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Abstract

We propose the class of visibly pushdown languages as embeddings of context-free languages
that is rich enough to model program analysis questions and yet is tractable and robust like the
class of regular languages. In our definition, the input symbol determines when the pushdown
automaton can push or pop, and thus the stack depth at every position. We show that the re-
sulting class Vpl of languages is closed under union, intersection, complementation, renaming,
concatenation, and Kleene-∗, and problems such as inclusion that are undecidable for context-
free languages are Exptime-complete for visibly pushdown automata. Our framework explains,
unifies, and generalizes many of the decision procedures in the program analysis literature, and
allows algorithmic verification of recursive programs with respect to many context-free proper-
ties including access control properties via stack inspection and correctness of procedures with
respect to pre and post conditions. We demonstrate that the class Vpl is robust by giving three
alternative characterizations: a logical characterization using the monadic second order (MSO)
theory over words augmented with a binary matching predicate, a correspondence to regular tree
languages, and a restricted class of context-free grammars. We also consider visibly pushdown
languages of infinite words and show that the closure properties, MSO-characterization and the
characterization in terms of regular trees carry over. The main difference with respect to the
case of finite words turns out to be determinizability: nondeterministic Büchi visibly pushdown
automata are strictly more expressive than deterministic Muller visibly pushdown automata.

1 Introduction

Pushdown automata naturally model the control flow of sequential computation in typical pro-
gramming languages with nested, and potentially recursive, invocations of program modules such
as procedures and method calls. Consequently, a variety of program analysis, compiler optimization,
and model checking questions can be formulated as decision problems for pushdown automata. For
instance, in contemporary software model checking tools, to verify whether a program P (written
in C, for instance) satisfies a regular correctness requirement ϕ (written in linear temporal logic,
for instance), the verifier first abstracts the program into a pushdown model P a with finite-state
control, compiles the negation of the specification into a finite-state automaton A¬ϕ that accepts
all computations that violate ϕ and algorithmically checks that the intersection of the languages
of P a and A¬ϕ is empty. The problem of checking regular requirements of pushdown models has

∗A preliminary version of this paper appears in Proc. 36th ACM Symposium on Theory of Computing (STOC’04),
pp. 202-211, 2004. This research was supported in part by ARO URI award DAAD19-01-1-0473 and NSF award
CCR-0306382.
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been extensively studied in recent years leading to efficient implementations and applications to
program analysis [RHS95, BEM97, BR00, ABE+05, HJM+02, EKS03, CW02].

While many analysis problems such as identifying dead code and accesses to uninitialized vari-
ables can be captured as regular requirements, many others require inspection of the stack or
matching of calls and returns, and are context-free. Even though the general problem of check-
ing context-free properties of pushdown automata is undecidable, algorithmic solutions have been
proposed for checking many different kinds of non-regular properties. For example, access control
requirements such as “a module A should be invoked only if the module B belongs to the call-stack,”
and bounds on stack size such as “if the number of interrupt-handlers in the call-stack currently
is less than 5, then a property p holds” require inspection of the stack, and decision procedures
for certain classes of stack properties already exist [JMT99, CW02, EKS03, CMM+04]. A separate
class of non-regular, but decidable, properties includes the recently proposed temporal logic Caret
that allows matching of calls and returns and can express the classical correctness requirements
of program modules with pre and post conditions, such as “if p holds when a module is invoked,
the module must return, and q holds upon return” [AEM04]. This suggests that the answer to
the question “which class of properties are algorithmically checkable against pushdown models?”
should be more general than “regular.” In this paper, we propose visibly pushdown languages
as an answer with desirable closure properties, tractable decision problems, multiple equivalent
characterizations, and adequate for formulating program analysis questions.

The key feature of checkable requirements, such as stack inspection and matching calls and
returns, is that the stacks in the model and the property are correlated: while the stacks are
not identical, the two synchronize on when to push and when to pop, and are always of the
same depth. We formalize this intuition by defining visibly pushdown automata (Vpa). Such an
automaton operates over words over an alphabet that is partitioned into three disjoint sets of
calls, returns, and local symbols. While reading a call symbol, the automaton must push one
symbol, while reading a return symbol, it must pop one symbol (if the stack is non-empty), and
while reading an local symbol, it can only update its control state. A language over a partitioned
alphabet is a visibly pushdown language if there is such an automaton that accepts it. While
modeling programs as context-free languages, we have to choose a finite alphabet of observations
(for instance, an observation may denote that a particular variable is read), and a mapping from
states (or transitions) of the program to observations. To model programs as visibly pushdown
languages, this observation must include whether the current transition is a call to a module or a
return from a module. A correctness requirement is another pushdown automaton over the alphabet
with the same partitioning, and hence refers to the calls and returns of the model, and updates its
stack in a synchronized manner. It is easy to see that all regular requirements, stack inspection
properties, and correctness with respect to pre and post conditions (in fact, all of Caret definable
properties) are visibly pushdown languages.

After introducing the class Vpl of visibly pushdown languages, we show that it has many
of the desirable properties that regular languages have. Vpl is closed under union, intersection,
renaming, and complementation. Given a nondeterministic Vpa, one can construct an equivalent
deterministic one, and thus Vpl is a subset of deterministic context-free languages. Problems
such as universality, inclusion, and equivalence are Exptime-complete for Vpas. We show three
alternate characterizations of Vpl. First, every word over the partitioned alphabet can be viewed
as the infix traversal of a corresponding labeled binary tree, where the subword between a call and
a matching return is encoded in the left sub-tree of the call, and the suffix following the return is
encoded in the right sub-tree of the call. With this correspondence, we show that the class Vpl
coincides with the regular tree languages. Second, we augment the classical MSO—the monadic
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second order theory over natural numbers with successor and unary predicates (which gives an
alternative logical characterization of regular languages), with a binary matching predicate µ(x, y)
that holds if y is a matching return for the call x. We show that the resulting theory MSOµ is
expressively equivalent to Vpl. Finally, we identify restrictions on the productions of context-free
grammars to get a grammar-based characterization of Vpl.

Analysis of liveness requirements such as “every write operation must be followed by a read
operation” is formulated using automata over infinite words, and the theory of ω-regular languages
is well developed with many of the counterparts of the results for regular languages (c.f. [Tho90,
VW94]). Consequently, we also define Vpas augmented with acceptance conditions such as Büchi
and Muller, that accept visibly pushdown ω-languages. We establish that the resulting class ω-Vpl
is closed under union, intersection, renaming, and complementation. Decision problems for ω-Vpas
have the same complexity as the corresponding problems for Vpas. As in the finite case, the class
ω-Vpl can be characterized by regular languages of infinite trees with exactly one infinite path, as
well as by MSOµ. The significant difference in the infinite case is that nondeterministic automata
are strictly more expressive than the deterministic ones: the language “the stack is repeatedly
bounded” (that is, for some n, the stack depth is at most n in infinitely many positions) can be
easily characterized using a nondeterministic Büchi ω-Vpa, and we prove that no deterministic
Muller ω-Vpa accepts this language. However, we show that nondeterministic Büchi ω-Vpa can
be complemented and hence problems such as checking for inclusion are still decidable.

Related work.

The idea of making calls and returns in a recursive program visible to the specification language
for writing properties appears implicitly in [JMT99] which proposes a logic over stack contents
to specify security constraints, and in [EKS03] which augments linear temporal logic with regular
valuations over stack contents, and explicitly in our recent work on the temporal logic Caret
that allows modalities for matching calls and returns [AEM04]. There is an extensive literature on
pushdown automata, context-free languages, deterministic pushdown automata, and context-free
ω-languages (c.f. [ABB97]). The most related work is McNaughton’s parenthesis languages with a
decidable equivalence problem [McN67]. A parenthesis language is produced by a context-free gram-
mar where each application of a production introduces a pair of parentheses, delimiting the scope
of production. These parentheses can be viewed as visible calls and returns. Knuth showed that
parentheses languages are closed under union, intersection, and difference (but not under comple-
mentation, primarily because parenthesis languages can consist of only well parenthesized words),
and it is decidable to check whether a context-free language is a parenthesis language [Knu67].
These proofs are grammar-based and complex, and connection to pushdown automata was not
studied. Furthermore, parenthesis languages are a strict subclass of visibly pushdown languages,
even when restricted to languages of well-bracketed words, and the class of parenthesis languages is
not closed under Kleene-∗. Recently, balanced grammars are defined as a generalization of paren-
thesis languages by allowing several kinds of parentheses and regular languages in the right hand
sides of productions [BB02]. It turns out that this class of languages is also a strict subclass of Vpl.
In the program analysis context, the notion of having unmatched returns (as in Vpl) is useful as
calls to procedures may not return.

It has been observed that propositional dynamic logic can be augmented with some restricted
class of context-free languages, and simple-minded pushdown automata, which may be viewed as
a restricted class of Vpas, have been proposed to explain the phenomenon [HKT00].

Finally, there is a logical characterization of context free languages using quantifications over
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matchings [LST94]. Also, properties expressing boundedness of stack, and repeatedly boundedness,
have received a lot of attention recently [CDT02, BSW03].

2 Visibly pushdown languages

2.1 Definition via pushdown automata

A pushdown alphabet is a tuple Σ̃ = 〈Σc,Σr,Σ`〉 that comprises three disjoint finite alphabets—Σc

is a finite set of calls, Σr is a finite set of returns and Σ` is a finite set of local actions. For any
such Σ̃, let Σ = Σc ∪ Σr ∪ Σ`.

We define pushdown automata over Σ̃. Intuitively, the pushdown automaton is restricted such
that it pushes onto the stack only when it reads a call, it pops the stack only at returns, and does
not use the stack when it reads local actions. The input hence controls the kind of operations
permissible on the stack—however, there is no restriction on the symbols that can be pushed or
popped. We call such an automaton a visibly pushdown automaton, defined as follows:

Definition 1 (Visibly pushdown automaton) A (nondeterministic) visibly pushdown automa-
ton on finite words over 〈Σc,Σr,Σ`〉 is a tuple M = (Q,Qin,Γ, δ, QF ) where Q is a finite set of
states, Qin ⊆ Q is a set of initial states, Γ is a finite stack alphabet that contains a special bottom-
of-stack symbol ⊥, δ ⊆ (Q×Σc ×Q× (Γ \ {⊥}))∪ (Q×Σr × Γ×Q)∪ (Q×Σ` ×Q), and QF ⊆ Q
is a set of final states.

A transition (q, a, q′, γ), where a ∈ Σc and γ 6= ⊥, is a push-transition where on reading a,
γ is pushed onto the stack and the control changes from state q to q′. Similarly, (q, a, γ, q′) is a
pop-transition where γ is read from the top of the stack and popped (if the top of stack is ⊥, then
it is read but not popped), and the control state changes from q to q′. Note that on local actions,
there is no stack operation.

A stack is a nonempty finite sequence over Γ ending in the bottom-of-stack symbol ⊥; let us
denote the set of all stacks as St = (Γ \ {⊥})∗.{⊥}. For a word w = a1 . . . ak in Σ∗, a run of M
on w is a sequence ρ = (q0, σ0), . . . (qk, σk), where each qi ∈ Q, σi ∈ St , q0 ∈ Qin, σ0 = ⊥ and for
every 1 ≤ i ≤ k the following holds:

[Push] If ai is a call, then for some γ ∈ Γ, (qi, ai, qi+1, γ) ∈ δ and σi+1 = γ.σi.

[Pop] If ai is a return, then for some γ ∈ Γ, (qi, ai, γ, qi+1) ∈ δ and either γ 6= ⊥ and σi = γ.σi+1,
or γ = ⊥ and σi = σi+1 = ⊥.

[Local] If ai is a local action, then (qi, ai, qi+1) ∈ δ and σi+1 = σi.

A run ρ = (q0, σ0), . . . (qk, σk) is accepting if the last state is a final state, that is, if qk ∈ QF .
A word w ∈ Σ∗ is accepted by a Vpa M if there is an accepting run of M on w. The language of
M , L(M), is the set of words accepted by M .

Vpas cannot even read the top of the stack on local actions; however this is not a restriction as
for any Vpa with stack alphabet Γ that can read the top of the stack, one can build a Vpa (with
a stack alphabet Γ′ = (Γ × Γ) ∪ {⊥}) that keeps track of the top of the stack in its control state.
Note that acceptance of Vpas is defined by final-state and not by emptiness of stack as the latter
is too restrictive. Also, ε-transitions are not allowed, but the expressiveness will not increase if we
allow ε-transitions that do not push or pop.
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Definition 2 (Visibly pushdown languages) A language of finite words L ⊆ Σ∗ is a visibly
pushdown language (Vpl) with respect to Σ̃ (a Σ̃-Vpl) if there is a Vpa M over Σ̃ such that
L(M) = L.

Note that, by definition, a visibly pushdown language over Σ̃ is a context-free language over Σ.
If L is a regular language over Σ, then L is a Vpl irrespective of the partitioning of Σ into calls,
returns, and local symbols. If Σc = {a} and Σr = {b}, then the language {anbn | n ≥ 0} is a Vpl,
but the language {bnan | n ≥ 0} is not a Vpl with respect to this partitioning. The set of words
with equal number of a and b symbols is a context-free language, but is not a Vpl not matter what
partitioning we choose.

While visibly pushdown languages are a strict subclass of context-free languages, for every
context-free language, we can associate a visibly pushdown language over a different alphabet in
the following way.

Proposition 1 (Embedding context-free languages as Vpls) If L is a context-free language
over an alphabet Σ, then there exists a Vpl L′ over the pushdown alphabet 〈Σ×{c},Σ×{r},Σ×{`}〉
such that L = h(L′), where h is a renaming function that maps each symbol (a, s), for s ∈ {c, r, `},
to a.

Proof: Let P be a pushdown automaton over Σ and let us assume, without loss of generality,
that on reading a symbol, P pushes or pops at most one stack symbol, and acceptance is defined
using final states. Let Σc = Σ × {c}, Σr = Σ × {r} and Σ` = Σ × {`}. Now consider the visibly
pushdown automaton over 〈Σc,Σr,Σ`〉 obtained by transforming P such that every transition on
a that pushes onto the stack is transformed to a transition on (a, c), transitions on a that pop the
stack are changed to transitions on (a, r) and the remaining a-transitions are changed to transitions
over (a, `). Then a word w = a1a2 . . . ak is accepted by P iff there is some augmentation w′ of w,
w′ = (a1, b1)(a2, b2) . . . (ak, bk), where each bi ∈ {c, r, `}, such that w′ is accepted by M . Thus M
accepts the words in L(P ) annotated with information on how P handles the stack. It follows that
L(P ) = f(L(M)).

We now briefly sketch how to model formal verification problems using Vpl. Suppose we are
given a boolean program P (that is, a program where all the variables have finite types) with
procedures (or methods) that can call one another. We choose a suitable pushdown alphabet
(Σc,Σr,Σ`), and associate a symbol with every transition of P with the restriction that calls are
mapped to Σc, returns are mapped to Σr, and all other statements are mapped to Σ`. Then, P
can be viewed as a generator for a visibly pushdown language L(P ). The specification is given as
another Vpl S over the same alphabet, and the program is correct iff L(P ) ⊆ S. Requirements
that can be verified in this manner include all regular properties, and non-regular properties such
as: partial correctness (if p holds when a procedure is invoked, then, if the procedure returns, q
holds upon return), total correctness (if p holds when a procedure is invoked, then the procedure
must return and q must hold at the return state), local properties (the abstract computation within
a procedure obtained by skipping over subcomputations corresponding to calls to other procedures
satisfies a regular property, for instance, every request is followed by a response), access control (a
procedure Pi can be invoked only if another procedure Pj is in the current stack), and interrupt
stack limits (whenever the number of interrupts in the call-stack is bounded by a given constant, a
property p holds). In fact, all properties from [JMT99, EKS03, AEM04] are Vpls.
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2.2 Closure properties

Let us define first a renaming-operation. A renaming of Σ̃ to Σ̃′ is a function f : Σ → Σ′, such that
f(Σc) ⊆ Σ′

c, f(Σr) ⊆ Σ′
r and f(Σ`) ⊆ Σ′

`. A renaming f is extended to words over Σ in the natural
way: f(a1 . . . ak) = f(a1) . . . f(ak).

Recall that context-free languages are closed under union, renaming, concatenation and Kleene-
∗, but not under intersection. Visibly pushdown automata are however closed under all these
operations:

Theorem 1 (Closure) Let L1 and L2 be visibly pushdown languages with respect to Σ̃. Then,
L1 ∪ L2, L1 ∩ L2, L1.L2 and L∗1 are visibly pushdown languages with respect to Σ̃. Also, if f is a
renaming of Σ̃ to Σ̃′, then f(L1) is a visibly pushdown language with respect to Σ̃′.

Proof: Given L1 and L2 accepted by Vpas M1 and M2, closure under union follows by taking the
union of the states and transitions of M1 and M2 (assuming they are disjoint) and taking the new
set of initial states (final states) to be the union of the initial states (final states) of M1 and M2.

L1 ∩ L2 can be accepted by a Vpa M that has as its set of states the product of the states of
M1 and M2, and as its stack alphabet the product of the stack alphabets of M1 and M2. When
reading a call, if M1 pushes γ1 and M2 pushes γ2, then M pushes (γ1, γ2). The set of initial (final)
states is the product of the initial (final) states of M1 and M2. Note that we crucially use the fact
that M1 and M2, being Vpas, synchronize on the push and pop operations on the stack.

Given L accepted by Vpa M and a renaming f , f(L) can be accepted by simply transforming
each transition of M on a to a transition on f(a).

Given L1 and L2, we can design a Vpa that accepts L1 · L2 by nondeterministically guessing a
split of the input word w into w1 and w2. The Vpa simulates w1 onM1 and w2 onM2 using different
stack-alphabets; when simulating M2, the stack-alphabet for M1 is treated as bottom-of-stack.

A slightly more involved construction can be done to accept L∗. Let M = (Q,Qin,Γ, QF ) be
a Vpa that accepts L. We build the automaton M∗ as follows. M∗ simulates M step by step,
but when M changes its state to a final state, M∗ can nondeterministically update its state to an
initial state, and thus, restart M . Upon this switch, M∗ must treat the stack as if it is empty, and
this requires tagging its state so that in a tagged state the top can be assumed to be ⊥ ignoring
the actual content of the stack. More precisely, the state-space of M∗ is Q]Q′, its stack alphabet
is Γ ] Γ′, and its initial states are Qin. Its transitions are as follows

(Local) For each local transition (q, a, p) ∈ δ, M∗ contains the transitions (q, a, p) and (q′, a, p′),
and if p ∈ QF , then the transitions (q, a, r′) and (q′, a, r′) for each r ∈ Qin.

(Push) For each push transition (q, a, p, γ) ∈ δ,M∗ contains the transitions (q, a, p, γ) and (q′, a, p, γ′),
and if p ∈ QF , then the transitions (q, a, r′, γ) and (q′, a, r′, γ), for each r ∈ Qin.

(Pop) For each pop transition (q, a, γ, p) ∈ δ,M∗ contains the transitions (q, a, γ, p) and (q, a, γ′, p′),
and if p ∈ QF , then the transitions (q, a, γ, r′) and (q, a, γ′, r′), for each r ∈ Qin. For each
pop transition (q, a,⊥, p) ∈ δ, M∗ contains the transitions (q′, a, γ, p′) for each γ ∈ Γ ∪ Γ′,
and if p ∈ QF , also the transitions (q′, a, γ, r′) for each γ ∈ Γ ∪ Γ′ and r ∈ Qin.

Note that from a tagged state, upon a push, M∗ pushes a tagged symbol on the stack so that at
any point, the relevant portion of the stack is from the top down to the first tagged symbol. This
allows restoring the tagging of the state while popping a tagged symbol. The set of final states for
M∗ is QF ]Q′

F . It is easy to check that L(M∗) = L∗.
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Note that the restriction that f maps calls to calls, returns to returns, and local actions to local
actions, is important for closure of Vpls under renaming. Vpls are not closed under unrestricted
renaming functions since such renaming allows embedding arbitrary context-free languages (see
Proposition 1).

Vpas can also be determinized. A Vpa (Q,Qin,Γ, δ, QF ) is said to be deterministic if |Qin| = 1
and for every q ∈ Q:

• for every a ∈ Σ`, there is at most one transition of the kind (q, a, q′) ∈ δ,

• for every a ∈ Σc, there is at most one transition of the form (q, a, q′, γ) ∈ δ, and

• for every a ∈ Σr, γ ∈ Γ, there is at most one transition of the form (q, a, γ, q′) ∈ δ.

Theorem 2 (Determinization) For any Vpa M over Σ̃, there is a deterministic Vpa M ′ over
Σ̃ such that L(M ′) = L(M). Moreover, if M has n states, we can construct M ′ with O(2n2

) states
and with stack alphabet of size O(2n2 · |Σc|).

Proof: Let L be accepted by a Vpa M = (Q,Qin,Γ, δ, QF ). We construct an equivalent deter-
ministic Vpa as follows.

The main idea behind the proof is to do a subset construction but postpone handling the
push-transitions that M does; instead, we store the call actions and simulate the push-transitions
corresponding to them later, namely at the time of the corresponding pop-transition. The con-
struction will have a component S that is a set of “summary” edges that keeps track of what
state transitions are possible from a push-transition to the corresponding pop-transition. Using the
summary information, the set of reachable states is updated.

Let w = w1a1w2a2w3, where in w1 every call is matched by a return, but there may be un-
matched returns; w2 and w3 are words in which all calls and returns are matched; and a1 and a2

are calls (that don’t have matching returns in w). Then after reading w, the Vpa we construct
will have as its stack (S2, R2, a2)(S1, R1, a1)⊥ and its control state will be (S,R). Here S2 contains
all the pairs (q, q′) such that the Vpa M can get on w2 from q with stack ⊥ to q′ with stack ⊥.
Similarly S1 is the summary for w1 and S is the summary for w3. The set R1 is the set of states
reachable by M from any initial state on w1, R2 is the set of states reachable from any initial state
on w1a1w2 and R is the set of states reached by the M after w. We maintain such a property of
the stack and control-state as an invariant.

If now a call a3 occurs, we push (S,R, a3), update R using all possible transitions on a3 to get
R′, and go to state (S′, R′) where S′ = {(q, q) | q ∈ Q} is the initialization of the summary. On
local actions we update the R-component. If a return a′2 occurs, we pop (S2, R2, a2), and update
S2 and R2 using the current summary S along with a push-transition on a2 and a corresponding
pop-transition on a′2.

Let L be accepted by a Vpa M = (Q,Qin,Γ, δ, QF ). We construct an equivalent deterministic
Vpa M ′ = (Q′, Q′

in,Γ
′, δ′, Q′

F ) as follows.
Let Q′ = 2Q×Q × 2Q. If IdQ denotes the set {(q, q) | q ∈ Q}, then Q′

in = {(IdQ, Qin)}. The
stack alphabet Γ′ is the set of elements (S,R, a), where (S,R) ∈ Q′ and a ∈ Σc. The transition
relation δ′ is given by:

(Local) For every a ∈ Σ`, ((S,R), a, (S′, R′)) ∈ δ′ where S′ = {(q, q′) | ∃q′′ : (q, q′′) ∈ S, (q′′, a, q′) ∈
δ}, R′ = {q′ | ∃q ∈ R : (q, a, q′) ∈ δ}.

(Call) For every a ∈ Σc, ((S,R), a, (IdQ, R
′), (S,R, a)) ∈ δ′ where R′ = {q′ | ∃q ∈ R, γ ∈ Γ :

(q, a, q′, γ) ∈ δ}.
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(Return)

• For every a ∈ Σr, ((S,R), a, (S′, R′, a′), (S′′, R′′)) ∈ δ′ if (S′′, R′′) satisfies the following:
Let Update = {(q, q′) | ∃q1, q2 ∈ Q, γ ∈ Γ : (q, a′, q1, γ) ∈ δ, (q1, q2) ∈ S, (q2, a, γ, q′) ∈ δ}.
Then, S′′ = {(q, q′) | ∃q3 : (q, q3) ∈ S′, (q3, q′) ∈ Update} and
R′′ = {q′ | ∃q ∈ R′, (q, q′) ∈ Update}.

• For every a ∈ Σr, ((S,R), a,⊥, (S′, R′)) ∈ δ′ if S′ = {(q, q′) | ∃q′′ : (q, q′′) ∈
S, (q′′, a,⊥, q′) ∈ δ}, R′ = {q′ | ∃q ∈ R : (q, a, ,⊥, q′) ∈ δ}.

The set of final states is Q′
F = {(S,R) | R ∩QF 6= ∅}.

Intuitively, the R-component keeps track of the current set of reachable states. When a call-
action occurs, R is propagated on all push-transitions and will be used to determine acceptance
provided there is no matching return. If there is a matching return, then the summary of this
call-return segment will be computed in the S-component and the R-component in the state before
the call occurred will be updated with this summary.

Since deterministic Vpas can be complemented by complementing the set of final states, we have:

Corollary 1 The class of visibly pushdown languages is closed under complementation. That is,
if L is a Σ̃-Vpl, then L̄ is also a Σ̃-Vpl.

2.3 Decision problems

Turning now to decidability of decision problems for Vpas, observe that since a Vpa is a PDA,
emptiness is decidable in time O(n3) where n is the number of states in the Vpa. The universality
problem for Vpas is to check whether a given Vpa M accepts all strings in Σ∗. The inclusion
problem is to find whether, given two Vpas M1 and M2, L(M1) ⊆ L(M2). Though both are
undecidable for PDAs, they are decidable for Vpas:

Theorem 3 The universality problem and the inclusion problem are Exptime-complete.

Proof: Decidability and membership in Exptime for inclusion hold because, given Vpas M1 and
M2, we can take the complement of M2, take its intersection with M1 and check for emptiness.
Universality reduces to checking inclusion of the language of the fixed 1-state Vpa M1 accepting
Σ∗ with the given Vpa M . We now show that universality is Exptime-hard (hardness of inclusion
follows by the above reduction).

The reduction is from the membership problem for alternating linear-space Turing machines
(TM) and is similar to the proof in [BEM97] where it is shown that checking pushdown systems
against linear temporal logic specifications is Exptime-hard.

Given an input word for such a fixed TM, a run of the TM on the word can be seen as a
binary tree of configurations, where the branching is induced by the universal transitions. Each
configuration can be coded using O(n) bits, where n is the length of the input word. Consider an
infix traversal of this tree, where every configuration of the tree occurs twice: when it is reached
from above for the first time, we write out the configuration and when we reach it again from its
left child we write out the configuration in reverse. This encoding has the property that for any
parent-child pair, there is a place along the encoding where the configuration at the parent and
child appear consecutively. We then design, given an input word to the TM, a Vpa that accepts a
word w iff w is either a wrong encoding (i.e. does not correspond to a run of the TM on the input
word) or w encodes a run that is not accepting. The Vpa checks if the word satisfies the property
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Closure under
Union Intersection Complement Concat. Kleene-∗

Regular Yes Yes Yes Yes Yes
CFL Yes No No Yes Yes
DCFL No No Yes No No
Vpl Yes Yes Yes Yes Yes

Figure 1: Closure Properties

Decision problems for automata
Emptiness Universality/Equivalence Inclusion

NFA Nlogspace Pspace Pspace
PDA Ptime Undecidable Undecidable
DPDA Ptime Decidable Undecidable
VPA Ptime Exptime Exptime

Figure 2: Summary of decision problems

that a configuration at a node is reversed when it is visited again using the stack. The Vpa can
also guess nondeterministically a parent-child pair and check whether they correspond to a wrong
evolution of the TM, using the finite-state control. Thus the Vpa accepts Σ∗ iff the Turing machine
does not accept the input.

The following table summarizes and compares closure properties and decision problems for
CFLs, deterministic CFLs (DCFLs), Vpls and regular languages. In the context of reducing
program analysis questions to inclusion problems for Vpl, note that the complexity is polynomial
in the model and exponential only in the specification.

3 A logical characterization

Given a word w over a pushdown alphabet, recall that there is a natural notion of associating each
call in w with its matching return, if it exists. We can now define a logic over words over Σ̃ that
has in its signature this matching relation µ.

Fix Σ̃. A word w over Σ can be treated as a structure over the universe U = {1, . . . , |w|} that
denotes the set of positions and a set of unary predicates Qa, for each a ∈ Σ, where Qa(i) is true iff
w[i] = a. Also, we have a binary relation µ over U that corresponds to the matching relation of calls
and returns: µ(i, j) is true iff w[i] is a call and w[j] is its matching return. Let us fix a countable
infinite set of first-order variables x, y, . . . and a countable infinite set of monadic second-order (set)
variables X,Y, . . ..

Definition 3 (Monadic second order logic with matching relation) The monadic second-
order logic (MSOµ) over Σ̃ is defined as:

ϕ := Qa(x) | x ∈ X | x ≤ y | µ(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x is a first-order variable and X is a set variable.
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The models are words over Σ. The semantics is the natural semantics on the structure for
words defined above. The first-order variables are interpreted over the positions of w, and the
second-order variables range over subsets of positions. A sentence is a formula which has no free
variables.

For example, if Σ̃ = 〈{a}, {b}, {d}〉, then the formula

∀x. (Qa(x) ⇒ ∃y. ∃z. (Qb(y) ∧ Qd(z) ∧ x ≤ z ∧ z ≤ y ∧ µ(x, y)))

says “every call must have a corresponding return with an intervening d action”.
The set of all words that satisfy a sentence ϕ is denoted L(ϕ) and we say ϕ defines this language.

Theorem 4 A language L over Σ̃ is a Vpl iff there is an MSOµ sentence ϕ over Σ̃ that defines
L.

Proof: The proof follows a similar style as in proving that MSO (without µ) over words defines
the same class as that of regular words (see [Tho90]).

First we show that for any sentence ϕ, L(ϕ) is a Vpl. Let us assume that in all formulas, each
variable is quantified at most once. Consider any formula ψ(x1, . . . , xm, X1, . . . , Xn) (i.e. with free
variables Z = {x1, . . . , xm, X1, . . . , Xn}). Then consider the alphabet Σ̃Z where ΣZ

s = {(a, V ) | a ∈
Σs, V : Z → {0, 1} is a valuation function}, where s ∈ {c, r, `}. Then a word w′ over ΣZ encodes
a word w along with a valuation for the variables (provided singleton variables get assigned to
exactly one position). Let L(ψ) denote the set of words w′ over ΣZ such that the underlying word
w satisfies ψ under the valuation defined by w′. Then we show, by structural induction, that L(ψ)
is a Vpl.

The property that first-order variables are assigned exactly once can be checked using the finite
control of a Vpa. The atomic formulas x ∈ X, Qa(x) and x ≤ y are easy to handle.

To handle the atomic formula µ(x, y), we build a Vpa that pushes the input calls onto the stack,
and pops the top of the stack whenever it sees a return. The Vpa accepts the string if it reads a
return (a, v) where v assigns y to 1 and the popped symbol is of the kind (a′, v′) where v′ assigns
x to 1.

Disjunction and negation can be dealt with using the fact that Vpls are closed under union
and complement. Also, existential quantification corresponds to restricting the valuation functions
to exclude a variable and can be done by renaming the alphabet. Thus we obtain a Vpa over Σ̃
that accepts precisely the language L(ϕ).

For the converse, consider a Vpa M = (Q, qin,Γ, δ, QF ) where Q = {q1, . . . qn} and Γ =
{γ1, . . . , γk}. The corresponding MSOµ formula will express that there is an accepting run of
M on the word and will be of the form:

∃Xq1 . . .∃Xqn ∃Cγ1 . . .∃Cγk
∃Rγ1 . . .∃Rγk

ϕ(Xq1 , . . . Xqn , Cγ1 , . . . Cγk
, Rγ1 , . . . , Rγk

)

where Xq stands for the positions where the run is in state q, and Cγ and Rγ stand for the positions
where γ is pushed and popped from the stack, respectively. We can write conditions in ϕ that ensure
that the variables Xq, Cγ and Rγ indeed define a run; the only interesting detail here is to ensure
that when a stack symbol γ is pushed (i.e. when Cγ holds), at the corresponding return Rγ must
hold. We can state this using the µ-relation by demanding that for every x and y, if µ(x, y) holds,
then there is a γ such that x ∈ Cγ and y ∈ Rγ . Also, ϕ demands that if y ∈ Rγ and there is no x
such that µ(x, y) holds, then γ = ⊥.
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4 Relation to regular tree languages

In this section we describe a mapping from words over Σ̃ to a particular class of trees, called stack-
trees such that visibly pushdown languages correspond to regular sets of stack-trees. For technical
convenience, we do not represent the empty-word ε as a tree.

It is well known that context-free grammars and regular tree languages are related: the deriva-
tion trees of a CFG form a regular tree language and for any regular tree language, the yield
language of the trees is a CFL [CDG+02]. However, the tree language for a CFL is determined by
the grammar and not the language itself; in this section we associate regular tree languages with
Vpls.

A Σ-labeled binary tree is a structure T = (V, λ), where V ⊆ {0, 1}∗ is a finite prefix-closed
language, and λ : V → Σ is a labeling function. The set V represents the nodes of the tree and the
edge-relation is implicit: the edges are the pairs of the form (x, x.i), where x, x.i ∈ V , i ∈ {0, 1}; ε
is the root of the tree. Let TΣ denote the set of all Σ-labeled trees.

Fix Σ̃; we now define a map η : Σ∗ → TΣ. η(w) for any w ∈ Σ∗ is defined inductively as follows:

• If w = ε, η(ε) is the empty tree—i.e. with an empty set of vertices.

• If w = cw′, where c is a call, then there are two cases:
If the first position in w (labeled c) has a matching return, let w = cw1rw2, where the
matching return is the position after w1. Then η(w) has its root labeled c, the subtree rooted
at its 0-child is isomorphic to η(w1), and the subtree rooted at its 1-child is isomorphic to
η(rw2).

If the first letter in w does not have a matching return, then η(w) has its root labeled c, has
no right-child, and the subtree rooted at its 0-child is isomorphic to η(w′).

• If w = aw′, where a is a local action or a return, η(w) has its root labeled a, has no 0-child,
and the subtree rooted at its 1-child is isomorphic to η(w′).

The trees that correspond to non-empty words in Σ+ are called stack-trees and the set of stack-
trees is denoted by STree = η(Σ+). If T = η(w), then the labels on an infix traversal of T recovers
w. Hence η is a 1-1 correspondence between words in Σ+ and STree . In a stack tree, however,
a call and its matching return are encoded next to each other (if w[i] is a call and w[j] is the
corresponding return, then the node encoding w[j] is the 1-child of the node encoding w[i]).

The tree encoding can be easily understood from the exmaple of Figure 3 which shows the tree
corresponding to the word a1a2a3a4a5a6a7a8, where a1, a3, a5 ∈ Σ`, a2, a4 ∈ Σc, and a6, a7, a8 ∈ Σr.

Let us now define regular tree languages using automata over trees. A tree-automaton on Σ-
labeled trees is a tuple A = (Q,Qin,∆) where Q is a finite set of states, Qin ⊆ P is the set of initial
states and ∆ = 〈∆01,∆0,∆1,∆∅〉 is a set of four transition relations—∆D encodes transitions for
nodes u where D is the set of children that u has:

• ∆01 ⊆ P × Σ× P × P

• For i = 0, 1, ∆i ⊆ P × Σ× P

• ∆∅ ⊆ P × Σ

Let T = (V, λ) be a Σ-labeled tree. A run of A over T is a Q-labeled tree Tρ = (V, λρ) where
λρ(ε) ∈ Qin and for every node v ∈ V :

• If v has both children, then (λρ(v), λ(v), λρ(v.0), λρ(v.1)) ∈ ∆01
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Figure 3: From words over pushdown alphabet to stack-trees

• If v has one child, say the i-child, then (λρ(v), λ(v), λρ(v.i)) ∈ ∆i

• If v is a leaf, then (λρ(v), λ(v)) ∈ ∆∅

Tree automata are usually defined using a set of final states; this has been absorbed into the
∆∅ component of the transition relation. A tree T is accepted by a tree automaton A iff there is
a run of A over T ; the set of trees accepted by A is the language of A, denoted L(A). A set of
Σ-labeled trees L is regular if there is some tree automaton such that L = L(A). The set of trees
STree can be shown to be regular. We can show the following:

Theorem 5 Let L be a set of stack trees. Then η−1(L) is a Vpl iff L is regular.

Proof: Let L = η−1(L) be accepted by a Vpa M = (Q,Qin,Γ, δ, QF ). Then we build a tree
automaton A = (P, Pin,∆) of size polynomial in |M | accepting L, where P = (Q×Q) ∪ (Q×Q×
(Γ \ {⊥})) and Pin = {(qin, qf ) | qin ∈ Qin, qf ∈ QF }. The tree automaton simulates the Vpa on
the word corresponding to the tree. A state of the form (q, q′) means that the current state of the
Vpa that is being simulated is q and q′ is the (guessed) state where the run of the Vpa will be when
it meets the next unmatched return or when the word ends (i.e. q′ is the guessed state of the Vpa
when it has finished reading the leaf on the 1-branch from the current node). The state (q, q′, γ)
stands for the current state of Vpa being q and the commitment to end in q′ but additionally that
the next node to be read must be a return and the top of the stack is γ.

We start with any state (qin, qf ), where qin ∈ Qin, qf ∈ QF , which means that we want to end in
a final state when we finish the word. The main idea of the construction is in the call—when reading
a call in a state (q, q′) that is going to return (i.e. the node has both children), if (q, a, q1, γ) is a
transition in the Vpa, the tree automaton can split into two copies (q1, q2) and (q2, q′, γ) to the 0-
child and 1-child respectively, for any q2 ∈ Q. Here the tree automaton is guessing that the portion
of the word within the call will start at q1 and end at q2 and that at the corresponding return, the
Vpa will take the state from q2 to q′. The state (q2, q′, γ) will see the return, simulate a transition
from q2 that pops γ and continue. Note that the tree automaton is in general nondeterministic,
even if the Vpa is deterministic.

The transition relation ∆ is defined as follows:
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Calls: For each push-transition (q, a, q1, γ) ∈ δ, where a is a call, we have, for every q′ ∈ Q, the
transitions:

Calls that immediately return: ((q, q′), a, (q1, q′, γ)) ∈ ∆1

Calls that return: For every q2 ∈ Q, ((q, q′), a, (q1, q2), (q2, q′, γ)) ∈ ∆01

Calls that do not return: ((q, q′), a, (q1, q′)) ∈ ∆0

Returns that have matching calls: For each pop-transition (q, a, γ, q1) ∈ δ, where a is a return
and γ 6= ⊥, we have, for every q′ ∈ Q, the transitions ((q, q′, γ), a, (q1, q′)) ∈ ∆1

Local actions or returns without matching calls: If a ∈ Σ` and (q, a, q1) ∈ δ, or, a ∈ Σr and
(q, a,⊥, q1) ∈ δ, then we have, for every q′ ∈ Q, the transitions ((q, q′), a, (q1, q′)) ∈ ∆1.

∆∅ contains the pairs ((q, q′), a) where a ∈ Σ and, either (q, a, q′) ∈ δ or (q, a, q′, γ) ∈ δ or
(q, a,⊥, q′) ∈ δ. Also, ∆∅ contains the pairs ((q, q′, γ), a) where a is a return and (q, a, γ, q′) ∈ δ.

Intuitively the set of final states (i.e. ∆∅) checks whether the commitment to end in the state
q′ is indeed met. Since the initial state is of the form (qin, qf ) and the component qf stays in the
second-component along the right-most path of the tree, we ensure that the entire run ends in qf ,
i.e. in a final state. It is easy to show that A accepts exactly L.

For the converse, let A = (P, Pin,∆) accept L. Intuitively, we construct a Vpa M accepting
η−1(L) of size polynomial in |A| as follows. The Vpa on a word w, simulates a run of A on η(w).
At every call a ∈ Σc, M guesses whether the call will have a matching return or not. If it will, then
the Vpa picks a transition (q, a, q0, q1) ∈ ∆01 and pushes q1 onto the stack and continues simulating
q0. Just before the matching return is seen, we are at a leaf and M will check if the current state
and the label of the leaf is in ∆∅. When the matching return is seen, the current state is reset to
the popped state q1 and M continues to simulate A on the right-branch from the call. The other
cases are analogous. To make sure the guesses made on the structure of the tree is indeed correct
is a bit more involved.

Formally, M = (Q,Qin,Γ, δ, QF ), where Q = ((P ∪{acc})×(P ∪{∗,⊥}))∪{fin}, Qin = {(p,⊥) |
p ∈ Pin} and Γ = ((P ∪ {∗})× (P ∪ {∗,⊥})) ∪ {⊥}.

A state (p, p′) stands for the fact that the current state of the tree automaton being simulated
is p and p′ is the top of the stack. If p = acc, then this means that a leaf of the tree has just
been read and that we expect to see a return. At the right-most leaf where the word ends, the
Vpa will be in the state fin if it has successfully checked that there is an accepting run of the tree
automaton.

The stack at any point is of the form (pn, p
′
n)(pn−1, p

′
n−1) . . . (p1, p

′
1)⊥ where p′1 = ⊥ and every

p′i+1 = pi, i.e. we keep track of the stack content as a chain where each element of the stack also
records what symbol is below it. Using this structure, the Vpa can keep track of the top-most
symbol of the stack in its finite control. The ∗ symbol is a special symbol pushed when the Vpa
reads a call and guesses that it is not going to have a matching return.

The transition relation is defined as follows:

Local actions: For every a ∈ Σ`, (p, a, p1) ∈ ∆1, p′ ∈ P ∪ {∗,⊥}, we have ((p, p′), a, (p1, p
′)) ∈ δ.

For every a ∈ Σ`, (p, a) ∈ ∆∅, we have ((p, ∗), a,fin) ∈ δ, ((p,⊥), a,fin) ∈ δ and for every
p′ ∈ P , ((p, p′), a, (acc, p′)) ∈ δ.

Calls: For every a ∈ Σc,

• For every (p, a, p0, p1) ∈ ∆01 and p′ ∈ P ∪{∗,⊥}, we have ((p, p′), a, (p0, p1), (p1, p
′)) ∈ δ.
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• For every (p, a, p0) ∈ ∆0, b ∈ {∗,⊥}, we have ((p, b), a, (p0, ∗), (∗, b)) ∈ δ.
• For every (p, a, p1) ∈ ∆1 and p′ ∈ P ∪ {∗,⊥}, we have ((p, p′), a, (acc, p1), (p1, p

′)) ∈ δ.
• For every (p, a) ∈ ∆∅ and b ∈ {∗,⊥}, we have ((p, b), a,fin, (∗, b)) ∈ δ.

Returns: For every a ∈ Σr,

• For (p, a, p1) ∈ ∆1, we have ((acc, p), a, (p, p′), (p1, p
′)) ∈ δ and ((p,⊥), a,⊥, (p1,⊥)) ∈ δ.

• For (p, a) ∈ ∆∅, we have ((acc, p), a, (p, p′), (acc, p′)) ∈ δ and ((p,⊥), a,⊥,fin) ∈ δ.

The set QF = {fin}.

Summary Automata

It is worth noting that we can get an equivalent characterization of visibly pushdown automata
using finite-state word automata that can jump. Let us call such automata summary automata.
A (nondeterministic) summary automaton has finitely many control states, no stack, and reads a
word over a pushdown alphabet. While reading a local or a return symbol, a summary automaton
works just like a standard automaton, but while reading a call, it can send a copy to the next
symbol as well as to the matching return (if such a return exists). For example, consider the word
a1a2 . . . a8 (see Figure 3 for the types of symbols). While reading a1, the automaton updates its
state and moves to a2. At this point, it sends a copy to symbol a3 as well as a copy to symbol a7

(the states in these two copies are chosen according to the transition relation, that is, for a state q
and a call a, the transition relation contains pairs of states). This is similar to a tree automaton
processing the stack-tree corresponding to the word as it also sends a copy to the left child (the next
symbol) and the right child (the matching return) at a call symbol. The difference is that at a leaf
such as a6 the control of a summary automaton will simply move to the next symbol a7, and this
allows propagation of state across subtrees. The summary automaton needs to be nondeterministic
when it jumps in order to relate what happens before the matching return to what happens after
the matching return. This is analogous to the fact that deterministic tree automata do not capture
all regular tree languages. However, note that if the property as a word language is regular, then a
summary automaton does not need to jump, and can be deterministic, a tree automaton operating
on the tree view still may need to be nondeterministic. We leave it as an exercise to define these
automata formally and prove that they capture precisely the class Vpl.

5 Grammar-based characterization

It is well known that context-free languages can be described either by pushdown automata or by
context-free grammars. In this section, we identify a class of context-free grammars that corre-
sponds to visibly pushdown languages.

A context-free grammar over an alphabet Σ is a tuple G = (V, S, P ), where V is a finite set
of variables, S ∈ V is a start variable, and P is a finite set of productions of the form X → α
such that X ∈ V and α ∈ (V ∪ Σ)∗. The semantics of the grammar G is defined by the derivation
relation ⇒ over (V ∪ Σ)∗: for every production X → α in P and for all words β, β′ ∈ (V ∪ Σ)∗,
βXβ′ ⇒ βαβ′ holds. The language L(G) of the grammar G consists of all words w ∈ Σ∗ such that
S ⇒∗ w, that is, a word w over Σ is in the language of the grammar G iff it can be derived from
the start variable S in one or more steps.
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Definition 4 (Visibly pushdown grammar) A context-free grammar G = (V, S, P ) over Σ is a
visibly pushdown grammar with respect to the partitioning Σ̃ = (Σc,Σr,Σ`) if the set V of variables
is partitioned into two disjoint sets V 0 and V 1, such that all the productions in P are of one the
following forms

• X → ε;

• X → aY such that if X ∈ V 0 then a ∈ Σ` and Y ∈ V 0;

• X → aY bZ such that a ∈ Σc and b ∈ Σr and Y ∈ V 0 and if X ∈ V 0 then Z ∈ V 0.

The variables in V 0 derive only well-matched words where there is a one-to-one correspondence
between calls and returns. The variables in V 1 derive words that can contain unmatched calls
as well as unmatched returns. In the rule X → aY , if a is a call or a return, then either it is
unmatched or its matching return or call is not remembered, and the variable X must be in V 1. In
the rule X → aY bZ, the symbols a and b are the matching calls and returns, with a well-matched
word, generated by Y ∈ V 0, sandwitched in between, and if X is required to be well-matched then
that requirement propagates to Z.

Recall that a Dyck language consists of well-paranthesized strings of k types of parantheses (c.f.
[HU79]). It is known that every context-free language is a homomorphism of the intersection of
a Dyck language with a regular language (in contrast, Proposition 1 asserts that every CFL is a
homomorphism of a Vpl). The Dyck language can be generated by a visibly pushdown grammar
as follows. The pushdown alphabet is given by: Σc = {[1, [2, . . . [k}, Σr = {]1, ]2, . . .]k}, Σ` is empty
set. There is a single (start) variable S, and the productions are

S → ε | [1 S ]1 S | [2 S ]2 S | · · · | [k S ]k S

Observe that the rule X → aY is right-linear, and is as in regular grammars. The rule X →
aY bZ requires a and b to be matching call and return symbols, and can be encoded by a visibly
pushdown automaton that, while reading a, pushes the obligation that the matching return should
be b, with Z to be subsequently expanded. This intuition can be made precise:

Theorem 6 (Visibly pushdown grammars) For a pushdown alphabet Σ̃, a language is a Vpl
iff it has a visibly pushdown grammar.

Proof: Fix a pushdown alphabet Σ̃. Let G = (V, S, P ) be a visibly pushdown grammar. We
build a Vpa MG that accepts L(G) as follows. The set of states of MG is V . The unique initial
state is S. The stack alphabet is V × Σr along with the bottom of stack ⊥ and a dummy symbol
$. The transitions of MG from a state X on a symbol a are as follows:

Local a ∈ Σ`: δ contains (X, a, Y ) for each variable Y such that X → aY is a production of G.

Push a ∈ Σc: δ contains (X, a, Y, $) for each variable Y such that X → aY is a production of G;
and (X, a, Y, (b, Z)) for each production X → aY bZ of G.

Pop a ∈ Σr: δ contains (X, a,⊥, Y ) and (X, a, $, Y ) for each variable Y such that X → aY is a
production of G; and if X is a nullable symbol (that is, X → ε is a production of G) and is
in V 0, then for each variable Y , δ contains (X, a, (a, Y ), Y ).
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The first clause says that the automaton can update state from X to Y while consuming a local
action a according to the ruleX → aY . The second clause says that while reading a call, to simulate
the rule X → aY (this can happen only when X ∈ V 1), the automaton pushes the dummy symbol
$, and updates the state to Y . To simulate the rule X → aY bZ, the automaton changes the state
to Y while remembering the continuation of the rule by pushing the pair (b, Z) onto the stack.
The third clause handles returns. The return can be consumed using a rule X → aY when X is
in V 1. If the current state is nullable and in V 0, then the top of the stack contains the required
continuation, and the symbol being read should be consistent with it. If neither of these conditions
hold, then no transition is enabled, and the automaton will reject. The accepting condition for MA

is that the state should be nullable, and the top of the stack should be either $ or ⊥ (which means
that there is no requirement concerning matching return). Since acceptance for visibly pushdown
automata is defined solely based upon final states, we need to modify the construction so that the
state of MA includes a bit that shows whether or not the current top of the stack equals $ or ⊥.

In the other direction, consider a Vpa M = (Q,Qin,Γ, δ, QF ). We will construct a visibly
pushdown grammar GM that generates L(M). For each state q ∈ Q, the set V 1 has two variables
Xq and Yq; and for every pair of states q, p and stack symbol γ, the set V 0 has a variable Zq,γ,p.
Intuitively, the variable Xq says that the state is q and the stack is empty; the variable Yq says
that the state is q and the stack is non-empty, but its contents are not relevant (this happens due
to unmatched calls); and the variable Zq,γ,p says that the current state is q, the top of the stack is
γ, and the state just before the next unmatched return (i.e., the state just before popping off the
current top) is required to be p. The start variables are Xq for each q ∈ Qin (to ensure that the
start variable is unique, we can add a new variable S and productions S → α for every production
X → α, for each such start variable X). The productions are as follows:

1. For each state q, if q ∈ QF , P contains Xq → ε and Yq → ε.

2. For each state q and each stack symbol γ, P contains Zq,γ,q → ε.

3. For each local action a and states q, p, if δ contains the transition (q, a, p), P contains Xq →
aXp and Yq → aYp.

4. For each local action a, states q, p, q′, and stack symbol γ, if δ contains the transition (q, a, p),
P contains Zq,γ,q′ → aZp,γ,q′ .

5. For each call a, return b, stack symbol γ, and states q, q′, p, p′, if δ contains the transitions
(q, a, γ, p) and (q′, b, γ, p′), P contains Xq → aZp,γ,q′bXp′ and Yq → aZp,γ,q′bYp′ .

6. For each call a, return b, stack symbols γ, γ′, and states q, q′, p, p′, r, if δ contains the transi-
tions (q, a, γ, p) and (q′, b, γ, p′), P contains Zq,γ′,r → aZp,γ,q′bZp′,γ′,r.

7. For each call a, states q, p, and stack symbol γ, if δ contains the transition (q, a, γ, p), P
contains Xq → aYp and Yq → aYp.

8. For each return a and states q, p, if δ contains the transition (q, a,⊥, p), P contains Xq → aXp.

In any derivation starting from a start variable, the string contains only one trailingX or Y variable,
which can be nullified by the first clause, provided the current state is accepting. The second clause
allows nullifying a variable Zq,γ,q′ when the current state q is same as the target state q′, forcing
the next symbol to be a return. Clauses 3 and 4 correspond to consuming local symbols consistent
with the intended interpretation of the variables. Clauses 5 and 6 capture summarization. In state
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q, while reading a call a, if the automaton can push γ while updating its state to p, then we guess
the matching return b and the state q′ just before reading this matching return. The well-matched
word sandwitched between is generated by the variable Zp,γ,q′ , and takes the automaton from p to
q′ with γ on top. The variable following the matching return b is consistent with some transition
that updates state from q′ to p′ while reading b and popping off γ. The clause 7 corresponds to the
guess that the call being read has no matching return, and hence, it suffices to remember the state
along with the fact that the stack is nonempty. The final clause allows processing of unmatched
returns when the stack is empty.

6 Visibly pushdown ω-languages

We now consider extensions of the results in the previous sections to infinite words over Σ̃. An
ω-Vpa is a tuple M = (Q,Qin,Γ, δ,F) where Q, Qin, Γ and δ are as in a Vpa. For any infinite word
α ∈ Σω, a run is an ω-sequence ρ = (q0, σ0)(q1, σ1) . . . that is defined using the natural extension
of the definition of runs on finite words. To determine whether a run ρ is accepting, we consider
the set inf (ρ) ⊆ Q which is the set of all states that occur in ρ infinitely often.

The acceptance condition F is an infinitary winning condition that can be of two kinds:

• Büchi acceptance condition: F = F ⊆ Q is a set of states; a run ρ is accepting if F is met
infinitely often along the run, i.e. inf (ρ) ∩ F 6= ∅.

• Muller acceptance condition: F = {F1, . . . , Fk}, where each Fi ⊆ Q; a run ρ is accepting if
the set of states it meets infinitely often is an element of F , i.e. inf (ρ) ∈ F

An infinite word α is accepted by M if there is some accepting run of M on α. The language
of M , Lω(M), is the set of all ω-words that it accepts. A language of infinite words L ⊆ Σω is said
to be an ω-Vpl if there is some ω-Vpa M such that L = Lω(M).

The class of ω-regular languages is well studied and is defined using automata (without stack) on
infinite words; the definition of ω-Vpa extends this definition to visibly pushdown automata and the
languages accepted by ω-Vpas is a subclass of ω-CFLs [CG77]. It is known that nondeterministic
Büchi automata and Muller automata (without stack) can simulate each other—these constructions
can be easily extended to show that nondeterministic Büchi and Muller ω-Vpas are equivalent.
Hence we take the definition of an ω-Vpl as that of being accepted by a nondeterministic Büchi
ω-Vpa. The notion of renaming can be extended to infinite words and we can show:

Theorem 7 (Closure) Let L1 and L2 be ω-Vpls with respect to Σ̃. Then, L1 ∪ L2 and L1 ∩ L2

are also ω-Vpls with respect to Σ̃. If f is a renaming of Σ̃ to Σ̃′, then f(L1) is a visibly pushdown
language with respect to Σ̃′. Further, if L3 is a Vpl over Σ̃, then L3.L1 and (L3)ω are ω-Vpls over
Σ̃.

Proof: The closure constructions for nondeterministic Büchi ω-Vpa are similar to the ones
in Theorem 1. For the case of intersection, we need to make sure that the final states of both
automata are visited infinitely often, and this can be done by adding a bit to the state as is done
for intersection of Büchi automata. The construction for Lω is similar to the construction for L∗

in Theorem 1. In this construction, for every transition leading to a state p ∈ QF , the state is
nondeterministically reset to some initial state. To ensure membership in Lω, we need to require
that this reset happens infinitely often, and this can be captured by a Büchi condition after adding
a bit to the state.
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However, ω-Vpas cannot be determinized. For automata (without stack) on ω-words it is well
known that for any nondeterministic Büchi automaton, there is a deterministic Muller automaton
that accepts the same language [Saf88, Tho90]. However, this is not true for visibly pushdown
automata over infinite words. In fact, consider the language Lrepbdd consisting of all words α in
{c, r}ω, (where c is a call and r is a return), that is repeatedly bounded—i.e. α ∈ Lrepbdd if there
is some n ∈ N such that the stack-depth on reading α infinitely often is less than or equal to n
[CDT02]. We can then show that this language is not determinizable.

Theorem 8 (Deterministic vs. Nondet. ω-Vpas) ω-Vpas are not determinizable. In partic-
ular, the language Lrepbdd is an ω-Vpl but cannot be accepted by any deterministic Muller ω-Vpa.

Proof: We can easily design a nondeterministic Büchi ω-Vpa that accepts Lrepbdd. The ω-Vpa
nondeterministically chooses a position in the word and checks whether the stack-depth at that
position is the least stack-depth that occurs infinitely often. The ω-Vpa guesses this point by
pushing a special symbol onto the stack and signals a Büchi acceptance state whenever the stack
reaches that depth.

Now to show that no deterministic ω-Vpa can accept Lrepbdd, assume the contrary and let
M = (Q, {qin},Γ, δ,F) be a deterministic Muller automaton that accepts Lrepbdd. Let G1 = (Q,→)
be the summary-graph of M where q → q′ iff there exists a word w that is well-matched (every call
has a matching return and vice versa) such that from q and the empty stack, M reaches q′ (and
empty stack) on w (note that M hence also goes on w from (q, σ) to (q′, σ) for any stack σ). Note
that if q is a state reachable by M on any arbitrary word, then there must be an edge from q in G1

(we can append an infinite word wω where w is a well-matched word; then M must have a run on
it as it is repeatedly bounded and hence there will be a summary edge from q on w). Also, since
concatenation of well-matched words is well-matched, G1 is transitive-closed.

Consider the strongly connected components (SCC) of G1. A sink SCC of G1 is a strongly
connected component S′ such that every edge (q, q′) ∈ G1, if q ∈ S′ then q′ is also in S′.

Now let G2 = (Q,⇒) which is a super-graph of G1 with additional call-edges : (q, q′) is a
call-edge if there is a transition from q to q′ in M on a call c ∈ Σc. We now want to show:

(*) there is a sink SCC S of G1 and a state q ∈ S reachable from qin in G2 such that there is a
cycle involving q in G2 that includes a call-edge.

If (*) is true, then we can show a contradiction. Consider a word that from qin reaches q using the
summary edges and call-edges in G2 and then loops forever in S. This word is repeatedly bounded
and hence must be accepting and hence QS , the union of all states reachable using summary edges
in S must be in the Muller set F . Now consider another word that takes M from qin to q but
now follows the cycle that involves q. Along the cycle, some are words corresponding to summary
edges and some are calls; note that there will be no returns that match these calls. If Q′ is the set
of states visited from going to q to q along the cycle, then we can show that Q′ ⊆ QS (after the
cycle, if we feed enough returns to match the calls then we get a summary edge from q; however
summary edges from q go only to S and hence the states seen must be a subset of QS). Now,
consider the infinite word that first goes from qin to q, and then alternately takes the cycle in G2

to reach q and takes the set of all possible summary edges in S to reach q again. This word is not
repeatedly bounded (as it has unmatched calls during the cycle in G2) but the set of states seen
infinitely often is QS and is hence accepted, a contradiction.

Now let us show (*). Note that from any state, one can take summary edges in G1 to reach a
sink SCC of G1. Let us take summary edges from qin to reach a state q1 in a sink SCC S1 of G1
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and take the call edge from q1 to reach q′1. If q′1 ∈ S1, we are done as we have a cycle from q1 to
q1 using a call-edge. Otherwise take summary edges in G1 from q′1 to reach a state q2 in a sink
SCC S2. If S2 = S1, we are again done, else take a call-edge from q2 and repeat till some sink SCC
repeats.

Though ω-Vpas cannot be determinized, they can be complemented.

Theorem 9 (Complementability) The class of ω-Vpls over Σ̃ is closed under complement.

Proof: Let M = (Q,Qin,Γ, δ, F ) be a ω-Vpa over Σ̃. We can assume that there are transitions
from every state on every letter, and that there is a run of M on every word. Consider a word
α ∈ Σω. Then α can be factored into words where we treat a segment of letters starting at a
call and ending at the matching return as a block. This factorization can be, say, of the form
α = a0a1w0a2w1w2a3 . . . where each wi is a finite word that is a properly matched word (wi starts
with a call, ends with the matching return). The letters ai can be calls, returns or local actions
but if some ai is a call, then aj (j > i) cannot be a return. Consider the following word which can
be seen as a pseudo-run of M on α: α′ = a0a1S0a2S1S2a3 . . . where each Si is the set of all triples
(q, q′, f) where q, q′ ∈ Q, f ∈ {0, 1} such that there is some run ρ of M on wi starting at the state
q and ending at the state q′ and ρ meets a state in F iff f = 1.

Let S denote the set of all sets S where S contains triples of the form (q, q′, f) where q, q′ ∈ Q
and f ∈ {0, 1}; the summary edges used above hence are in S. Then PR = (Σr ∪ Σ` ∪ S)ω ∪
(Σr ∪ Σ` ∪ S)∗.(Σc ∪ Σ` ∪ S)ω denotes the set of all possible pseudo-runs. We can now construct
a nondeterministic Büchi automaton (with no stack) that accepts all accepting pseudo-runs ; a
pseudo-run is accepting if there is a run of M that runs over the Σ-segments of the word in the
usual way, and on letters S ∈ S, updates the state using a summary edge in S and either meets F
infinitely often or uses summary edges of the form (q, q′, 1) infinitely often. Note that a word α is
accepted by M iff the pseudo-run corresponding to α is accepting. Let the language of accepting
pseudo runs be LR. Now we construct a deterministic Muller automaton AR that accepts the
complement of LR ([Tho90]).

We now construct a nondeterministic Muller ω-Vpa that, on reading α, generates the pseudo-
run of α online and checks whether it is in LR. The factorization of α into segments is done
nondeterministically and the summary edges are computed online using the stack (as in the proof
of determinization of Vpas on finite words). The resulting automaton can be converted to a Büchi
automaton and accepts the complement of Lω(M).

We can also characterize the class ω-Vpl using MSOµ which is now interpreted over infinite
words, using the fact that ω-Vpls are closed under union, complement and renaming:

Theorem 10 (MSOµ-characterization) A language L of infinite strings over Σ̃ is an ω-Vpl

iff there is an MSOµ sentence ϕ over Σ̃ that defines L.

Proof: The proof of Theorem 4 can be easily adopted to the infinite case. For translation from
MSOµ formulas to ω-Vpa we use the same encoding; the requirement that the first-order variables
are assigned exactly once can be enforced using a Büchi acceptance condition, and disjunction,
negation, and existential quantification are handled using corresponding constructions for ω-Vpas.
The translation from ω-Vpa to MSOµ uses the same encoding for capturing the runs of the au-
tomaton by a formula, only the conjunct corresponding to the acceptance requirement for the run
needs to be modified.
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The emptiness problem is decidable in polynomial time [BS92] and we can show that the
universality and inclusion problems are Exptime-complete.

The connection to regular tree languages also extends to the infinite-word setting. Given a
word α ∈ Σω, we can associate with it a unique tree, η(α), where matching calls and returns occur
together with the segment in between them encoded as a finite tree on the 0-child of the call. This
class of infinite trees has the property that the right-most path (the path going down from the
root obtained by taking the 1-child whenever it exists and taking the 0-child otherwise) is the only
infinite path in the tree. We can define the class of regular stack-trees using Büchi tree automata
on trees[Tho90].1 We can then show:

Theorem 11 (Relation to regular stack-trees) Let L be a set of infinite stack trees over Σ̃.
Then η−1(L) is an ω-Vpl over Σ̃ iff L is regular.

Proof: Let us consider translation from a Büchi Vpa M = (Q,Qin,Γ, δ, QF ) to a Büchi tree
automaton A. The construction of Theorem 5 requires some modifications: we need to account for
the fact one path is infinite, and thus, has no “end” state; and we need to keep track of whether or
not the runs corresponding to call subtrees encounter a Büchi state. More precisely, the set of states
for the tree automaton is P = Q∪ (Q× (Γ \ {⊥})×{0, 1})∪ (Q×Q×{0, 1})∪ (Q×Q× (Γ \ {⊥})).
A state q means that the current node is on the (unique) infinite path in the tree, and the Vpa
state is q. A state (q, q′, b) means that the current state of the Vpa is q, q′ is the guessed state
where the run of the Vpa will be when it meets the next unmatched return, and if the bit b is set
to 1, then this run is required to visit a Büchi state in QF . A state (q, q′, γ) records the current
state q, the top symbol γ, and expects the current node to be a return leaf that can lead to the
state q′. Finally, a state (q, γ, b) means that the current node is on the infinite path, it must be a
return, q is the current state of the Vpa, γ is the current top symbol, and b records whether the
corresponding left subtree was required to encounter a Büchi state. The initial states are Qin, and
the Büchi set for the infinite path in the tree is QF ∪ (Q× Γ× {1}).

In state q while reading a call symbol a, for each push-transition (q, a, q1, γ) of M , the ∆01

relation for the tree automaton (the case corresponding to “Calls that return”) contains, for every
q′ ∈ Q and b ∈ {0, 1}, (q, a, (q1, q′, b), (q′, γ, b)). Thus, the tree automaton guesses the state q′ at the
end of the run corresponding to the left subtree as well as whether this run visits a state in QF . If b
is set to 1, then in the left child, it is treated as an obligation to visit a Büchi state, and in the right
child it is treated as an accepting state for the accepting condition on the infinite path in the tree.
In a state (q, γ, b), while reading a, a must be a return, and the state is updated to q′ according
to some pop-transition (q, a, γ, q′) of M . In state (q, q′, b), while reading a call symbol a, for each
push-transition (q, a, q1, γ) of M , the ∆01 relation for the tree automaton (the case corresponding
to “Calls that return”) contains, for every q2 ∈ Q, ((q, q′, b), a, (q1, q2, b′), (q2, q′, γ)). If b = 0 then
b′ is 0, and if b = 1 then either b′ is 1 or q′ is in QF . The remaining details are analogous to the
finite case.

The construction from tree automata to Vpa does not require any noteworthy modifications.

1Usually regular classes of trees are defined using Muller conditions as they are more powerful than Büchi condi-
tions; however, since we deal with trees that have only one infinite path, the two definitions coincide.
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7 Conclusions

The class of visibly pushdown languages proposed in this paper explains, unifies, and extends
the known classes of properties that can be algorithmically checked against pushdown models of
recursive programs. While it requires the model to render its calls and returns visible, this seems
natural for formulating program analysis questions. We have shown the class to be robust with
many of the desirable properties as those of regular languages. Based on our results, we believe
that this is indeed a basic class that can be useful in contexts other than software verification. For
instance, an XML document can be viewed as a word over a pushdown alphabet where the opening
and closing tags are matching calls and returns, and attributes are local actions, and a Vpa can be
used to describe the set of XML documents satisfying a query.

There has already been some research that builds on this paper. Games on pushdown structures
where the winning condition is an ω-Vpl have been studied and shown to be decidable [LMS04]. A
characterization of Vpls using syntactic congruences on words has also been developed, and used
for minimizing Vpas [AKMV05]. The decidability result for contextual equivalence for third order
Idealized Algol also uses the results of this paper [MW05]. Finally, visibly pushdown versions of
branching-time logics and fixpoint calculi are also under investigation [ACM05].
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