

alphabet {a, b}. 

L,,,={((Ub)“,T)I3i. Vj2i. (52j<t2j-1+2)}. 

The start state is so, the accepting state is s2, and there is a single clock x. The 

automaton starts in state so, and cycles between the states so and s1 for a while. Then, 

nondeterministically, it moves to state s2 setting its clock x to 0. While in the cycle 

between the states s2 and s3, the automaton resets its clock while reading a, and 

ensures that the next b is within 2 time units. Interpreting the symbol b as a response 

to a request denoted by the symbol a, the automaton models a system with conoergent 

response time; the response time is “eventually” always less than 2 time units. 

The next example shows that timed automata can specify periodic behavior also. 

Example 3.14. The automaton of Fig. 6 accepts the following language over the 

alphabet {a, b}. 

{(a, z)IVi. 3j. (Tj=3i A CJj’U)}. 

The automaton has a single state so, and a single clock x. The clock gets reset at 

regular intervals of period 3 time units. The automaton requires that whenever the 

a 

b, (xX2)? 
a, x:=0 

a, x:=0 

Fig. 5. Timed Biichi automaton accepting L,,,. 

a, b, (x<3) ? 

9 

% 

a, (x=3)?,x:=O 

Fig. 6. Timed automaton specifying periodic behavior. 
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clock equals 3 there is an a symbol. Thus, it expresses the property that a happens at 

all time values that are multiples of 3. 

3.6. Properties of timed regular languages 

The next theorem considers some closure properties of timed regular languages. 

Theorem 3.15. The class of timed regular languages is closed under ($nite) union and 
intersection. 

Proof. Consider TBAs &i=( Z:, Si, SiO, Ci, Ei, FL), i= 1, 2, . , n. Assume without 10~s 
of generality that the clock sets Ci are disjoint. We construct TBAs accepting the 

union and intersection of L(di). 

Since TBAs are nondeterministic the case of union is easy. The required TBA is 

simply the disjoint union of all the automata. 

Intersection can be implemented by a trivial modification of the standard product 

construction for Biichi automata [lo]. The set of clocks for the product automaton 

& is uiCi. The states of d are of the form (sl, . . ..s., k), where each Si~Si, and 

1 d k d n. The ith component of the tuple keeps track of the state of G!~, and the last 

component is used as a counter for cycling through the accepting conditions of all the 

individual automata. Initially the counter value is 1, and it is incremented from k to 

(k + 1) (modulo n) iff the current state of the kth automaton is an accepting state. Note 

that we choose the value of n mod n to be n. 
The initial states of & are of the form ( si, . . . , s,, 1) where each Si is a start state 

of pi. A transition of d is obtained by coupling the transitions of the individual 

automata having the same label. Let { (Si, s;, a, 1*i, Bi)EEi 1 i = 1,. . . , n> be a set of 

transitions, one per each automaton, with the same label a. Corresponding to this set, 

there is a joint transition of ~2 out of each state of the form (si , . . s,, k) labeled with 

a. The new state is (s; , . . . ,sb,j) with j=(k+l)modn if skcFk, and j=k otherwise. 

The set of clocks to be reset with this transition is ui~i, and the associated clock 

constraint is Aidi. 

The counter value cycles through the whole range 1, . . . , n infinitely often iff the 

accepting conditions of all the automata are met. Consequently, we define the 

accepting set for &’ to consist of states of the form ( s1 , . . . , s,, n), where S,E F,. 0 

In the above product construction, the number of states of the resulting automaton 

is n. Hi 1 Si 1. The number of clocks is xi 1 Ci 1, and the size of the edge set is n. ni / Ei I. 

Note that I E I includes the length of the clock constraints assuming binary encoding 

for the constants. 

Observe that even for a timed regular language arbitrarily many symbols can occur 

in a finite interval of time. Furthermore, the symbols can be arbitrarily close to each 

other. Consider the following example. 



198 R. Ah, D.L. Dill 

Example 3.16. The language accepted by the automaton in Fig. 7 is 

L con~erge={((~bY~ t)Ivi. CZ2i-lciA (Z2i-Z2i-l>ZZi+Z-ZZifl))}. 

Every word accepted by this automaton has the property that the sequence of time 

differences between a and the following b is strictly decreasing. A sample word 

accepted by the automaton is 

(a, 1) + (b, 1.5) -+ (a, 2) + (b, 2.25) + (a, 3) + (b, 3.125) + ... 

This example illustrates that the model of reals is indeed different from the 

discrete-time model. If we require all the time values zi to be multiples of some fixed 

constant E, however small, the language accepted by the automaton of Fig. 7 will be 

empty. 

On the other hand, timed automata do not distinguish between the set of reals 

R and the set of rationals Q. Only the denseness of the underlying domain plays 

a crucial role. In particular, Theorem 3.17 shows that if we require all the time values 

in time sequences to be rational numbers, the untimed language Untime[L(aZ)] of 

a timed automaton G! stays unchanged. 

Theorem 3.17. Let L be a timed regular language. For every word CT, GE Untime(L) ifs 

there exists a time sequence 5 such that TiEQ for all i3 1, and (0, z)EL. 

Proof. Consider a timed automaton G!, and a word g. If there exists a time sequence 

r with all rational time values such that (0, T)EL(&)), then clearly, a~Untime[L(&‘)]. 
Now suppose for an arbitrary time sequence r, (a, T)EL(&). Let EEQ be such that 

every constant appearing in the clock constraints of SZZ is an integral multiple of E. Let 

rb=O, and rO=O, If Zi= tj+n& for some O<j<i and HEN, then choose z:=z>+n&. 

Otherwise choose Z~EQ such that for all Odj<i, for all neN, (z:---i)<nE iff 

(T~-z~)<~E. Note that because of the denseness of Q such a choice of r: is always 

possible. 

Consider an accepting run r = (i, 5) of ~2 over (a, 2). Because of the construction of 

r’, if a clock x is reset at the ith transition point, then its possible values at the jth 

transition point along the two time sequences, namely, (rj- ri) and (7; - r;), satisfy the 

same set of clock constraints. Consequently, it is possible to construct an accepting 
- -, run r’ =(s, v ) over (G, r’) which follows the same sequence of edges as r. In particular, 

a,x:=O 

(x=1) ? 

b 

y:=o 

a, (x=1) ?,x:=O 

b, (y<l)?,y:=O 

Fig. 7. Timed automaton accepting Lconverge. 
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choose vb = v,,, and if the ith transition along r is according to the edge 

Csi- 1, Si, pi, Ai, Si), then set v;=[&HO] (vi-1 +++I). Consequently, d accepts 

(a, z’). q 

3.7. Timed Muller automata 

We can define timed automata with Muller acceptance conditions also. 

Definition 3.18. A timed Muller automaton (TMA) is a tuple (C, S, SO, C, E, F)>, 
where (C, S, SO, C, E) is a timed transition table, and 9 G 2” specifies an acceptance 

family. 

A run v = (S, V) of the automaton over a timed word (0, r) is an accepting run iff 

inf(r)EF. 
For a TMA -c4, the language L(&) of timed words it accepts is defined to be the set 

{ (0, r) 1 d has an accepting run over (c, r)]. 

Example 3.19. Consider the automaton of Fig. 8 over the alphabet (a, b, c}. The 

start state is sO, and the Muller acceptance family consists of a single set {so, sz}. 

So any accepting run should cycle between states sO and s1 only finitely many 

times, and between states s,, and s2 infinitely many times. Every word (0, r) 

accepted by the automaton satisfies: (1) aE(a(b+c))*(ac)“, and (2) for all i>, 1, the 

difference (Zzi_ 1 -T~~-~) is less than 2 if the (2i)th symbol is c, and less than 

5 otherwise. 

Recall that untimed B&hi automata and Muller automata have the same expres- 

sive power. The following theorem states that the same holds true for TBAs and 

TMAs. Thus, the class of timed languages accepted by TMAs is the same as the class 

of timed regular languages. The proof of the following theorem closely follows the 

standard argument that an o-regular language is accepted by a Biichi automaton iff it 

is accepted by some Muller automaton. 

Theorem 3.20. A timed language is accepted by some timed Biichi automaton iff it is 
accepted by some timed Muller automaton. 

a, (xX5)? a, (x<2)? 

b,x:=O 

Fig. 8. Timed Muller automaton. 
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Proof. Let d = (C, S, So, C, E, F) be a TBA. Consider the TMA ~2’ with the same 

timed transition table as that of &, and with the acceptance family B = {S’ G S: 

S’n F #@}. It is easy to check that L(&‘)=L(&“). This proves the “only if” part of the 

claim. 

In the other direction, given a TMA, we can construct a TBA accepting the same 

language using the simulation of Muller acceptance condition by Biichi automata. Let 

d be a TMA given as (C, S, So, C, E, F ). First note that L(d) = UFE.P I where 

~,=(&S,So,C,E,(F}), so it suffices to construct, for each acceptance set F, a TBA 

&c4)F which accepts the language L(d,). Assume F = {sl, . . . ,sk}. The automaton 

JZ!C~;; uses nondeterminism to guess when the set F is entered forever, and then uses 

a counter to make sure that every state in F is visited infinitely often. States of &; are 

of the form (s, i), where s~S and i~(0, 1, . . ., k}. The set of initial states is S,, x (0). The 

automaton simulates the transitions of d, and at some point nondeterministically sets 

the second component to 1. For every transition (s, s’, a, Iti, S) of d, the automaton 

J32; has a transition ((s, 0), (s’, 0), a, A, S), and, in addition, if S’EF it also has 

a transition ((s, 0), (s’, l), a, 2,s). 

While the second component is nonzero, the automaton is required to stay within 

the set F. For every &-transition (s, s’, a, 2, S) with both s and s’ in F, for each 

1 <id k, there is an &k-transition ((s, i), (s’, j), a, 2, S) where j=(i+ 1) mod k, if 

s equals Si, else j=i. The only accepting state is (sk, k). 0 

4. Checking emptiness 

In this section we develop an algorithm for checking the emptiness of the language 

of a timed automaton. The existence of an infinite accepting path in the underlying 

transition table is clearly a necessary condition for the language of an automaton to be 

nonempty. However, the timing constraints of the automaton rule out certain addi- 

tional behaviors. We will show that a Biichi automaton that accepts exactly the set of 

untimed words that are consistent with the timed words accepted by a timed 

automaton can be constructed. 

4.1. Restriction to integer constants 

Recall that our definition of timed automata allows clock constraints which involve 

comparisons with rational constants. The following lemma shows that, for checking 

emptiness, we can restrict ourselves to timed automata whose clock constraints 

involve only integer constants. For a timed sequence t and teQ, let t. z denote the 

timed sequence obtained by multiplying all ti by t. 

Lemma 4.1. Consider a timed transition table ,c4, a timed word (a, z), and tEQ. (S, V) is 
a run of SJ over (a, z) iff (S, t. J) is a run of d, over ((T, t. z), where A@‘, is the timed 
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transition table obtained by replacing each constant d in each clock constraint labeling 
edges of JZZ by t. d. 

Proof. The lemma can be proved easily from the definitions using induction. 0 

Thus, there is an isomorphism between the runs of & and the runs of &,. If we 

choose t to be the least common multiple of denominators of all the constants 

appearing in the clock constraints of &, then the clock constraints for &, use only 

integer constants. In this translation, the values of the individual constants grow at 

most with the product of the denominators of all the original constants. We assume 

binary encoding for the constants. Let us denote the length of the clock constraints of 

d by Id(d) I. It is easy to prove that I d(d,) / is bounded by Ii?(d) 12. Observe that this 

result depends crucially on the fact that we encode constants in binary notation; if we 

use unary encoding then IS(&‘t)l can be exponential in Id(d)/. 

Observe that L(d) is empty iff L[J&‘~] is empty. Hence, to decide the emptiness of 

L(d) we consider JzZ~. Also Untime[L(d)] equals Untime[L(dt)]. In the remainder 

of the section we assume that the clock constraints use only integer constants. 

4.2. Clock regions 

At every point in time the future behavior of a timed transition table is determined 

by its state and the values of all its clocks. This motivates the following definition: 

Definition 4.2. For a timed transition table (C, S, So, C, E), an extended state is 

a pair (s, v) where SES and v is a clock interpretation for C. 

Since the number of such extended states is infinite (in fact, uncountable), we cannot 

possibly build an automaton whose states are the extended states of G?‘. But if two 

extended states with the same &‘-state agree on the integral parts of all clock values, 

and also on the ordering of the fractional parts of all clock values, then the runs 

starting from the two extended states are very similar. The integral parts of the clock 

values are needed to determine whether or not a particular clock constraint is met, 

whereas the ordering of the fractional parts is needed to decide which clock will 

change its integral part first. For example, if two clocks x and y are between 0 and 1 in 

an extended state, then a transition with clock constraint (x= 1) can be followed by 

a transition with clock constraint (y= I), depending on whether or not the current 

clock values satisfy (xc y). 
The integral parts of clock values can get arbitrarily large. But if a clock x is never 

compared with a constant greater than c, then its actual value, once it exceeds c, is of 

no consequence in deciding the allowed paths. 

Now we formalize this notion. For any tcR, fract(t) denotes the fractional part oft, 

and LtJ denotes the integral part oft; i.e., t =LtJ+,fiact(t). We assume that every clock 

in C appears in some clock constraint. 
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Definition 4.3. Let d = (C, S, So, C, E) be a timed transition table. For each XGC, let 

c, be the largest integer c such that (x<c) or (c<x) is a subformula of some clock 

constraint appearing in E. 
The equivalence relation - is defined over the set of all clock interpretations for C; 

v - v’ iff all the following conditions hold: 

(1) For all xsC, either Lv(x)j and Lv’(x)j are the same, or both v(x) and v’(x) are 

greater than c,. 

(2) For all x, yeC with v(x)<c, and v(y)<c,, fiact(v(x))bfract(v(y)) iff 

jact(v’(x))dfiact(v’(y)). 
(3) For all XEC with v(x)<c,,fract(v(x))=O ifffract(v’(x))=O. 

A clock region for & is an equivalence class of clock interpretations induced by -. 

We will use [v] to denote the clock region to which v belongs. Each region can be 

uniquely characterized by a (finite) set of clock constraints it satisfies. For example, 

consider a clock interpretation v over two clocks with v(x) = 0.3 and v(y) = 0.7. Every 

clock interpretation in [v] satisfies the constraint (0 <x < y < l), and we will represent 

this region by [O<x< y < 11. The nature of the equivalence classes can be best 

understood through an example. 

Example 4.4. Consider a timed transition table with two clocks x and y with c, = 2 

and c,= 1. The clock regions are shown in Fig. 9. 

Note that there are only a finite number of regions. Also note that for a clock 

constraint 6 of d, if v-v’ then v satisfies 6 iff v’ satisfies 6. We say that a clock region 

CI satisfies a clock constraint 6 iff every VELI satisfies 6. Each region can be represented 

by specifying 

(1) for every clock x, one clock constraint from the set 

{x=clc=O, 1, . ..) c,}u{c--l<x<c~c=l,...,cX}u{x>cX}, 

(2) for every pair of clocks x and y such that c - 1 < x < c and d - 1 < y < d appear in 

(1) for some c, d, whether $-act(x) is less than, equal to, or greater thanfruct(y). 

By counting the number of possible combinations of equations of the above form, we 

get the upper bound in the following lemma. 

6 Corner points: e.g. [(O,l)] 
14 Open line segments: e.g. [0 < x = y < l] 

8 Open regions: e.g. [0 < z < y < l] 

Fig. 9. Clock regions. 



A theory ojtimed automata 203 

Lemma 4.5. The number of clock regions is bounded by [ ( C (! .21c . nxec(2cx + 2)] 

Remember that 16(d) 1 stands for the length of the clock constraints of ~2 assuming 

binary encoding, and hence the product ~Xsc(2c,+ 2) is 0 [2”‘““‘]. Since the number 

of clocks 1 C 1 is bounded by Id(d) 1, henceforth, we assume that the number of regions 

is 0[21’(“)l]. Note that if we increase S(d) without increasing the number of clocks or 

the size of the largest constants the clocks are compared with, then the number of 

regions does not grow with (S(d) 1. Also observe that a region can be represented in 

space linear in IS(S 

4.3. The region automaton 

The first step in the decision procedure for checking emptiness is to construct 

a transition table whose paths mimic the runs of & in a certain way. We will denote 

the desired transition table by R(d)), the region automaton of &. A state of R(d) 

records the state of the timed transition table -c4, and the equivalence class of the 

current values of the clocks. It is of the form (s, LX) with SGS and c( is a clock region. 

The intended interpretation is that whenever the extended state of d is (s, v), the 

state of R(d) is (s, [v]). The region automaton starts in some state ( sO, [vO]) where 

s0 is a start state of d, and the clock interpretation v0 assigns 0 to every clock. The 

transition relation of R(d) is defined so that the intended simulation is obeyed. It has 

an edge from (s, Z) to (s’, a’) labeled with a iff & in state s with the clock values VEZ 

can make a transition on a to the extended state (s’, v’) for some V’EM’. 

The edge relation can be conveniently defined using a time-successor relation over 

the clock regions. The time-successors of a clock region u are all the clock regions that 

will be visited by a clock interpretation VEIX as time progresses. 

Definition 4.6. A clock region x’ is a time-successor of a clock region CI iff for each VEM, 

there exists a positive tsR such that v+ tEd. 

Example 4.7. Consider the clock regions shown in Fig. 9 again. The time-successors of 

a region c( are the regions that can be reached by moving along a line drawn from 

some point in CI in the diagonally upwards direction (parallel to the line x = y). For 

example, the region [( 1 <x < 2), (0~ y <x - l)] has, other than itself, the following 

regions as time-successors: [(x = 2), (0 < y < l)], [( x>2), (O<Y<l)l, C(x>2), (Y’l)l 
and [I@ > 21, (Y > 1)l. 

Now let us see how to construct all the time-successors of a clock region. Recall that 

a clock region M is specified by giving (1) for every clock x, a constraint of the form 

(x = c) or (c - 1 <x < c) or (x > cX), and (2) for every pair x and y such that (c - 1 < x < c) 

and (d - 1 <y<d) appear in (l), the ordering relationship between pact(x) and 

@act(y). To compute all the time-successors of M we proceed as follows. First observe 

that the time-successor relation is a transitive relation. We consider different cases. 
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First suppose that a satisfies the constraint (x>c,) for every clock x. The 

only time-successor of c( is itself. This is the case for the region [(x> 2) (y> l)] in 

Fig. 9. 

Now suppose that the set C,, consisting of clocks x such that a satisfies the 

constraint (x=c) for some c<c,, is nonempty. In this case, as time progresses the 

fractional parts of the clocks in Co become nonzero, and the clock region changes 

immediately. The time-successors of CY are same as the time-successors of the clock 

region p specified as below: 

(1) For XE Co, if a satisfies (x = c,) then fi satisfies (X > c,), otherwise if a satisfies 

(x = c) then fi satisfies (c <x < c + 1). For x$ Co, the constraint in p is the same as that 

in CI. 

(2) For clocks x and y such that x cc, and y<c, holds in CI, the ordering 

relationship in 0 between their fractional parts is the same as that in CI. 

For instance, in Fig. 9, the time-successors of [(x =O), (0~ y < l)] are the same as the 

time-successors of [0 < x < y < 11. 

If both the above cases do not apply, then let Co be the set of clocks x for which 

c1 does not satisfy (x > c,) and which have the maximal fractional part; that is, for all 

clocks y for which cx does not satisfy (y > c,), fract( y) <fiact(x) is a constraint of c(. In 

this case, as time progresses, the clocks in C,, assume integer values. Let p be the clock 

region specified by 

(1) For XEC,, if 51 satisfies (c-l<x<c) then p satisfies (x=c). For x$CO, the 

constraint in p is same as that in U. 

(2) For clocks x and y such that (c - 1 < x cc) and (d - 1 < y < d) appear in (l), the 

ordering relationship in fl between their fractional parts is same as in a. 

In this case, the time-successors of CI include a, p, and all the time-successors of /I. For 

instance, in Fig. 9, time-successors of [0 < x < y < l] include itself, [ (0 <x < l), ( y = l)], 

and all the time-successors of [(O<x < l), (y= l)]. 

Now we are ready to define the region automaton. 

Definition 4.8. For a timed transition table d = (C, S, So, C, E), the corresponding 

region automaton R(d) is a transition table over the alphabet C. 

l The states of R(d) are of the form (s, cr) where sgS and a is a clock region. 

l The initial states are of the form ( sO, [ vO] ) where sOeS, and vO(x) = 0 for all XGC. 

l R(d) has an edge ((s, a), (s’, a’), a) iff there is an edge (s, s’, a, I, 6)eE and 

a region LX” such that (1) ~1” is a time-successor of LX, (2) CX” satisfies 6, and (3) 

U’=[AHO]a”. 

Example 4.9. Consider the timed automaton &‘,, shown in Fig. 10. The alphabet is 

(a, b, c, d}. Every state of the automaton is an accepting state. The corresponding 

region automaton R(do) is also shown. Only the regions reachable from the initial 

region ( sO, [x = y = 0] ) are shown. Note that c, = 1 and cY = 1. The timing constraints 

of the automaton ensure that the transition from s2 to sj is never taken. The only 

reachable region with state component s2 satisfies the constraints [y= 1, x> 11, and 
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d, (x>l)? 

a 

y:=o 

a, (y<l)?,y:=O 

* o<y<l<X d c l=yOr 

d 

Fig. 10. Automaton do and its region automaton. 

this region has no outgoing edges. Thus, the region automaton helps us in concluding 

that no transitions can follow a b-transition. 

From the bound on the number of regions, it follows that the number of states in 

R(d) is O[ 1 S 1 216(,“)1]. An inspection of the definition of the time-successor relation 

shows that every region has at most CxeC[2c,+ 21 successor regions. The region 

automaton has at most one edge out of (s, r) for every edge out of s and every 

time-successor of CL It follows that the number of edges in R(d) is O[ / El . 216’““1]. 

Note that computing the time-successor relation is easy, and can be done in time 

linear in the length of the representation of the region. Constructing the edge relation 

for the region automaton is also relatively easy; in addition to computing the 

time-successors, we also need to determine whether the clock constraint labeling 

a particular &-transition is satisfied by a clock region. The region graph can be 

constructed in time 0 [( 1 S I+ / E 1). 216(,“)1]. 

Now we proceed to establish a correspondence between the runs of L&’ and the runs 

of R(d). 
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Definition 4.10. For a run r = (s, v) of d of the form 

define its projection [r] =(S,[f]) to be the sequence 

From the definition of the edge relation for R(d), it follows that [r] is a run of 

R(d) over (r. Since time progresses without bound along r, every clock XEC is either 

reset infinitely often or (from a certain time onwards) it increases without bound. 

Hence, for all XEC, for infinitely many i 20, [vi] satisfies [(x = 0) v (x > c,)]. This 

prompts the following definition: 

Definition 4.11. A run r=(s, !z) of the region automaton R(d) of the form 

is progressive iff for each clock x E C, there are infinitely many i 2 0 such that ai satisfies 

[(x=0) v (x>c,)]. 

Thus, for a run r of s4 over (G, z), [r] is a progressive run of R(d) over B. The 

following Lemma 4.13 implies that progressive runs of R(d) precisely correspond to 

the projected runs of &. Before we prove the lemma let us consider the region 

automaton of Example 4.9 again. 

Example 4.12. Consider the region automaton R(d,) of Fig. 10. Every run r of 

R(do) has a suffix of one of the following three forms: (i) the automaton cycles 

betweentheregions(s~,[y=O~x~1])and(sg,[O<y<x<1]),(ii)theautomaton 

stays in the region ( s3, [0 < y < 1 <xl ) using the self-loop or (iii) the automaton stays 

in the region (sj,[x>l,y>l]). 

Only the case (iii) corresponds to the progressive runs. For runs of type (i), even 

though y gets reset infinitely often, the value of x is always less than 1. For runs of type 

(ii), even though the value of x is not bounded, the clock y is reset only finitely often, 

and yet, its value is bounded. Thus, every progressive run of do corresponds to a run 

of R(Jx?‘~) of type (iii). 

Lemma 4.13. If r is a progressive run of R(d) over 0 then there exists a time sequence 

T and a run z’ of d over (CT, T) such that r equals [r’]. 

Proof. Consider a progressive run r=(s, a) of R(d) over c. We construct the run r’ 

and the time sequence z step by step. As usual, r’ starts with (s,,, vO). Now suppose 
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that the extended state of zz2 is (Si, Vi) at time ri with ViEai. There is an edge in R(d) 

from (s,,Q) to (Si+l,ai+l) labeled with ~i+l. From the definition of the region 

automaton it follows that there is an edge (SC, si+ 1, pi+ 1, ;li + 1,6i + 1 )E E and a time- 

successor a; + 1 of Ei such that ai+ 1 satisfies 6i+ 1 and Xi+ 1 = [Ai+ i HO]&+ i. From the 

definition of time-successor, there exists a time ri+ 1 such that (vi + pi+ I --z~)EcI~+ i. 

Now it is clear that the next transition of & to an extended state (si+ 1, vi+ 1 ) with 

vi+iEai+i can be at time ri+r. Using this construction repeatedly we get a run 
- - 

T’=(s, v) over (a, r) with [J]=r. 

The only problem with the above construction is that r may not satisfy the progress 

condition. Suppose that r is a converging sequence. We use the fact that Y is 

a progressive run to construct another time sequence z’ satisfying the progress 

requirement and show that the automaton can follow the same sequence of transitions 

as Y’ but at times 7;. 

Let Co be the set of clocks reset infinitely often along r. Since r is a converging 

sequence, after a certain position onwards, every clock in Co gets reset before it 

reaches the value 1. Since r is progressive, every clock x not in Co, after a certain 

position onwards, never gets reset, and continuously satisfies x > c,. This ensures that 

there exists j30 such that (1) after the jth transition point each clock x#CO continu- 

ously satisfies (x > c,), and each clock xeCO continuously satisfies (x < l), and (2) for 

each k > j, (T~-T~) is less than 0.5. 

Let j< kl < k2 < ... be an infinite sequence of integers such that each clock x in C,, is 

reset at least once between the kith and ki+ 1 th transition points along Y. Now we 

construct another sequence r” =(s, v’) with the sequence of transition times z’ as 

follows. The sequence of transitions along r” is same as that along r’. If i${k,, kZ, . . } 

then we require the (i + 1) th transition to happen after a delay of (ri+ 1 - Si); otherwise, 

we require the delay to be 0.5. Observe that along r” the delay between the kith and 

ki+ ,th transition points is less than 1. Consequently, in spite of the additional delays, 

the value of every clock in C,, remains less than 1 after the jth transition point. So the 

truth of all the clock constraints and the clock regions at the transition points remain 

unchanged (as compared to r’). From this we conclude that r” satisfies the consecution 

requirement, and is a run of d. Furthermore, [r”] = [r’] = r. 

Since r’ has infinitely many jumps each of duration 0.5, it satisfies the progress 

requirement. Hence, r” is the run required by the lemma. 0 

4.4. The untiming construction 

For a timed automaton &‘, its region automaton can be used to recognize 

Untime[L(d)]. The following theorem is stated for TBAs, but it also holds for 

TMAs. 

Theorem 4.14. Given a TBA G? = (C, S, So, C, E, F), there exists a Biichi automaton 

over C which accepts Untime[L(d)]. 
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Proof. We construct a Biichi automaton d’ as follows. Its transition table is R(d), 

the region automaton corresponding to the timed transition table (Z, S, So, C, E). 

The accepting set of &’ is F’=((s, LX) 1 ~EF}. 

If r is an accepting run of d over (0, r), then [r] is a progressive and accepting run 

of &’ over c. The converse follows from Lemma 4.13. Given a progressive run r of d’ 

over CJ, the lemma gives a time sequence r and a run r’ of JZ! over (a, z) such that 

Y equals [r’]. If r is an accepting run, so is r’. It follows that CE Untime[L(&)] iff d’ 

has a progressive, accepting run over it. 

For xeC, let F,={(s,a)~a~[(x=O)v(x>c,)]}. Recall that a run of &” is 

progressive iff some state from each F, repeats infinitely often. It is straightforward to 

construct another Biichi automaton cPg” such that d’ has a progressive and accepting 

run over c iff JZZ” has an accepting run over 0. 

The automaton J&“’ is the desired automaton; L(&“) equals Untime[L(,d)]. 0 

Example 4.15. Let us consider the region automaton R(JzZ~) of Example 4.9 again. 

Since all states of do are accepting, from the description of the progressive runs in 

Example 4.12 it follows that the transition table R(&‘,,) can be changed to a Biichi 

automaton by choosing the accepting set to consist of a single region 

( sj, [x > 1, y > l] ). Consequently, 

Untime[L(d,)] =LIR(do)] =ac(ac)* d”. 

Theorem 4.14 says that the timing information in a timed automaton is “regular” in 

character; its consistency can be checked by a finite-state automaton. An equivalent 

formulation of the theorem is 

If a timed language L is timed regular then Untime(L) is o-regular. 

Furthermore, to check whether the language of a given TBA is empty, we can check 

for the emptiness of the language of the corresponding Biichi automaton constructed 

by the proof of Theorem 4.14. The next theorem follows. 

Theorem 4.16. Given a timed Biichi automaton & = (C, S, S,,, C, E, F), the emptiness of 

L(d) can be checked in time 0 [( 1 S I+ 1 E 1). 216’,“)1]. 

Proof. Let d’ be the Biichi automaton constructed as outlined in the proof of 

Theorem 4.14. Recall that in Section 4.3 we had shown that the number of states in JZZ’ 

is 0 [I S I . 216’,“‘1], the number of edges is 0 [I E I 216’~d’l]. 

The language L(.d) is nonempty iff there is a cycle C in ~2 such that C is accessible 

from some start state of &” and C contains at least one state each from the set F’ and 

each of the sets F,. This can be checked in time linear in the size of &“[42]. The 

complexity bound of the theorem follows. 0 

Recall that if we start with an automaton JZZ whose clock constraints involve 

rational constants, we need to apply the above decision procedure on ZZZ~ for the least 
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common denominator t of all the rational constants (see Section 4.1). This involves 

a blowup in the size of the clock constraints; we have SC&,] =O[S(d)2]. 

The above method can be used even if we change the acceptance condition for 

timed automata. In particular, given a timed Muller automaton .d we can effectively 

construct a Muller (or, Biichi) automaton which accepts Untime [ L(&‘)], and use it to 

check for the emptiness of L(d). 

4.5. Complexity of checking emptiness 

The complexity of the algorithm for deciding emptiness of a TBA is exponential in 

the number of clocks and the length of the constants in the timing constraints. This 

blow-up in complexity seems unavoidable; we reduce the acceptance problem for 

linear bounded automata, a known PSPACE-complete problem [24], to the empti- 

ness question for TBAs to prove the PSPACE lower bound for the emptiness problem. 

We also show the problem to be PSPACE-complete by arguing that the algorithm of 

Section 4.4 can be implemented in polynomial space. 

Theorem 4.17. The problem of deciding the emptiness of the language of a given timed 
automaton d, is PSPACE-complete. 

Proof. First, we deal with PSPACE-membership. Since the number of states of the 

region automaton is exponential in the number of clocks of &, we cannot construct 

the entire transition table. But it is possible to (nondeterministically) check for 

nonemptiness of the region automaton by guessing a path of the desired form using 

only polynomial space. This is a fairly standard trick, and hence we omit the details. 

Now we turn to PSPACE-hardness. The question of deciding whether a given 

linear bounded automaton accepts a given input string is PSPACE-complete [24]. 

A linear bounded automaton M is a nondeterministic Turing machine whose tape 

head cannot go beyond the end of the input markers. We construct a TBA d such 

that its language is nonempty iff the machine M halts on a given input. 

Let F be the tape alphabet of M and let Q be its states. Let C= Tu(T x Q), and let 

a,, a2, . . . . ak denote the elements of C. A configuration of M in which the tape reads 

YlY2 ... y,,, and the machine is in state 4 reading the ith tape symbol, is represented by 

the string crl, . . . . cn over C such that oj=yj ifj#i and oi=(yi, 4). 

The acceptance corresponds to a special state q f; after which the configuration 

stays unchanged. The alphabet of JI! includes C and, in addition, has a symbol aO. 
A computation of M is encoded by the word 

o:ao . . . aAa,cr:aO . ..a.2a0 . ..a.aO . ..a”.ao . . . 

such that 01 . . cri encodes the jth configuration according to the above scheme. The 

time sequence associated with this word also encodes the computation: we require the 

time difference between successive so’s to be k+ 1, and if a!=a, then we require its 
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time to be 1 greater than the time of the previous ao. The encoding in the time sequence 

is used to enforce the consecution requirement. 

We want to construct LZ?’ which accepts precisely the timed words encoding the 

halting computations of M according to the above scheme. We only sketch the 

construction. JZ! uses 2n + 1 clocks. The clock x is reset with each ao. While reading 

a0 we require (x = k + 1) to hold, and while reading Ui we require (x = i) to hold. These 

conditions ensure that the encoding in the time sequence is consistent with the word. 

For each tape cell i, we have two clocks Xi and yi. The clock Xi is reset with c$, for odd 

values of j, and the clock yi is reset with a:, for even values of j. Assume that the 

automaton has read the first j configurations, with j odd. The value of the clock 

xi represents the ith cell of the jth configuration. Consequently, the possible choices for 

the values of G/+ ’ are determined by examining the values of Xi _ 1, xi and Xi + 1 accord- 

ing to the transition rules for M. While reading the (j+ 1)th configuration, the 

y-clocks get set to appropriate values; these values are examined while reading the 

(j + 2)th configuration. This ensures proper consecution of configurations. Proper 

initialization and halting can be enforced in a straightforward way. The size of d is 

polynomial in n and the size of M. 0 

Note that the source of this complexity is not the choice of R to model time. The 

PSPACE-hardness result can be proved if we leave the syntax of timed automata 

unchanged, but use the discrete domain N to model time. Also this complexity is 

insensitive to the encoding of the constants; the problem is PSPACE-complete even if 

we encode all constants in unary. 

5. Intractable problems 

In this section we show the universality problem for timed automata to be 

undecidable. The universality problem is to decide whether the language of a given 

automaton over C comprises all the timed words over C. Specifically, we show that the 

problem is fl:-hard by reducing a flI:-hard problem of 2-counter machines. The class 

fl: consists of highly undecidable problems, including some nonarithmetical sets (for 

an exposition of the analytical hierarchy consult, for instance, [40]). Note that the 

universality problem is same as deciding emptiness of the complement of the language 

of the automaton. The undecidability of this problem has several implications such as 

nonclosure under complement and undecidability of testing for language inclusion. 

5.1. A X:-complete problem 

A nondeterministic 2-counter machine M consists of two counters C and D, and 

a sequence of n instructions. Each instruction may increment or decrement one of 

the counters, or jump, conditionally upon one of the counters being zero. After the 
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execution of a nonjump instruction, M proceeds nondeterministically to one of the 

two specified instructions. 

We represent a configuration of M by a triple ( i, c, d ), where 1~ i < n, c 3 0, and 

d 30 give the values of the location counter and the two counters C and D, respect- 

ively. The consecution relation on configurations is defined in the obvious way. 

A computation of M is an infinite sequence of related configurations, starting with the 

initial configuration (1, 0,O). It is called recurring iff it contains infinitely many 

configurations in which the location counter has the value 1. 

The problem of deciding whether a nondeterministic Turing machine has, over the 

empty tape, a computation in which the starting state is visited infinitely often, is 

known to be X:-complete [21]. Along the same lines we obtain the following result. 

Lemma 5.1. The problem of deciding whether a given nondeterministic 2-counter 
machine has a recurring computation, is Xi-hard. 

5.2. Undecidability of the universality problem 

Now we proceed to encode the computations of 2-counter machines using timed 

automata, and use the encoding to prove the undecidability result. 

Theorem 5.2. Given a timed automaton over an alphabet C, the problem of deciding 
whether it accepts all timed words over C is rI:-hard. 

Proof. We encode the computations of a given a-counter machine M with n instruc- 

tions using timed words over the alphabet { bI, . . . . b,, al, a2}. A configuration 

(i, c, d ) is represented by the sequence biai a:. We encode a computation by concat- 

enating the sequences representing the individual configurations. We use the time 

sequence associated with a timed word a to express that the successive configurations 

are related as per the requirements of the program instructions. We require that the 

subsequence of a corresponding to the time interval [j, j+ 1) encodes the jth config- 

uration of the computation. Note that the denseness of the underlying time domain 

allows the counter values to get arbitrarily large. To enforce a requirement such as the 

number of a, symbols in two intervals encoding the successive configurations is the 

same we require that every a, in the first interval has a matching a, at distance 1 and 

vice versa. 

Define a timed language Lundec as follows. (a, z) is in Lundec iff 
l a=b. a~a~‘bi2a~a~ 

tatiog of M. 
. . . such that ( iI, cl, d, ), ( iz, c2, d2) . . . is a recurring compu- 

l For all j> 1, the time of biJ is j. 

l For all j> 1, 
_ if c. ,+ 1 = Cj then for every a, at time t in the interval (j, j+ 1) there is an a, at time 

t+ 1. 
_ if cj+ 1 = Cj + 1 then for every al at time t in the interval (j + 1, j + 2) except the last 

one, there is an a, at time t- 1. 



212 R. Ah, D.L. Dill 

_ if c. ,+ 1 =cj- 1 then for every a, at time t in the interval (j,j+ 1) except the last 

one, there is an a, at time t+ 1. 

Similar requirements hold for a,‘~. 

Clearly, Lundec is nonempty iff A4 has a recurring computation. We will construct 

a timed automaton dundec which accepts the complement of Lundec. Hence, 

&zz undec accepts every timed word iff M does not have a recurring computation. The 

theorem follows from Lemma 5.1. 

The desired automaton dun& is a disjunction of several TBAs. 

Let &‘,, be the TBA which accepts (0, r) iff for some integer ja 1, either there is no 

b symbol at time j, or the subsequence of c in the time interval (j, j+ 1) is not of the 

form aTaT. It is easy to construct such a timed automaton. 

A timed word (a, r) in LUndeC should encode the initial configuration over the 

interval [l, 2). Let dinit be the TBA which requires that the subsequence of o 

corresponding to the interval [l, 2) is not b,; it accepts the language 

((~,Z)/(~1Zbl)“(Z1fl)“(52<2)}. 
For each instruction 1 <i < n we construct a TBA di. pi accepts (CT, r) iff the timed 

word has bi at some time t, and the configuration corresponding to the subsequence in 

[t + 1, t + 2) does not follow from the configuration corresponding to the subsequence 

in [t, t + 1) by executing the instruction i. We give the construction for a sample 

instruction, say, “increment the counter D and jump nondeterministically to instruc- 

tion 3 or 5”. The automaton pi is the disjunction of the following six TBAs 

d;, . . ..Jzz.. 

Let &! be the automaton which accepts (a, z) iff for somej3 1, aj=bi, and at time 

tj+ 1 there is neither b3 nor b5. It is easy to construct this automaton. 

Let G!: be the TBA shown in Fig. 11. 

In Fig. 11, an edge without a label means that the transition can be taken on every 

input symbol. While in state s2, the automaton cannot accept a symbol a, if the 

condition (x = 1) holds. Thus, &’ accepts (0, t) iff there is some bi at time t followed by 

an a, at time t’ <(t + 1) such that there is no matching a, at time (t’ + 1). 

Similarly we can construct &‘! which accepts (a, r) iff there is some bi at time t, and 

for some t’ < (t + 1) there is no a, at time t’ but there is an ai at time (t’ + 1). The 

complements of &’ and G!! together ensure proper matching of a,‘~. 

Along similar lines we ensure proper matching of u2 symbols. Let &‘f be the 

automaton which requires that for some bi at time t, there is an u2 at some t’ < (t + 1) 

Fig. 11 



A theory of timed automata 213 

with no match at (t’+ 1). Let S: be the automaton which says that for some bi at time 

t there are two u2’s in (t+ 1, t+2) without matches in (t, t+ 1). Let J&‘” be the 

automaton which requires that for some bi at time t the last a2 in the interval 

(t + 1, t + 2) has a matching a2 in (t, t + 1). Now consider a word (a, z) such that there is 

bi at some time t such that the encoding of uz’s in the intervals (t, t + 1) and (t + 1, t + 2) 

do not match according to the desired scheme. Let the number of uz’s in (t, t + 1) and 

in (t + 1, t + 2) be k and 1 respectively. If k > I then the word is accepted by .zZ~. If k = 1, 
then either there is no match for some a2 in (t, t + l), or every u2 in (t, t + 1) has a match 

in (t + 1, t + 2). In the former case the word is accepted by .&f, and in the latter case it 

is accepted by &P. If k + 1 < 1 the word is accepted by c_Gg?. 

The requirement that the computation be not recurring translates to the require- 

ment that bI appears only finitely many times in U. Let d,,,,, be the Biichi automaton 

which expresses this constraint. 

Putting all the pieces together we claim that the language of the disjunction of &‘,,, 

&hit, drecur~ and each of pi, is the complement of Lundec. 0 

It is shown in [S] that the satisfiability problem for a real-time extension of the 

propositional linear temporal logic PTL becomes undecidable if a dense domain is 

chosen to model time. Thus, our undecidability result is not unusual for formalisms 

reasoning about dense real-time. Obviously, the universality problem for TMAs is 

also undecidable. We have not been able to show that the universality problem is 

II:-complete, an interesting problem is to locate its exact position in the analytical 

hierarchy. In the following subsections we consider various implications of the above 

undecidability result. 

5.3. Inclusion and equivalence 

Recall that the language inclusion problem for Biichi automata can be solved in 

PSPACE. However, it follows from Theorem 5.2 that there is no decision procedure to 

check whether the language of one TBA is a subset of the other. This result is an 

obstacle in using timed automata as a specification language for automatic verifica- 

tion of finite-state real-time systems. 

Corollary 5.3. Given two TBAs &I and .d2 over an alphabet C, the problem of checking 
L(.C~,)CL(LZ!~) is II:-hard. 

Proof. We reduce the universality problem for a given timed automaton JX! over C to 

the language inclusion problem. Let ~~univ be an automaton which accepts every 

timed word over C. The automaton d is universal iff L(~““iv) G L(sl). 0 

Now we consider the problem of testing equivalence of two automata. A natural 

definition for equivalence of two automata uses equality of the languages accepted by 

the two. However, alternative definitions exist. We will explore one such notion. 
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Definition 5.4. For timed Biichi automata dl and d2 over an alphabet C, define 

& 1-1dz iff L(d,)=L(d,). Define ,Qel -2 ~4~ iff for all timed automata d over C, 

L(d)nL(~2~) is empty precisely when L(LzZ)~L(LZZ~) is empty. 

For a class of automata closed under complement, the above two definitions of 

equivalence coincide. However, these two equivalence relations differ for the class of 

timed regular languages because of the nonclosure under complement (to be proved 

shortly). In fact, the second notion is a weaker notion: LX!‘, -1 zJz implies ~4, w2 d2, 

but not vice versa. The motivation behind the second definition is that two automata 

(modeling two finite-state systems) should be considered different only when a third 

automaton (modeling the observer or the environment) composed with them gives 

different behaviors: in one case the composite language is empty, and in the other case 

there is a possible joint execution. The proof of Theorem 5.2 can be used to show 

undecidability of this equivalence also. Note that the problems of deciding the two 

types of equivalences lie at different levels of the hierarchy of undecidable problems. 

Theorem 5.5. For timed Biichi automata &I and LZZ~ over an alphabet C, 
(1) The problem of deciding whether -c41 -1 d2 is Hi-hard. 
(2) The problem of deciding whether ~2~ m2 dz is complete for the co-r.e. class. 

Proof. The language of a given TBA d is universal iff LZZ -I ~“niv. Hence, the 

I-Ii-hardness of the universality problem implies II:-hardness of the first type of 

equivalence. 

Now we show that the problem of deciding nonequivalence, by the second defini- 

tion, is recursively enumerable. If the two automata are inequivalent then there exists 

an automaton d over C such that only one of L(d)nL(dl) and L(d)nL(d2) is 

empty. Consider the following procedure P: P enumerates all the TBAs over C one by 

one. For each TBA d, it checks for the emptiness of _Y’(d)nL(d,) and the 

emptiness of L(&)nL(d,). If P ever finds different answers in the two cases, it halts 

saying that d1 and G!* are not equivalent. 

Finally, we prove that the problem of deciding the second type of equivalence is 

unsolvable. We use the encoding scheme used in the proof of Theorem 5.2. The only 

difference is that we use the halting problem of a deterministic 2-counter machine 

M instead of the recurring computations of a nondeterministic machine. Recall that 

the halting problem for deterministic 2-counter machines is undecidable. Assume that 

the nth instruction is the halting instruction. We obtain &&,dec by replacing the 

disjunct d,,,,, by an automaton which accepts (a, z) iff b, does not appear in 0. 

The complement of L(&Z:,,,,) consists of the timed words encoding the halting 

computation. 

We claim that ~univ -2 zzJL:ndec iff the machine M does not halt. If M does not halt 

then d :ndec accepts all timed words, and hence, its language is the same as that of 

cc4univ. If M halts, then we can construct a timed automaton zZhalc which accepts 

a particular timed word encoding the halting computation of M. If M halts in k steps, 
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then &hart uses k clocks to ensure proper matching of the counter values in successive 

configurations. The details are very similar to the PSPACE-hardnes proof of 

Theorem 4.17. L(dhal,) n L(~univ) is nonempty whereas L(dhalt) n L(r;Pk,,,,) is 

empty, and thus ‘a2univ and d&C are inequivalent in this case. This completes the 

proof. 0 

5.4. Nonclosure under complement 

The II:-hardness of the inclusion problem implies that the class of TBAs is not 

closed under complement. 

Corollary 5.6. The class of timed regular languages is not closed under complementation. 

Proof. Given TBAs dI and d2 over an alphabet C, L(&r) c L(dcez) iff the intersec- 

tion of L(Jx?~) and the complement of L(J$~) is empty. Assume that TBAs are closed 

under complement. Consequently, L(&‘r) $ L(J&‘~) iff there is a TBA d such that 

L(dI)nL(&‘) is nonempty, but L(Jz?~)~L(JzZ) is empty. That is, L(&r)$ L(J$~) iff 

&‘r and &c42 are inequivalent according to m2. From Theorem 5.5 it follows that the 

complement of the inclusion problem is recursively enumerable. This contradicts the 

I-Ii-hardness of the inclusion problem. 0 

The following example provides some insight regarding the nonclosure under 

complementation. 

Example 5.7. The language accepted by the automaton of Fig. 12 over {a} is 

{(a”,z)(3i>,l. 3j>i. (rj=~i+l)}. 

The complement of this language cannot be characterized using a TBA. The 

complement needs to make sure that no pair of a’s is separated by distance 1. Since 

there is no bound on the number of a’s that can happen in a time period of length 1, 

keeping track of the times of all the a’s within the past 1 time unit, would require an 

unbounded number of clocks. 0 

Fig. 12. Noncomplementable automaton. 
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5.5. Choice of the clock constraints 

In this section we consider some of the ways to modify our definition of clock 

constraints and indicate how these decisions affect the expressiveness and complexity 

of different problems. Recall that our definition of the clock constraints allows 

Boolean combinations of atomic formulas which compare clock values with (rational) 

constants. With this vocabulary, timed automata can express only constant bounds 

on the delays between transitions. 

First suppose we extend the definition of clock constraints to allow subformulas 

involving two clocks such as (x< y+ c). In particular, in Definition 3.6 of the set 

@(X) of clock constraints, we allow, as atomic constraints, the conditions (x<y+c) 

and (x +c<y), for x, VEX and CEQ. Thus, the allowed clock constraints are 

quantifier-free formulas using the primitives of comparison (G) and addition by 

rational constants (+ c). The untiming construction can handle this extension very 

easily. We need to refine the equivalence relation on clock interpretations. Now, in 

addition to the previous conditions, we require that two equivalent clock interpreta- 

tions agree on all the subformulas appearing in the clock constraints. Also it is easy to 

prove that this extension of clock constraints does not add to the expressiveness of 

timed automata. 

Next let us allow the primitive of addition in the clock constraints. Now we 

can write clock constraints such as (x+ y<x’+ y’) which allow the automaton 

to compare various delays. This greatly increases the expressiveness of the formalism. 

The language of the automaton in the following example is not timed 

regular. 

Example 5.8. Consider the automaton of Fig. 13 with the alphabet {a, b, c}. It 

expresses the property that the symbols a, b, and c occur cyclically, and the delay 

between b and c is always twice the delay between the last pair of a and b. The 

language is defined by 

Fig. 13. Automaton with clock constraints using +. 
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Intuitively, the constraints involving addition are too powerful and cannot be 

implemented by finite-state systems. Even if we constrain all events to occur at integer 

time values (i.e. discrete-time model), to check that the delay between first two symbols 

is same as the delay between the next two symbols, an automaton would need an 

unbounded memory. Thus, with finite resources, an automaton can compare delays 

with constants, but cannot remember delays. In fact, we can show that introducing 

addition in the syntax of clock constraints makes the emptiness problem for timed 

automata undecidable. 

Theorem 5.9. Allowing the addition primitive in the syntax of clock constraints makes 

the emptiness problem for timed automata ni-hard. 

Proof. As in the proof of Theorem 5.2 we reduce the problem of recurring computa- 

tions of nondeterministic 2-counter machines to the emptiness problem for time 

automata using the primitive +. The alphabet is {a, bI, . . . . b,}. We say that a timed 

word (0,7) encodes a computation (i,, cl, dI ), ( i2 c2, d, ), . . . of the 2-counter ma- 

chine iff g=bi,abi,abi, ... with 72j-r2j- 1 =cj, and r2j+ 1-~2j=dj for all j3 1. Thus, 

the delay between b and the following a encodes the value of the counter C, and the 

delay between a and the following b encodes the value of D. We construct a timed 

automaton which accepts precisely the timed words encoding the recurring computa- 

tions of the machine. The primitive of + is used to express a consecution requirement 

such as the value of the counter C remains unchanged. The details of the proof are 

quite straightforward. 0 

6. Deterministic timed automata 

The results of Section 5 show that the class of timed automata is not closed under 

complement, and one cannot automatically compare the languages of two automata. 

In this section we define deterministic timed automata, and show that the class of 

languages accepted by deterministic timed Muller automata (DTMA) is closed under 

all the Boolean operations. 

6.1. Definition 

Recall that in the untimed case a deterministic transition table has a single start 

state, and from each state, given the next input symbol, the next state is uniquely 

determined. We want a similar criterion for determinism for the timed automata: 

given an extended state and the next input symbol along with its time of occurrence, the 

extended state after the next transition should be uniquely determined. So we allow 

multiple transitions starting at the same state with the same label, but require their 

clock constraints to be mutually exclusive so that at any time only one of these 

transitions is enabled. 



Definition 6.1. A timed transition table (C, S, S,,, C, E) is called deterministic iff 

(1) it has only one start state, 1 So I= 1, and 

(2) for all SES, for all UEC, for every pair of edges of the form (s, -, a, -, d1 ) and 

(s, -, a, -, S,), the clock constraints 6, and d2 are mutually exclusive (i.e., d1 A b2 is 

unsatisfiable). 

A timed automaton is deterministic iff its timed transition table is deterministic. 

Note that in absence of clocks the above definition matches with the definition of 

determinism for transition tables. Thus, every deterministic transition table is also 

a deterministic timed transition table. Let us consider an example of a DTMA. 

Example 6.2. The DTMA of Fig. 14 accepts the language L,,, of Example 3.13: 

L,,,={((Ub)“,T)I3i. Vj>i. (Z2j<Tzj-1+2)}. 

The Muller acceptance family is given by {{s 1, sz}}. The state s1 has two mutually 

exclusive outgoing transitions on b. The acceptance condition requires that the 

transition with the clock constraint (x22) is taken only finitely often. 

Deterministic timed automata can be easily complemented because of the following 

property: 

Lemma 6.3. A deterministic timed transition table has at most one run over a given 
timed word. 

Proof. Consider a deterministic timed transition table d, and a timed word (G, r). 

The run starts at time 0 with the extended state (so, vO) where s0 is the unique 

start state. Suppose the extended state of d at time rj- 1 is (s, v), and the run has 

been constructed up to (j- 1) steps. By the deterministic property of d, at 

time rj there is at most one transition (s, s’, djr 6, A) such that the clock interpretation 

at time Zj, V+Sj--Sj-1, satisfies 6. If such a transition does not exist then d has no 

run over (a, r). Otherwise, this choice of transition uniquely extends the run to the 

jth step, and determines the extended state at time rj. The lemma follows by 

induction. 0 

a,x:=O b, (x<2)? 

zw 

b, (x>2)? a,x:=O 

Fig. 14. Deterministic timed Muller automaton. 
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6.2. Closure properties 

Now we consider the closure properties for deterministic timed automata. Like in 

the untimed case, the class of languages accepted by deterministic timed Muller 

automata is closed under all Boolean operations. 

Theorem 6.4. The class of timed languages accepted by deterministic timed Muller 

automata is closed under union, intersection, and complementation. 

Proof. We define a transformation on DTMAs to make the proofs easier; for every 

DTMA G?’ = (C, S, sO, C, E, g) we construct another DTMA d* by completing 

L.Z? as follows. First we add a dummy state q to the automaton. From each state 

s (including q), for each symbol a, we add an a-labeled edge from s to q. The clock 

constraint for this edge is the negation of the disjunction of the clock constraints of all 

the a-labeled edges starting at s. We leave the acceptance condition unchanged. This 

construction preserves determinism as well as the set of accepted timed words. The 

new automaton 1;11* has the property that for each state s and each input symbol a, the 

disjunction of the clock constraints of the a-labeled edges starting at s is a valid 

formula. Observe that d * has precisely one run over any timed word. We call such an 

automaton complete. In the remainder of the proof we assume each DTMA to be 

complete. 

Let pi = (C, Si, so,, Ci, Ei, Fi), for i= 1,2, be two complete DTMAs with disjoint 

sets of clocks. First we construct a timed transition table & using a product construc- 

tion. The set of states of d is S1 x S2. Its start state is (so,, sol). The set of clocks is 

C1 u C2. The transitions of &’ are defined by coupling the transitions of the two 

automata having the same label. Corresponding to an &,-transition 

(si, tl, a, AI, 6,) and an dz-transition (s*, t 2, a, AZ, S,), d has a transition 

((si, s2), (tl, t2), a, A1 VI,,, a1 A 6,). It is easy to check that .Qe is also deterministic. 

.d has a unique run over each (a, r), and this run can be obtained by putting together 

the unique runs of JZZ~ over (0, r). 

Let 9’ consist of the sets F E Si x S2 such that the projection of F onto the first 

component is an accepting set of &,; that is, 

Hence a run r of & is an accepting run for ~2~ iff inf(r)E Similarly define 9’ to 

consist of the sets F such that (s’ 13~~s~. (s, s’)EF} is in g2. Now coupling & with 

the Muller acceptance family P1 up2 gives a DTMA accepting L(d,)uL(d2), 

whereas using the acceptance family 9’ n 9’ gives a DTMA accepting 

Ud,)nU~2). 

Finally, consider complementation. Let zd be a complete DTMA (C, S, s,,, C, E, F). 

d has exactly one run over a given timed word. Hence, (a, r) is in the complement of 

L(d) iff the run of ~4 over it does not meet the acceptance criterion of d. The 
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complement language is, therefore, accepted by a DTMA which has the same underly- 

ing timed transition table as d, but its acceptance condition is given by 2’-9. 0 

Now let us consider the closure properties of DTBAs. Recall that deterministic 

Biichi automata (DBA) are not closed under complement. The property that “there 

are infinitely many a’s” is specifiable by a DBA, however, the complement property, 

“there are only finitely many a’s” cannot be expressed by a DBA. Consequently, we do 

not expect the class of DTBAs to be closed under complementation. However, since 

every DTBA can be viewed as a DTMA, the complement of a DTBA-language is 

accepted by a DTMA. The next theorem states the closure properties. 

Theorem 6.5. The class of timed languages accepted by DTBAs is closed under union 
and intersection, but not closed under complement. The complement of a DTBA language 
is accepted by some DTMA. 

Proof. For the case of union, we construct the product transition table as in case of 

DTMAs (see proof of Theorem 6.4). The accepting set is {(s, s’) 1 scF, v s’EF~}. 

A careful inspection of the product construction for TBAs (see proof of Theorem 

3.15) shows that it preserves determinism. The closure under intersection for DTBAs 

follows. 

The nonclosure of deterministic Biichi automata under complement leads to the 

non-closure for DTBAs under complement. Tha language { (cr, T) 1 a@b*a)“} is speci- 

fiable by a DTBA. Its complement language {(a, T) / oE(a + b)*b”} is not specifiable by 

a DTBA. This claim follows from Lemma 6.7 (to be proved shortly), and the fact that 

the language (a + b)*bO is not specifiable by a DBA. 

Let d = (1, S, sO, C, E, F) be a complete deterministic automaton. (a, r) is in the 

complement of L(d) iff the (unique) run of JZZ over it does not meet the acceptance 

criterion of &. The complement language is, therefore, accepted by a DTMA with the 

same underlying timed transition table as &, and the acceptance family 2S-F. 0 

6.3. Decision problems 

In this section we examine the complexity of the emptiness problem and the 

language inclusion problem for deterministic timed automata. 

The emptiness of a timed automaton does not depend on the symbols labeling its 

edges. Consequently, checking emptiness of deterministic automata is no simpler; it is 

PSPACE-complete. 

Since deterministic automata can be complemented, checking for language inclu- 

sion is decidable. In fact, while checking L(di)~L(d~), only -02, need be determin- 

istic, d1 can be nondeterministic. The problem can be solved in PSPACE: 

Theorem 6.6. For a timed automaton ,sl, and a deterministic timed automaton d2, the 
problem of deciding whether L(s~~) is contained in L(xZ2) is PSPACE-complete. 
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Proof. PSPACE-hardness follows, even when di is deterministic, from the fact that 

checking for the emptiness of the language of a deterministic timed automaton is 

PSPACE-hard. Let d,,,,, be a deterministic automaton which accepts the empty 

language. Now for a deterministic timed automaton d, L(d) is empty iff L(,d)c 

-Gdempty). 
Observe that L(&‘i) c L(.ti2) iff the intersection of L(.&,) with the complement of 

L(d,) is empty. Recall that complementing the language of a deterministic automa- 

ton corresponds to complementing the acceptance condition. First we construct 

a timed transition table d from the timed transition tables of&i and d2 using the 

product construction (see proof of Theorem 6.4). The size of A is proportional to the 

product of the sizes of &i. Then we construct the region automaton R(d). 

L(&‘i)$ L(zJ’~) iff R(d) has a cycle which is accessible from its start state, meets the 

progressiveness requirement, the acceptance criterion for di, and the complement of 

the acceptance criterion for J&‘~. The existence of such a cycle can be checked in space 

polynomial in the size of ~2, as in the proof of PSPACE-solvability of emptiness 

(Theorem 4.17). 17 

6.4. Expressiveness 

In this section we compare the expressive power of the various types of timed 

automata. 

Every DTBA can be expressed as a DTMA simply by rewriting its acceptance 

condition. However, the converse does not hold. First observe that every o-regular 

language is expressible as a DMA, and hence as a DTMA. On the other hand, since 

deterministic Biichi automata are strictly less expressive than deterministic Muller 

automata, certain w-regular languages are not specifiable by DBAs. The next lemma 

shows that such languages cannot be expressed using DTBAs either. It follows that 

DTBAs are strictly less expressive than DTMAs. In fact, DTMAs are closed under 

complement, whereas DTBAs are not. 

Lemma 6.7. For an o-language L, the timed language {(CT, t) I MEL} is accepted by some 

DTBA ifsL is accepted by some DBA. 

Proof. Clearly if L is accepted by a DBA, then { (0, T) 1 creL) is accepted by the same 

automaton considered as a timed automaton. 

Now suppose that the language {(a, r) 1 OGL) is accepted by some DTBA cc4. We 

construct another DTBA ZJ” such that L(d’)= { (a, t) 1 (GEL) A Vi. (Zi= i)}. xJ’ 

requires time to increase by 1 at each transition. The automaton JZZ‘ can be obtained 

from ~2 by introducing an extra clock x. We add the conjunct x= 1 to the clock 

constraint of every edge in .d and require it to be reset on every edge. JZZ’ is also 

deterministic. 
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The next step is the untiming construction for d’. Observe that Untime(L(d’)) = L. 
While constructing R(&‘) we need to consider only those clock regions which have all 

clocks with zero fractional parts. Since the time increase at every step is predeter- 

mined, and d’ is deterministic, it follows that R(.d’) is a deterministic transition table. 

We need not check the progressiveness condition also. It follows that the automaton 

constructed by the untiming procedure is a DBA accepting L. Cl 

From the above discussion one may conjecture that a DTMA language L is 

a DTBA language if Untime(L) is a DBA language. To settle this let us consider the 

convergent response property L,,, specifiable using a DTMA (see Example 6.2). This 

language involves a combination of liveness and timing. We conjecture that no DTBA 

can specify this property (even though Untime(L,,,) can be trivially specified by 

a DBA). 

Along the lines of the above proof we can also show that for an o-language L, the 

timed language ((0, z) 1 OE L} IS accepted by some DTMA (or TMA, or TBA) iff L is 

accepted by some DMA (or MA, or BA, respectively). 

Since DTMAs are closed under complement, whereas TMAs are not, it follows that 

the class of languages accepted by DTMAs is strictly smaller than that accepted by 

TMAs. In particular, the language of Example 5.7, (“some pair of a’s is distance 

1 apart”) is not representable as a DTMA; it relies on nondeterminism in a crucial 

way. 

We summarize the discussion on various types of automata in the table of Fig. 15 

which shows the inclusions among various classes and the closure properties of 

various classes. Compare this with the corresponding results for the various classes of 

o-automata shown in Fig. 16. 

~~ 

union, Intersection, complement 

Fig. 15. Classes of timed automata. 

Class of w-languages Operations closed under 

MA = BA = DMA union, intersection, complement 

U 

DBA union, intersection 

Fig. 16. Classes of o-automata. 
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7. Verification 

In this section we discuss how to use the theory of timed automata to prove 

correctness of finite-state real-time systems. We have chosen a simple formulation of 

the verification problem, but it suffices to illustrate the application of timed automata 

to verification problems. We start by introducing time in linear trace semantics for 

concurrent processes. 

7.1. Truce semantics 

In trace semantics, we associate a set of observable events with each process, and 

model the process by the set of all its traces. A trace is a (linear) sequence of events that 

may be observed when the process runs. For example, an event may denote an 

assignment of a value to a variable or pressing a button on the control panel or arrival 

of a message. All events are assumed to occur instantaneously. Actions with duration 

are modeled using events marking the beginning and the end of the action. Hoare 

originally proposed such a model for CSP [23]. 

In our model, a trace will be a sequence of sets of events. Thus, if two events a and 

b happen simultaneously, the corresponding trace will have a set {a, b} in our model. 

In the usual interleaving models, this set will be replaced by all possible sequences, 

namely, a followed by b and b followed by a. Also, we consider only infinite sequences, 

which model nonterminating interaction of reactive systems with their environments. 

Formally, given a set A of events, a truce o = g1 gz . . is an infinite word over 9 + (&‘) 
_ the set of nonempty subsets of A. An untimed process is a pair (A, X) comprising of 

the set A of its observable events and the set X of its possible traces. 

Example 7.1. Consider a channel P connecting two components. Let a represent the 

arrival of a message at one end of P, and let b stand for the delivery of the message at 

the other end of the channel. The channel cannot receive a new message until the 

previous one has reached the other end. Consequently, the two events a and b alter- 

nate. Assuming that the messages keep arriving, the only possible trace is 

up: {u} + {b} -+ {a} + {b} + ... . 

Often we will denote the singleton set {a} by the symbol a. The process P is 

represented by ({a, b}, (ab)“). 

Various operations can be defined on processes; these are useful for describing 

complex systems using the simpler ones. We will consider only the most important of 

these operations, namely, parallel composition. The parallel composition of a set of 

processes describes the joint behavior of all the processes running concurrently. 

The parallel composition operator can be conveniently defined using the projection 

operation. The projection of 0~9 ‘(A)” onto BGA (written arB) is formed by 

intersecting each event set in 0 with B and deleting all the empty sets from the 
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sequence. For instance, in Example 7.1 (TPr{u) is the trace uw. Notice that the 

projection operation may result in a finite sequence; but for our purpose it suffices to 

consider the projection of a trace 0 onto B only when oi n B is nonempty for infinitely 

many i. 

For a set of processes {Pi = (Ai, Xi) 1 i = 1, 2, . . , n}, their parallel composition lliPi is 
a process with the event set Ui~i and the trace set 

Thus, c is a trace of // iPi iff arAi is a trace of Pi for each i = 1, . . . , n. When there are no 

common events the above definition corresponds to the unconstrained interleavings 

of all the traces. On the other hand, if all events sets are identical then the trace set of 

the composition process is simply the set-theoretic intersection of all the component 

trace sets. 

Example 7.2. Consider another channel Q connected to the channel P of Example 7.1. 

The event of message arrival for Q is same as the event b. Let c denote the delivery of 

the message at the other end of Q. The process Q is given by ({b, c}, (bc)“). 
When P and Q are composed we require them to synchronize on the common event 

b, and between every pair of b’s we allow the possibility of the event a happening 

before the event c, the event c happening before a, and both occurring simultaneously. 

Thus, [P I/ Q] has the event set {a, b, c}, and has an infinite number of traces. 

In this framework, the verification question is presented as an inclusion problem. 

Both the implementation and the specification are given as untimed processes. The 

implementation process is typically a composition of several smaller component 

processes. We say that an implementation (A, X,) is correct with respect to a specifica- 

tion (A, X,) iff X1 s Xs. 

Example 7.3. Consider the channels of Example 7.2. The implementation process is 

[P I/ Q]. The specification is given as the process S=({ a, b, c}, (abc)“). Thus, the 

specification requires the message to reach the other end of Q before the next message 

arrives at P. In this case, [P 11 Q] d oes not meet the specification S, for it has too many 

other traces, specifically, the trace ab(acb)“. 

Notice that according to the above definition of the verification problem, an 

implementation with X1 = @ is correct with respect to every specification. To overcome 

this problem, one needs to distinguish between output events (the events controlled by 

the system), and the input events (the events controlled by its environment), and 

require that the implementation should not prevent its environment from executing 

the input events [15]. We believe that distinguishing between input and output events 

and introducing timing are two orthogonal issues, and our goal in this paper is to 

indicate how to address the latter problem. 
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7.2. Adding timing to traces 

An untimed process models the sequencing of events but not the actual times at 

which the events occur. Thus, the description of the channel in Example 7.1 gives only 

the sequencing of the events a and b, and not the delays between them. Timing can be 

added to a trace by coupling it with a sequence of time values. We choose the set of 

reals to model time. 

Recall that a time sequence z = z1 tZ . . . is an infinite sequence of time values TiER 

satisfying the strict monotonicity and progress constraints. A timed trace over a set of 

events A is a pair (0, r) where CJ is a trace over A, and z is a time sequence. Note that, 

since different events happening simultaneously appear in a single element in a trace, 

there is no reason to allow the possibility of the adjacent elements in a trace having the 

same associated time value. 

In a timed trace (a, r), each ri gives the time at which the events in Gi occur. In 

particular, r1 gives the time of the first observable event; we always assume r1 >O, and 

define r,, =O. Observe that the progress condition implies that only a finite number of 

events can happen in a bounded interval of time. In particular, it rules out convergent 

time sequences such as l/2, 3/4, 7/8, . . . representing the possibility that the system 

participates in infinitely many events before time 1. 

A timed process is a pair (A, L) where A is a finite set of events, and L is a set of timed 

traces over A. 

Example 7.4. Consider the channel P of Example 7.1 again. Assume that the first 

message arrives at time 1, and the subsequent messages arrive at fixed intervals of 

length 3 time units. Furthermore, it takes 1 time unit for every message to traverse the 

channel. The process has a single timed trace 

pP=(a, l)-+(b,2)+(a,4)+(b,5)+... 

and it is represented as a timed process P’=( {a, b}, {pp>). 

The operations on untimed processes are extended in the obvious way to timed 

processes. To get the projection of (0, T) onto B c A, we first intersect each event set in 

d with B and then delete all the empty sets along with the associated time values. The 

definition of parallel composition remains unchanged, except that it uses the projec- 

tion for timed traces. Thus, in parallel composition of two processes, we require that 

both the processes should participate in the common events at the same time. This 

rules out the possibility of interleaving: parallel composition of two timed traces is 

either a single timed trace or is empty. 

Example 7.5. As in Example 7.2 consider another channel Q connected to P. For Q, as 

before, the only possible trace is a,=(bc)“. In addition, the timing specification of 

Q says that the time taken by a message for traversing the channel, that is, the delay 

between b and the following c, is some real value between 1 and 2. The timed process 
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Q* has infinitely many timed traces, and it is given by 

C{b~c}~{~o~~z)IVi~~~*i-l+1~zZ~~~2i-l+~)}]~ 

The description of [PT 11 QT] is obtained by composing pP with each timed trace of QT. 

The composition process has uncountably many timed traces. An example trace is 

(a, 1) -+ (b, 2) --) (c, 3.8) --, (a, 4) + (b, 5) -+ (c, 6.02) --f ... 

The time values associated with the events can be discarded by the Untime 

operation. For a timed process P=(A, L), Untime[(A, L)] is the untimed process with 

the event set A and the trace set consisting of traces 0 such that (0, Z)EL for some time 

sequence t. 

Note that 

Untime(P, /( P2) _C lJntime(P,) (/ Untime(P,). 

However, as Example 7.6 shows, the two sides are not necessarily equal. In other 

words, the timing information retained in the timed traces constrains the set of 

possible traces when two processes are composed. 

Example 7.6. Consider the channels of Example 7.5. Observe that Untime(PT)=P 

and Untime(Q*)= Q. [P’ /I QT] has a unique untimed trace (abc)“. On the other hand, 

[P 11 Q] has infinitely many traces; between every pair of b events all possible 

orderings of an event a and an event c are admissible. 

The verification problem is again posed as an inclusion problem. Now the imple- 

mentation is given as a composition of several timed processes, and the specification is 

also given as a timed process. 

Example 7.7. Consider the verification problem of Example 7.3 again. If we model the 

implementation as the timed process [PT jl QT] then it meets the specification S. The 

specification S is now a timed process ({a, b, c}, (((ubc)“, T)}). Observe that, though 

the specification S constrains only the sequencing of events, the correctness of 

[PT 11 QT] with respect to S crucially depends on the timing constraints of the two 

channels. 

7.3. w-automata and verification 

We start with an overview of the application of B&hi automata to verify untimed 

processes [45,44]. Observe that for an untimed process (A, X), X is an o-language 

over the alphabet 9’ ‘(A). If it is a regular language, it can be represented by a Biichi 

automaton. 

We model a finite-state (untimed) process P with event set A using a Biichi 

automaton dP over the alphabet 9 + (A). The states of the automaton correspond to 
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the internal states of the process. The automaton dp has a transition (s, s’, a), with 

a s A, if the process can change its state from s to s’ participating in the events from a. 

The acceptance conditions of the automaton correspond to the fairness constraints on 

the process. The automaton ,alp accepts (or generates) precisely the traces of P; i.e., the 

process P is given by (A, L(dp)). Such a process P is called an o-regular process. 

The user describes a system consisting of various components by specifying each 

individual component as a Biichi automaton. In particular, consider a system I com- 

prising of n components, where each component is modeled as an w-regular process 

Pi=(Ai, L(&i)). The implementation process is [ IiiPi]. We can automatically con- 

struct the automaton for I using the construction for language intersection for Biichi 

automata. Since the event sets of various components may be different, before we 

apply the product construction, we need to make the alphabets of various automata 

identical. Let A= U;Ai. From each ,r4i, we construct an automaton &; over the 

alphabet 9+((A) such that L(&{)= {o~p’(A)” / r$AiEL(&‘i)}. Now the desired 

automaton d, is the product of the automata &:. 

The specification is given as an o-regular language S over .G? ’ (A). The implementa- 

tion meets the specification iff L(dr4,) c S. The property S can be presented as a Biichi 

automaton &,. In this case, the verification problem reduces to checking emptiness of 

Udr)nUds)‘. 
The verification problem is PSPACE-complete. The size of d1 is exponential in the 

description of its individual components. If ds is nondeterministic, taking the com- 

plement involves an exponential blowup, and thus the complexity of verification 

problem is exponential in the size of the specification also. However, if &, is 

deterministic, then the complexity is only polynomial in the size of the specification. 

Even if the size of the specification and the sizes of the automata for the individual 

components are small, the number of components in most systems of interest is large, 

and in the above method the complexity is exponential in this number. Thus, the 

product automaton d1 has a prohibitively large number of states, and this limits the 

applicability of this approach. Alternative methods which avoid enumeration of all 

the states in &‘r have been proposed, and shown to be applicable to verification of 

some moderately sized systems [8, 193. 

7.4. Verijication using timed automata 

For a timed process (A, L), L is a timed language over g +(A). A timed regular 

process is one for which the set L is a timed regular language, and can be represented 

by a timed automaton. 

Finite-state systems are modeled by TBAs. The underlying transition table gives the 

state-transition graph of the system. We have already seen how the clocks can be used 

to represent the timing delays of various physical components. As before, the accept- 

ance conditions correspond to the fairness conditions. Notice that the progress require- 

ment imposes certain fairness requirements implicitly. Thus, with a finite-state process 

P, we associate a TBA &‘p such that L(s@‘~) consists of precisely the timed traces of P. 
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Typically, an implementation is described as a composition of several components. 

Each component should be modeled as a timed regular process Pi =(Ai, L(di)). It is 

possible to construct a TBA &r which represents the composite process [ IliPi]. To do 

this, first we need to make the alphabets of various automata identical, and then take 

the intersection. However, in the verification procedure we are about to outline, we 

will not explicitly construct the implementation automaton LZ!~. 

The specification of the system is given as another timed regular language S over the 

alphabet Y”(A), where A = UiAi. The system is correct iff L(dl) c S. If S is given as 

a TBA, then in general, it is undecidable to test for correctness. However, if S is given 

as a DTMA JzZ,, then we can solve this as outlined in Section 6.3. 

Putting together all the pieces, we conclude: 

Theorem 7.8. Given timed regular processes Pi=(Ai, L(~i)), i= 1, . . . . n, modeled by 
timed automata di, and a specijication as a deterministic timed automaton ds, the 
inclusion of the trace set of [ 11 iPi] in L(ds) can be checked in PSPACE. 

Proof. Consider TBAs di = (9 +(A,), Si, S’i,, Ci, Ei, Fi), i= 1, . . . , n, and the DTMA 

ds=(~‘(4),So,So,, Co, EO, S). Assume without loss of generality that the clock 

sets Ci, i = 0, . . , n, are disjoint. 

The verification algorithm constructs the transition table of the region automaton 

corresponding to the product d of the timed transition tables of &i with ds. The 

set of clocks of d is C= U,C,. The states of d are of the form (so, . . . . s,) with 

each si~Si. The initial states of zz? are of the form (so, . . ..s.) with each Si~Si,. 

A transition of JZZ is obtained by coupling the transitions of the individual automata 

labeled with consistent event sets. A state s= ( so, . . ,s,) has a transition to state 

s’=(s& . ..) sh) labeled with event set acLY’+(A), clock constraint A\iSiy and the set 

Uiii ofclocks, iff for each O<i<n, either there is a transition (si, s;, anAi, pi, 6i)EEi, 
or the automaton &i does not participate in this transition: s; = si, an Ai = 8, Ai = 8, 
and 6i = true. 

The region automaton R(d) is defined from the product table d as described in 

Section 4. To test the desired inclusion, the algorithm searches for a cycle in the region 

automaton such that (1) it is accessible from the initial state of R(d), (2) it satisfies the 

progressiveness condition: for each clock XGC, the cycle contains at least one region 

satisfying [(x = 0) v (x > c,)], (3) since our definition of the composition requires that 

we consider only those infinite runs in which each automaton participates infinitely 

many times, we require that, for each 1~ i < n, the cycle contains a transition in which 

the automaton pi participates, (4) the fairness requirements of all implementation 

automata di are met: for each 1 Q i,< n, the cycle contains some state whose ith 

component belongs to the accepting set Fi, (5) the fairness condition of the specifica- 

tion is not met: the projection of the states in the cycle onto the component of ds does 

not belong to the acceptance family 9. The desired inclusion does not hold iff a cycle 

with all the above conditions can be found. 
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Each state of the region automaton can be represented in space polynomial in the 

description of the input automata. It follows that the inclusion test can be performed 

in PSPACE. 0 

The number of vertices in the region automaton is 0 [ 1 ds 1 ni 1 cdi 1 216’.ds.‘1 +z~‘~(.~~)‘], 

and the time complexity of the above algorithm is linear in this number. There are 

mainly three sources of exponential blowup: 

(1) The complexity is proportional to the number of states in the global timed 

automaton describing the implementation [ Iii Pi]. This is exponential in the number 

of components. 

(2) The complexity is proportional to the product of the constants c,, the largest 

constant x is compared with, over all the clocks x involved. 

(3) The complexity is proportional to the number of permutations over the set of all 

clocks. 

The first factor is present in the simplest of verification problems, even in the 

untimed case. Since the number of components is typically large, this exponential 

factor has been a major obstacle in implementing model-checking algorithms. 

The second factor is typical of any formalism to reason about quantitative time. The 

blowup by actual constants is observed even for simpler, discrete models. Note that if 

the bounds on the delays of different components are relatively prime then this factor 

leads to a major blowup in the complexity. 

Lastly, in the untiming construction, we need to account for all the possible 

orderings of the fractional parts of different clocks, and this is the source of the third 

factor. We remark that switching to a simpler, say discrete-time, model will avoid this 

blowup in complexity. However, since the total number of clocks is linear in the 

number of independent components, this blowup is the same as that contributed by 

the first factor, namely, exponential in the number of components. 

7.5. Verification example 

We consider an example of an automatic controller that opens and closes a gate at 

a railroad crossing [30]. The system is composed of three components: TRAIN, 

GATE and CONTROLLER. 

The automaton modeling the train is shown in Fig. 17. The event set is {approach, 

exit, in, out, idT}. The train starts in state sO. The event id, represents its idling event; 

the train is not required to enter the gate. The train communicates with the controller 

with two events approach and exit. The events in and out mark the events of entry and 

exit of the train from the railroad crossing. The train is required to send the signal 

approach at least 2 minutes before it enters the crossing. Thus, the minimum delay 

between approach and in is 2 minutes. Furthermore, we know that the maximum delay 

between the signals approach and exit is 5 minutes. This is a liveness requirement on 

the train. Both the timing requirements are expressed using a single clock x. 
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The automaton modeling the gate component is shown in Fig. 18. The event set is 

{raise, lower, up, down, idG}. The gate is open in state s,, and closed in state s2. It 

communicates with the controller through the signals lower and raise. The events up 

and down denote the opening and the closing of the gate. The gate responds to the 

signal lower by closing within 1 minute, and responds to the signal raise within 1 to 

2 minutes. The gate can take its idling transition idc in states sO or s2 forever. 

Finally, Fig. 19 shows the automaton modeling the controller. The event set is 

{approach, exit, raise, lower, idc}. The controller idle state is sO. Whenever it receives 

exit 

(x<S) ? 

in 

(x>2) ? 

out 

Fig. 17. TRAIN. 

id 
G 

lower 

y:=o 

UP 

(Y<2)? 

y:=o 

raise 

down 

(Y<l)? 

id 
G 

Fig. 18. GATE. 
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the signal approach from the train, it responds by sending the signal lower to the gate. 

The response time is 1 minute. Whenever it receives the signal exit, it responds with 

a signal raise to the gate within 1 minute. 

The entire system is then 

[TRAIN // GATE I( CONTROLLER]. 

The event set is the union of the event sets of all the three components. In this example, 

all the automata are particularly simple; they are deterministic, and do not have any 

fairness constraints (every run is an accepting run). The timed automaton d1 specify- 

ing the entire system is obtained by composing the above three automata. 

The correctness requirements for the system are the following: 

(1) Safetgi: Whenever the train is inside the gate, the gate should be closed. 

(2) Real-time Liueness: The gate is never closed at a stretch for more than 10 

minutes. 

The specification refers to only the events in, out, up, and down. The safety property 

is specified by the automaton of Fig. 20. An edge label in stands for any event set 

containing in, and an edge label “in, -IOU” means any event set not containing out, 

id 
C 

approach 

z:=o 

raise 

(z&l)? 

lower 

(z=l)? 

Fig. 19. CONTROLLER 

-in,-down -in,-up 

J2n,=upm 

up,-in out,9Jp 

Fig. 20. Safety property. 
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-down (x<lO) ? 

up, (lc<lO) ? 

Fig. 21. Real-timed liveness property. 

but containing in. The automaton disallows in before down, and up before out. All the 

states are accepting states. 

The real-time liveness property is specified by the timed automaton of Fig. 21. The 

automaton requires that every down be followed by up within 10 minutes. 

Note that the automaton is deterministic, and hence can be complemented. Fur- 

thermore, observe that the acceptance condition is not necessary; we can include state 

si also in the acceptance set. This is because the progress of time ensures that the 

self-loop on state si with the clock constraint (x < 10) cannot be taken indefinitely, and 

the automaton will eventually visit state so. 

The correctness of ,c41 against the two specifications can be checked separately as 

outlined in Section 7. Observe that though the safety property is purely a qualitative 

property, it does not hold if we discard the timing requirements. 

8. New results on timed automata 

Timed automata provide a natural way of expressing timing delays of a real-time 

system. In this presentation, we have studied them from the perspective of formal 

language theory. Now we briefly review other results about timed automata. The 

precise formulation of timed automata is different in different papers, but the under- 

lying idea remains the same. 

Timed automata are useful for developing a decision procedure for the logic MITL, 

a real-time extension of the linear temporal logic PTL [4]. The decision procedure 

constructs from a given MITL-formula 4 a timed automaton d, such that &@ ac- 

cepts precisely the satisfying models of 4; thereby reducing the satisfiability question 

for 4 to the emptiness question for d,. This construction can also be used to check 

the correctness of a system modeled as a product of timed automata against MITL- 

specification, 

The untiming construction for timed automata forms the basis for verification 

algorithms in the branching-time model also. In Cl], we develop a model-checking 

algorithm for specifications written in TCTL - a real-time extension of the branching- 

time temporal logic CTL of [17]. In [9], a notion of timed bisimulation is defined for 

timed automata, and an algorithm for deciding whether two timed automata are 

bisimilar is given. 
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Timed automata is a fairly low-level representation, and automatic translations 

from more structured representations such as process algebras, timed Petri nets, or 

high-level real-time programming languages, should exist. Recently, Sifakis et al. have 

shown how to translate a term of the real-time process algebra ATP to a timed 

automaton [35]. 

One promising direction of extending the process model discussed here is to 

incorporate probabilistic information. This is particularly relevant for systems that 

control and interact with physical processes. We add probabilities to timed automata 

by associating fixed distributions with the delays. This extension makes our processes 

generalized semi-Markov processes (GSMPs). Surprisingly, the untiming construction 

used to test for emptiness of a timed automaton can be used to analyze the behavior of 

GSMPs also. In [2], we present an algorithm that combines model-checking for 

TCTL with model-checking for discrete-time Markov chains. The method can also be 

adopted to check properties specified using deterministic timed automata [3]. 

Questions other than verification can also be studied using timed automata. For 

example, Wong-Toi and Hoffmann study the problem of supervisory control of 

discrete event systems when the plant and specification behaviors are represented by 

timed automata [47]. The problem of synthesizing schedulers from timed automata 

specifications is addressed in [16]. Courcoubetis and Yannakakis use timed automata 

to solve certain minimum and maximum delay problems for real-time systems [13]. 

For instance, they show how to compute the earliest and the latest time at which 

a target state can appear along the runs of an automaton from a given initial state. 
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