Kerberos Project Goals
- Give precise statement and formal analysis of a real world protocol
- Formalize and analyze Kerberos 5 using MultiSet Rewriting (MSR)
- Identify and formalize protocol goals
 □ What sort of authentication?
 □ Give proofs of achieved protocol goals
 □ Gain experience in reasoning with MSR
 □ Note any anomalous behavior
 □ Consider possible fixes, test these

Formalizing Kerberos
- Use MSR 2.0 + some extensions
- MSR development supported by ONR MURI
- Abstract formalization
 □ Contains core protocol
 □ Enough detail to prove authentication and confidentiality
 □ Exhibits some curious behavior
 □ This is due to the protocol structure, not omitted detail
- Two detailed formalizations
 □ One adds options and checksums
 □ Authentication and confidentiality properties hold here
 □ Exhibits additional curious behavior involving options
 □ One adds timestamps (still to be analyzed)

Protocol Messages
- Please give me ticket for \(T \) to \(K \)
- \(C \) sends ticket for \(C \) to give to \(T \) to \(K \)
- Ticket from \(K \), one for \(S \)?
- \(C \) sends ticket for \(C \) to give to \(S \)
- Ticket from \(T \)
- Ticket from \(C \)
- Confirmation (optional)
- Error message (unencrypted)
- \(K(T|S) \)

Anomalies
- Encryption type anomaly (detailed formalization)
- Difficult to recover from lost long term key
- Ticket switch anomaly (abstract and detailed)
- \(C \) has incorrect beliefs about data in her possession
- Kerberos 5 does not have all properties of Kerberos 4
- In detailed version, this can involve 'Anonymous tickets'
- Anonymous option under review
- Ticket option anomaly (detailed formalization)
- \(C \) sends ticket; effects similar to ticket switch anomaly but for wider range of options

Formalizations of Kerberos 5
- MSR can handle real world protocols
- Formal analysis of protocol
- Proofs of protocol properties
 □ Using rank and corank functions
 □ Properties and proofs show parallels between abstract and detailed formalizations
 □ Curious behavior seen
 □ Doesn't prevent authentication, but slightly weakens properties which hold for Kerberos 4
- Interactions with Kerberos designers

Sample Authentication Theorem
- For Ticket-Granting Exchange in detailed version
 □ Prove this by adding details to abstract level proof
 □ Assume long-term keys safe (+ technical assumption)
 \(T \) processes the message
 \(\{TFlags, C, kCT, C, kT, C, TOpts, C, n1, T\} = \{TFlags, C, kCT, C, kT, C, TOpts, C, n1, T\} \)
 \(X, C, T, C, n'1, T\) then some \(K \) created \(kCT \), and sent
 \((TFlags, kCT, C, kCT, C, TOps, C, n1, T) \)
 and \(C \) sent some
 \((TFlags, kCT, C, kCT, C, TOps, C, n1, T) \)
 with \(kCT = \{TFlags, C, kCT, C, TOps, C, n1, T\} \)

Conclusions
- Formalizations of Kerberos 5 at different levels of detail
- \(C \) extends MSR to do this
- MSR can handle real world protocols
- Proofs of properties which hold here
 □ Parallel theorems and proofs in two formalizations
 □ Authentication and confidentiality throughout
 □ Gained additional experience in reasoning with MSR
 □ Curious behavior
 □ Does not prevent authentication
 □ Interactions with Kerberos designers

Future Work
- Systematize definition and use of (co)rank functions
 □ Need to determine 'public terms' for corank
- Analysis
 □ Relationships between properties in our different formalizations
 □ Extend formalizations
 □ Add structure and functionality, perform analysis
 □ Continue interaction with Kerberos designers
 □ Connect methods to automated tools