For the purposes of this problem set, we restrict attention to monadic quantificational schemata (abbreviated MQ-schemata) all of whose predicate letters are among F and G, and to structures which interpret exactly these predicate letters. We employ the following terminology in the problems below.

- If S and T are MQ-schemata we say that a structure A is a counterexample to the claim that S implies T if and only if $A \models S$ and $A \not\models T$.

- If S and T are MQ-schemata we say that a structure A witnesses the inequivalence of S and T if and only if either A is a counterexample to the claim that S implies T or A is a counterexample to the claim that T implies S.

1. Let S be the schema
 \[(\exists x)(Fx \land Gx) \land (\exists x)(Fx \land \neg Gx) \land (\exists x)(\neg Fx \land Gx) \land (\exists x)(\neg Fx \land \neg Gx)\]
 and let T be the schema
 \[(\forall x)(Fx \equiv Gx).\]
 (a) (25 points) How many structures with universe of discourse $\{1, 2, 3\}$ are counterexamples to the claim that S implies T?
 (b) (25 points) How many structures with universe of discourse $\{1, 2, 3, 4, 5\}$ are counterexamples to the claim that S implies T?

2. (25 points) How many structures with universe of discourse $\{1, 2, 3, 4, 5\}$ witness the inequivalence of $(\forall x)(Fx \oplus Gx)$ and $(\forall x)(Fx \equiv Gx)$?

3. (25 points) How many structures with universe of discourse $\{1, 2, 3, 4, 5\}$ witness the inequivalence of $(\exists x)(Fx \land Gx)$ and $(\forall x)(Fx \lor Gx)$?