1. We call a set of numbers X good if and only if no member of X evenly divides another member of X, that is, X is good if and only if for all i and j, if $i, j \in X$ and $i \neq j$, then for every k, $i \cdot k \neq j$.

(a) (10 points) What is the maximum size of a good set X contained in $\{1, 2, \ldots, 100\}$?

(b) (15 points) Give an example of a maximum size good set $X \subseteq \{1, 2, \ldots, 100\}$ and explain why there is no larger such set.

2. (15 points) How many truth-assignments to the sentence letters p_1, \ldots, p_5 satisfy the following truth-functional schema?

$$(((p_1 \lor p_2) \lor p_3) \lor p_4) \lor p_5$$
3. For the purposes of this problem, we restrict attention to truth-functional schemata all of whose sentence letters are among \(p_1, p_2, p_3, \) and \(p_4 \). We employ the following terminology.

- A list of truth-functional schemata is *succinct* if and only if no two schemata on the list are equivalent.
- A truth-functional schema *implies a list of schemata* if and only if it implies every schema on the list.
- The *power* of a truth-functional schema is the length of a longest succinct list of schemata it implies.

(a) (15 points) What is the length of a longest succinct list of schemata, all of the same power, that all imply \(((p_1 \equiv p_2) \equiv p_3) \equiv p_4\)?

(b) (15 points) What is the largest number \(n \) such that there is a satisfiable schema of power \(n \) and every disjunction of two inequivalent schemata of power \(n \) has the same power?

(c) (15 points) What is the maximum power and what is the minimum power that can be achieved by a conjunction of two inequivalent schemata of power 64?

4. (15 points) For the purposes of this problem, we restrict attention to monadic quantification schemata (abbreviated MQ-schemata) all of whose predicate letters are among \(F \) and \(G \), and to structures which interpret exactly these predicate letters. We employ the following terminology.

- If \(S \) and \(T \) are MQ-schemata we say that a structure \(A \) is a *counterexample* to the claim that \(S \) implies \(T \) if and only if \(A \models S \) and \(A \not\models T \).

Let \(S \) be the schema

\[(\forall x)(Fx \oplus Gx) \]

and let \(T \) be the schema

\[(\forall x)Fx \oplus (\forall x)Gx. \]

How many structures with universe of discourse \(\{1,2,3,4,5\} \) are counterexamples to the claim that \(S \) implies \(T \)?