Contributions
> Protocol Derivation System:
 Systematizes the practice of building protocols from standard sub-protocols. Useful for:
 > protocol analysis and understanding.
 > organizing related protocols in taxonomies.
 > protocol synthesis.

> Protocol Logic:
 Correctness proofs follow derivation steps.
 Rigorous treatment of protocol composition.

Composition
> ISO 9798-3 protocol:
 A → B: g^A, A
 B → A: g^B, sig_B(g^A, g^B, A)
 A → B: sig_A(g^A, g^B, B)

 > Shared secret: g^AB
 > Authenticated

Diffie-Hellman: Property
> Formula
 \[\text{[new } a \text{] Fresh}(\cdot, g^A) \]

> Explanation
 > Modal form: \[\text{[actions]}_P \phi \]
 > Actions: \[\text{[new } a \text{] } \phi \]
 > Postcondition: Fresh(\cdot, g^A)

Component 1
> Diffie-Hellman
 A → B: g^A
 B → A: g^B

 > Shared secret (with someone)
 > A deduces:
 Knows(Y, g^AB) \implies (Y = A) \lor Knows(Y, b)
 > Authenticated

Derivation Framework
> Protocols are constructed from:
 > components
 by applying a series of:
 > composition, refinement and transformation operations.

> Properties accumulate as a derivation proceeds.
> Examples in paper [CSFW03; Invited submission JCS03]:
 > STS, ISO-9798-3, JFKi, JFKr, IKE

Challenge Response: Property
> Modal form: \[\phi[\text{ actions }]_P \psi \]
 > precondition: Fresh(\cdot, m)
 > actions: \[\text{[Initiator role actions] } \phi \]
 > postcondition:
 Honest(B) \implies ActionsInOrder(
 send(\cdot, (A,B,m)),
 receive(\cdot, (A,B,m)),
 send(\cdot, (B,A,(n, sig_B(m, n, A)))),
 receive(\cdot, (B,A,(n, sig_B(m, n, A))))
)

Component 2
> Challenge Response:
 A → B: m, A
 B → A: n, sig_B(m, n, A)
 A → B: sig_A(m, n, B)

 > Shared secret (with someone)
 > Authenticated

Protocol Logic: Formulas
> Action formulas
 a ::= Send(P, m) | Receive(P, m) | New(P, t)
 | Decrypt(P, t) | Verify(P, t)

> Formulas
 \[\phi ::= a | Has(P, t) | Fresh(P, t) | Honest(N)
 | Contains(t_1, t_2) | \neg \phi | \phi \land \phi_2 | \exists x \phi
 | \neg \phi | \phi \]

> Example
 After(a, b) = \circ(b \land \circ(a)

Composition Rules
> Prove assertions from invariants
 \[\Gamma \vdash \phi[\text{ actions }]_P \psi \]

> Invariant weakening rule
 \[\Gamma \vdash \phi[\text{ actions }]_P \psi \]
 \[\text{[Initator role actions] } \phi \]
 \[\text{[new } a \text{] } \phi \]

> Prove invariants from protocol
 \[Q \mid \Gamma \quad Q' \mid \Gamma \]
 \[Q \cdot Q' \mid \Gamma \]