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Abstract

In this paper we study an extension of the distribution-free model of learning introduced
by Valiant [23] (also known as the probably approximately correct or PAC model) that allows
the presence of malicious errors in the examples given to a learning algorithm. Such errors
are generated by an adversary with unbounded computational power and access to the entire
history of the learning algorithm's computation. Thus, we study a worst-case model of errors.

Our results include general methods for bounding the rate of error tolerable by any learning
algorithm, e�cient algorithms tolerating nontrivial rates of malicious errors, and equivalences
between problems of learning with errors and standard combinatorial optimization problems.

1 Introduction

In this paper, we study a practical extension to Valiant's distribution-free model of learning: the
presence of errors (possibly maliciously generated by an adversary) in the sample data. The
distribution-free model typically makes the idealized assumption that the oracles POS and NEG
(returning positive and negative examples of the unknown target concept) always faithfully return
untainted examples of the target representation drawn according to the target distributions. In
many environments, however, there is always some chance that an erroneous example is given to the
learning algorithm. In a training session for an expert system, this might be due to an occasionally
faulty teacher; in settings where the examples are being transmitted electronically, it might be due
to unreliable communication equipment.

Since one of the strengths of Valiant's model is the lack of assumptions on the probability
distributions from which examples are drawn, we seek to preserve this generality by making no
assumptions on the nature of the errors that occur. That is, we wish to avoid demanding algorithms
that work under any target distributions while at the same time assuming that the errors in the
examples have some \nice" form. Such well-behaved sources of error seem di�cult to justify in a real
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computing environment, where the rate of error may be small, but data may become badly mangled
by highly unpredictable forces whenever errors do occur, for example in the case of hardware errors.
Thus, we study a worst-case or malicious model of errors, in which the errors are generated by an
adversary whose goal is to foil the learning algorithm.

The study of learning from examples with malicious errors was initiated by Valiant [24], where
it is assumed that there is a �xed probability � of an error occurring independently on each
request for an example. This error may be of an arbitrary nature | in particular, it may be
chosen by an adversary with unbounded computational resources, and exact knowledge of the target
representation, the target distributions, and the current internal state of the learning algorithm.

In this paper we study the optimal malicious error rate EMAL(C) for a representation class C
| that is, the largest value of � that can be tolerated by any learning algorithm (not necessarily
polynomial time) for C. Note that we expect the optimal error rate to depend on � and � (and
n in the case of a parameterized target class C). An upper bound on EMAL(C) corresponds to
a hardness result placing limitations on the rate of error that can be tolerated; lower bounds on
EMAL(C) are obtained by giving algorithms that tolerate a certain rate of error.

Using a proof technique called the method of induced distributions, we obtain general upper
bounds on EMAL(C) and apply these results to many representation classes. We also obtain lower

bounds on Epoly
MAL(C) (the largest rate of malicious error tolerated by a polynomial-time learning

algorithm for C) by giving e�cient learning algorithms for these same classes and analyzing their

error tolerance. In several cases the upper and lower bounds on Epoly
MAL(C) meet. A canonical

method of transforming standard learning algorithms into error-tolerant algorithms is given, and we
give approximation-preserving reductions between standard combinatorial optimization problems
such as set cover and natural problems of learning with errors. Several of our results also apply
to a more benign model of classi�cation noise de�ned by Angluin and Laird [1], in which the
underlying target distributions are unaltered, but there is some probability that a positive example
is incorrectly classi�ed as being negative, and vice-versa.

Several themes are brought out. One is that error tolerance need not come at the expense
of e�ciency or simplicity. We show that there are representation classes for which the optimal
malicious error rate can be achieved by algorithms that run in polynomial time and are easily
coded. For example, we show that a polynomial-time algorithm for learning monomials with errors
due to Valiant [24] tolerates the largest malicious error rate possible for any algorithm that uses
only positive examples, polynomial-time or otherwise. We give an e�cient learning algorithm for
the class of symmetric functions that tolerates the optimal malicious error rate and uses an optimal
number of examples.

Another theme is the importance of using both positive and negative examples whenever errors
(either malicious errors or classi�cation noise errors) are present. Several existing learning algo-
rithms use only positive examples or only negative examples (see e.g. Valiant [23] and Blumer et
al. [5]). We demonstrate strong upper bounds on the tolerable error rate when only one type is
used, and show that this rate can be provably increased when both types are used. In addition
to proving this for the class of symmetric functions, we give an e�cient algorithm that provides
a strict increase in the malicious error rate over the positive-only algorithm of Valiant [24] for the
class of monomials.

A third theme is that there are strong ties between learning with errors and more traditional
problems in combinatorial optimization. We give a reduction from learning monomials with errors
to a generalization of the weighted set cover problem, and give an approximation algorithm for
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this problem (generalizing the greedy algorithm analyzed by several authors [7, 11, 18]) that is of
independent interest. This approximation algorithm is used as a subroutine in a learning algorithm
that tolerates an improved error rate for monomials. In the other direction, we prove that for
the class of monomials M , approaching the optimal error rate EMAL(M) with a polynomial-time
algorithm using hypothesis space M is at least as hard as �nding an e�cient approximation algo-
rithm with an improved performance guarantee for the set cover problem. This suggests that there
are classes for which the optimal error rate that can be tolerated e�ciently may be considerably
smaller than the optimal information-theoretic rate. The best approximation known for the set
cover problem remains the greedy algorithm analyzed by Chvatal [7], Johnson [11], Lovasz [17],
and Nigmatullin [18]. Finally, we give a canonical reduction that allows many learning with errors
problems to be studied as equivalent optimization problems, thus allowing one to sidestep some of
the di�culties of analysis in the distribution-free model. Similar results are given for the error-free
model by Haussler et al. [10].

We now give a brief survey of other studies of error in the distribution-free model. Valiant [24]
modi�ed his initial de�nitions of learnability to include the presence of errors in the examples.
He also gave a generalization of his algorithm for learning monomials from positive examples, and
analyzed the rate of malicious error tolerated by this algorithm. Valiant's results led him to suggest
the possibility that \the learning phenomenon is only feasible with very low error rates" (at least in
the distribution-free setting with malicious errors); some of the results presented in this paper can
be viewed as giving formal veri�cation of this intuition. On the other hand, some of our algorithms
provide hope that if one can somehow reliably control the rate of error to a small amount, then
errors of an arbitrary nature can be compensated for by the learning process.

Angluin and Laird [1] subsequently modi�ed Valiant's de�nitions to study a non-malicious
model of errors, de�ned in Section 2.3 as the classi�cation noise model. Their results demonstrate
that under stronger assumptions on the nature of the errors, large rates of error can be tolerated
by polynomial-time algorithms for nontrivial representation classes. Shackelford and Volper [21]
investigate a model of random noise in the instances rather than the labels, and Sloan [22] and
Laird [15] discuss a number of variants of both the malicious error and classi�cation noise models.

2 De�nitions for Distribution-free Learning

In this section we give de�nitions and motivation for the model of machine learning we study. This
model was �rst de�ned by Valiant [23] in 1984; he then went on to generalize his de�nitions to
allow errors in 1985 [24]. In addition to the basic de�nitions and notation, we give the form of
Cherno� bounds we use, de�ne the Vapnik-Chervonenkis dimension, and de�ne a number of classes
of representations whose error-tolerant learnability we will study.

2.1 Representing subsets of a domain

Concept classes and their representation. Let X be a set called a domain (also sometimes
referred to as the instance space). We think of X as containing encodings of all objects of
interest to us in our learning problem. For example, each instance in X may represent a
di�erent object in a particular room, with discrete attributes representing properties such as
color, and continuous values representing properties such as height. The goal of a learning
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algorithm is then to infer some unknown subset of X , called a concept, chosen from a known
concept class.

For computational purposes we always need a way of naming or representing concepts. Thus,
we formally de�ne a representation class over X to be a pair (�; C), where C � f0; 1g� and
� is a mapping � : C ! 2X (here 2X denotes the power set of X). For c 2 C, �(c) is called a
concept over X ; the image space �(C) is the concept class that is represented by (�; C). For
c 2 C, we de�ne pos(c) = �(c) (the positive examples of c) and neg(c) = X��(c) (the negative
examples of c). The domain X and the mapping � will usually be clear from the context, and
we will simply refer to the representation class C. We will sometimes use the notation c(x) to
denote the value of the characteristic function of �(c) on the domain point x; thus x 2 pos(c)
(x 2 neg(c), respectively) and c(x) = 1 (c(x) = 0, respectively) are used interchangeably. We
assume that domain points x 2 X and representations c 2 C are e�ciently encoded using any
of the standard schemes (see Garey and Johnson [9]), and denote by jxj and jcj the length of
these encodings measured in bits.

Parameterized representation classes. In this paper we will study parameterized classes
of representations. Here we have a strati�ed domain X =

S
n�1Xn and representation class

C =
S
n�1 Cn. The parameter n can be regarded as an appropriate measure of the complexity

of concepts in �(C) (such as the number of domain attributes), and we assume that for a
representation c 2 Cn we have pos(c) � Xn and neg(c) = Xn � pos(c). For example, Xn may
be the set f0; 1gn, and Cn the class of all Boolean formulae over n variables whose length is
at most n2. Then for c 2 Cn, �(c) would contain all satisfying assignments of the formula c.

E�cient evaluation of representations. In general, we will be primarily concerned with
learning algorithms that are computationally e�cient. In order to prevent this demand from
being vacuous, we need to insure that the hypotheses output by a learning algorithm can be
e�ciently evaluated as well. Thus if C is a representation class over X , we say that C is
polynomially evaluatable if there is a (probabilistic) polynomial-time evaluation algorithm A
that on input a representation c 2 C and a domain point x 2 X outputs c(x). Note that a class
being polynomially evaluatable simply means that it contains only \small" representations,
that is, representations that can be written down in polynomial time. All representation
classes considered here are polynomially evaluatable. It is worth mentioning at this point
that Schapire [20] has shown that if a representation class is not polynomially evaluatable,
then it is not e�ciently learnable in our model. Thus, perhaps not surprisingly we see that
classes that are not polynomially evaluatable constitute \unfair" learning problems.

Samples. A labeled example from a domain X is a pair < x; b >, where x 2 X and b 2 f0; 1g.
A labeled sample S = < x1; b1 >; : : : ; < xm; bm > from X is a �nite sequence of labeled
examples from X . If C is a representation class, a labeled example of c 2 C is a labeled
example < x; c(x) >, where x 2 X . A labeled sample of c is a labeled sample S where each
example of S is a labeled example of c. In the case where all labels bi or c(xi) are 1 (0,
respectively), we may omit the labels and simply write S as a list of points x1; : : : ; xm, and
we call the sample a positive (negative, respectively) sample.

We say that a representation h and an example < x; b > agree if h(x) = b; otherwise they
disagree. We say that a representation h and a sample S are consistent if h agrees with each
example in S; otherwise they are inconsistent.
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2.2 Distribution-free learning

Distributions on examples. On any given execution, a learning algorithm for a representation
class C will be receiving examples of a single distinguished representation c 2 C. We call
this distinguished c the target representation. Examples of the target representation are
generated probabilistically as follows: let D+

c be a �xed but arbitrary probability distribution
over pos(c), and let D�

c be a �xed but arbitrary probability distribution over neg(c). We
call these distributions the target distributions. When learning c, learning algorithms will
be given access to two oracles, POS and NEG , that behave as follows: oracle POS (NEG ,
respectively) returns in unit time a positive (negative, respectively) example of the target
representation, drawn randomly according to the target distribution D+

c (D�
c , respectively).

The distribution-free model is sometimes de�ned in the literature with a single target dis-
tribution over the entire domain; the learning algorithm is then given labeled examples of
the target concept drawn from this distribution. We choose to explicitly separate the dis-
tributions over the positive and negative examples to facilitate the study of algorithms that
learn using only positive examples or only negative examples. These models, however, are
equivalent with respect to polynomial-time computation, as is shown by Haussler et al. [10].

Given a �xed target representation c 2 C, and given �xed target distributions D+
c and D�

c ,
there is a natural measure of the error (with respect to c, D+

c and D�
c ) of a representation

h from a representation class H . We de�ne e+c (h) = D+
c (neg(h)) (i.e., the weight of the set

neg(h) under the probability distribution D+
c ) and e

�
c (h) = D�

c (pos(h)) (the weight of the set
pos(h) under the probability distribution D�

c ). Note that e
+
c (h) (respectively, e

�
c (h)) is simply

the probability that a random positive (respectively, negative) example of c is identi�ed as
negative (respectively, positive) by h. If both e+c (h) < � and e�c (h) < �, then we say that h
is an �-good hypothesis (with respect to c, D+

c and D�
c ); otherwise, h is �-bad. We de�ne the

accuracy of h to be the value min(1� e+c (h); 1� e�c (h)).

It is worth noting that our de�nitions so far assume that the hypothesis h is deterministic.
However, this need not be the case; for example, we can instead de�ne e+c (h) to be the
probability that h classi�es a random positive example of c as negative, where the probability
is now over both the random example and the coin ips of h. All of the results presented
here hold under these generalized de�nitions.

When the target representation c is clear from the context, we will drop the subscript c and
simply write D+; D�; e+ and e�.

In the de�nitions that follow, we will demand that a learning algorithm produce with high
proability an �-good hypothesis regardless of the target representation and target distribu-
tions. While at �rst this may seem like a strong criterion, note that the error of the hypothesis
output is always measured with respect to the same target distributions on which the algo-
rithm was trained. Thus, while it is true that certain examples of the target representation
may be extremely unlikely to be generated in the training process, these same examples in-
tuitively may be \ignored" by the hypothesis of the learning algorithm, since they contribute
a negligible amount of error.

Learnability. Let C and H be representation classes over X . Then C is learnable from examples
by H if there is a (probabilistic) algorithm A with access to POS and NEG , taking inputs
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�; �, with the property that for any target representation c 2 C, for any target distributions
D+ over pos(c) and D� over neg(c), and for any inputs 0 < �; � < 1, algorithm A halts and
outputs a representation hA 2 H that with probability greater than 1�� satis�es e+(hA) < �

and e�(hA) < �.

We call C the target class and H the hypothesis class; the output hA 2 H is called the
hypothesis of A. A will be called a learning algorithm for C. If C and H are polynomially
evaluatable, and A runs in time polynomial in 1=�; 1=� and jcj then we say that C is polyno-
mially learnable from examples by H ; if C is parameterized we also allow the running time of
A to have polynomial dependence on the parameter n.

We will drop the phrase \from examples" and simply say that C is learnable by H , and
C is polynomially learnable by H . We say C is polynomially learnable to mean that C is
polynomially learnable by H for some polynomially evaluatable H . We will sometimes call �
the accuracy parameter and � the con�dence parameter.

Thus, we ask that for any target representation and any target distributions, a learning
algorithm �nds an �-good hypothesis with probability at least 1��. A primary goal of research
in this model is to discover which representation classes C are polynomially learnable.

We refer to Valiant's model as the distribution-free model, to emphasize that we seek algo-
rithms that work for any target distributions. It is also known in the literature as the probably
approximately correct model.

Positive-only and negative-only learning algorithms. We will sometimes study learning
algorithms that need only positive examples or only negative examples. If A is a learning
algorithm for a representation class C, and A makes no calls to the oracle NEG (respectively,
POS), then we say that A is a positive-only (respectively, negative-only) learning algorithm,
and C is learnable from positive examples (learnable from negative examples). Note that
although the learning algorithm receives only one type of examples, the hypothesis output
must still be accurate with respect to both the positive and negative distributions.

Several learning algorithms in the distribution-free model are positive-only or negative-only.
The study of positive-only and negative-only learning is interesting for at least two reasons.
First, it helps to quantify more precisely what kind of information is required for learning var-
ious representation classes. Second, it may be important for applications where, for instance,
negative examples are rare but must be classi�ed accurately when they do occur.

2.3 De�nitions for learning with errors

Oracles with malicious errors. Let C be a representation class over a domain X , and let c 2 C
be the target representation with target distributions D+ and D�. For 0 � � < 1=2, we de�ne

two oracles with malicious errors, POS�
MAL and NEG�

MAL, that behave as follows: when

oracle POS�
MAL (respectively, NEG�

MAL) is called, with probability 1� �, a point x 2 pos(c)
(respectively, x 2 neg(c)) randomly chosen according to D+ (respectively, D�) is returned,
as in the error-free model, but with probability �, a point x 2 X about which absolutely
no assumptions can be made is returned. In particular, this point may be dynamically and
maliciously chosen by an adversary who has knowledge of c;D+; D�; � and the internal state
of the learning algorithm. This adversary also has unbounded computational resources. For
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convenience we assume that the adversary does not have knowledge of the outcome of future
coin ips of the learning algorithm or the points to be returned in future calls to POS�MAL

and NEG�
MAL (other than those that the adversary may himself decide to generate on future

errors). These assumptions may in fact be removed, as our results will show, resulting in a
stronger model where the adversary may choose to modify in any manner a �xed fraction
� of the sample to be given to the learning algorithm. Such a model realistically captures
situations such as \error bursts", which may occur when transmission equipment malfunctions
repeatedly for a short amount of time.

Learning from oracles with malicious errors. Let C and H be representation classes over
X . Then for 0 � � < 1=2, we say that C is learnable by H with malicious error rate � if there

is a (probabilistic) algorithm A with access to POS�
MAL and NEG�

MAL, taking inputs �; � and
�0, with the property that for any target representation c 2 C, for any target distributions
D+ over pos(c) and D� over neg(c), and for any input values 0 < �; � < 1 and � � �0 < 1=2,
algorithm A halts and outputs a representation hA 2 H that with probability at least 1� �

satis�es e+(hA) < � and e+(hA) < �.

We will also say that A is a �-tolerant learning algorithm for C. In this de�nition of learning,
polynomial-time means polynomial in 1=�; 1=� and 1=(1=2� �0), as well as polynomial in n
in the case of parameterized C.

The input �0 is intended to provide an upper bound on the error rate for the learning algo-
rithm, since in practice we do not expect to have exact knowledge of the \true" error rate
� (for instance, it is reasonable to expect the error rate to vary somewhat with time). The
dependence on 1=(1=2� �0) for polynomial-time algorithms provides the learning algorithm
with more time as the error rate approaches 1=2, since an error rate of 1=2 renders learning
impossible for any algorithm, polynomial-time or otherwise (this is because the labels are
essentially the outcomes of the ip of a fair coin). However, we will shortly see that the input
�0 and the dependence of the running time on 1=(1=2� �0) are usually unnecessary, since
for learning under arbitrary target distributions to be possible we must have � < �=(1 + �)
(under very weak restrictions on C). This is Theorem 1. However, we include �0 in our
de�nitions since these dependencies may be meaningful for learning under restricted target
distributions.

It is important to note that in this de�nition, we are not asking learning algorithms to \�t
the noise" in the sense of achieving accuracy in predicting the behavior of the tainted oracles
POS�MAL and NEG�

MAL. Rather, the conditions e
+(hA) < � and e+(hA) < � require that the

algorithm �nd a good predictive model of the true underlying target distributions D+ and
D�, as in the error-free model.

In general, we expect the achievable malicious error rate to depend upon the desired accuracy
� and con�dence �, as well as on the parameter n in the case of parameterized representation
classes. We now make de�nitions that will allow us to study the largest rate � = �(�; �; n)
that can be tolerated by any learning algorithm, and by learning algorithms restricted to run
in polynomial time.

Optimal malicious error rates. Let A be a learning algorithm for C. We de�ne EMAL(C;A) to
be the largest � such that A is a �-tolerant learning algorithm for C; note that EMAL(C;A)
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is actually a function of � and � (and n in the case of parameterized C). In the case that the
largest such � is not well-de�ned (for example, A could tolerate progressively larger rates if
allowed more time), then EMAL(C;A) is the supremum over all malicious error rates tolerated
by A. Then we de�ne the function EMAL(C) to be the pointwise (with respect to �; � and
n in the parameterized case) supremum of EMAL(C;A), taken over all learning algorithms
A for C. More formally, if we write EMAL(C;A) and EMAL(C) in functional form, then
EMAL(C)(�; �; n) = supAfEMAL(C;A)(�; �; n)g. Notice that this supremum is taken over all

learning algorithms, regardless of computational complexity. We will use the notation E
poly
MAL

to denote these same quantities when the quanti�cation is only over polynomial-time learning
algorithms | thus, for instance, E

poly
MAL(C;A) is the largest � such that A is a �-tolerant

learning polynomial-time learning algorithm for C, and E
poly
MAL(C) is the largest malicious

error rate tolerated by any polynomial-time learning algorithm for C.

EMAL;+(C) will be used to denote EMAL with quanti�cation only over positive-only learn-
ing algorithms for C. Similar de�nitions are made for the negative-only malicious error rate
EMAL;�, and polynomial-time positive-only and polynomial-time negative-only malicious er-

ror rates Epoly
MAL;+ and Epoly

MAL;�.

Oracles with classi�cation noise. Some of our results will also apply to a more benign model of
errors de�ned by Angluin and Laird [1], which we will call the classi�cation noisemodel. Here

we have oracles POS�
CN and NEG�

CN that behave as follows: as before, with probability 1��,
POS�CN returns a point drawn randomly according to the target distribution D+. However,

with probability �, POS�
CN returns a point drawn randomly according to the negative target

distribution D�. Similarly, with probability 1��, NEG�
CN draws from the correct distribution

D� and with probability � draws fromD+. This model is easily seen to be equivalent (modulo
polynomial time) to a model in which a learning algorithm asks for a labeled example without
being allowed to specify whether this example will be positive or negative; then the noisy
oracle draws from the underlying target distributions (each with equal probability), but with
probability � returns an incorrect classi�cation with the example drawn.

These oracles are intended to model a situation in which the learning algorithm's \teacher"
occasionally misclassi�es a positive example as negative, and vice-versa. However, this mis-
classi�cation is benign in the sense that the erroneous example is always drawn according to
the \natural" environment as represented by the target distributions; thus, only the classi-
�cation label is subject to error. In contrast, errors in the malicious model may involve not
only misclassi�cation, but alteration of the examples themselves, which may not be generated
according to any probability distribution at all. As an example, the adversary generating the
errors may choose to give signi�cant probability to examples that have zero probability in the
true target distributions. We will see throughout the paper that these added capabilities of
the adversary have a crucial e�ect on the error rates that can be tolerated.

Learning from oracles with classi�cation noise. Let C and H be representation classes
over X . Then for 0 � � < 1=2, we say that C is learnable by H with classi�cation noise

rate � if there is a (probabilistic) algorithm A with access to POS�
CN and NEG�

CN , taking
inputs �; � and �0, with the property that for any target representation c 2 C, for any target
distributions D+ over pos(c) and D� over neg(c), and for any input values 0 < �; � < 1 and
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� � �0 < 1=2, algorithm A halts and outputs a representation hA 2 H that with probability
at least 1� � satis�es e+(hA) < � and e+(hA) < �.

Polynomial time here means polynomial in 1=�; 1=� and 1=(1=2� �0), as well as the polyno-
mial in n in the case of parameterized C. As opposed to the malicious case, the input �0
is relevant here, even in the case of arbitrary target distributions, since classi�cation noise
rates approaching 1=2 can be tolerated by polynomial-time algorithms for some nontrivial
representation classes [1].

Optimal classi�cation noise rates. Analogous to the malicious model, we de�ne classi�cation
noise rates ECN ; ECN;+ and ECN ;� for an algorithm A and representation class C, as well as

polynomial-time classi�cation noise rates Epoly
CN ; E

poly
CN ;+ and Epoly

CN ;�.

2.4 Other de�nitions and notation

Sample complexity. Let A be a learning algorithm for a representation class C. Then we denote
by SA(�; �) the number of calls to the oracles POS and NEG made by A on inputs �; �; this is
a worst-case measure over all possible target representations in C and all target distributions
D+ and D�. In the case that C is a parameterized representation class, we also allow SA to
depend on the parameter n. We call the function SA the sample complexity or sample size of
A. We denote by S+A and S�A the number of calls of A to POS and NEG , respectively.

Cherno� bounds. We shall make extensive use of the following bounds on the area under the
tails of the binomial distribution. For 0 � p � 1 and m a positive integer, let LE(p;m; r)
denote the probability of at most r successes in m independent trials of a Bernoulli variable
with probability of success p, and let GE (p;m; r) denote the probability of at least r successes.
Then for 0 � � � 1,

Fact CB1. LE(p;m; (1� �)mp) � e��2mp=2

and

Fact CB2. GE(p;m; (1+ �)mp) � e��2mp=3

These bounds in the form they are stated are from the paper of Angluin and Valiant [2]; see
also Cherno� [6]. Although we will make frequent use of Fact CB1 and Fact CB2, we will
do so in varying levels of detail, depending on the complexity of the calculation involved.
However, we are primarily interested in Cherno� bounds for the following consequence of
Fact CB1 and Fact CB2: given an event E of probability p, we can obtain an estimate p̂ of
p by drawing m points from the distribution and letting p̂ be the frequency with which E

occurs in this sample. Then for m polynomial in 1=p and 1=�, p̂ satis�es p=2 < p̂ < 2p with
probability at least 1� �. If we also allow m to depend polynomially on 1=�, we can obtain
an estimate p̂ such that p� � < p̂ < p+ � with probability at least 1� �.

The Vapnik-Chervonenkis dimension. Let C be a representation class over X . Let Y � X ,
and de�ne

�C(Y ) = fZ � Y : Z = Y \ pos(c) for some c 2 Cg:
If we have �C(Y ) = 2Y , then we say that Y is shattered by C. Then we de�ne

vcd(C) = maxfjY j : Y is shattered by Cg:

9



If this maximum does not exist, then vcd(C) is in�nite. The Vapnik-Chervonenkis was
originally introduced in the paper of Vapnik and Chervonenkis [25] and was �rst studied in
the context of the distribution-free model by Blumer et al. [5].

Notational conventions. Let E(x) be an event and  (x) a random variable that depend on a
parameter x that takes on values in a set X . Then for X 0 � X , we denote by Prx2X 0[E(x)]
the probability that E occurs when x is drawn uniformly at random from X 0. Similarly,
Ex2X 0[ (x)] is the expected value of  when x is drawn uniformly at random from X 0.
We also need to work with distributions other than the uniform distribution; thus if P is
a distribution over X we use Prx2P [E(x)] and Ex2P [ (x)] to denote the probability of E
and the expected value of  , respectively, when x is drawn according to the distribution P .
When E or  depend on several parameters that are drawn from di�erent distributions we use
multiple subscripts. For example, Prx12P1;x22P2;x32P3 [E(x1; x2; x3)] denotes the probability
of event E when x1 is drawn from distribution P1, x2 from P2, and x3 from P3.

2.5 Some representation classes

We now de�ne the parametrized representation classes whose error-tolerant learnability we will
study. Here the domain Xn is always f0; 1gn and the mapping � simply maps each formula to its
set of satisfying assignments. The classes de�ned below are all parameterized; for each class we
will de�ne the subclasses Cn, and then C is de�ned by C =

S
n�1 Cn.

Monomials: The representation class Mn consists of all conjunctions of literals over the Boolean
variables x1; : : : ; xn.

kCNF: For any constant k, the representation class kCNFn consists of all Boolean formulae of
the form C1 ^ � � � ^ Cl, where each clause Ci is a disjunction of at most k literals over the
Boolean variables x1; : : : ; xn. Note that Mn = 1CNFn.

kDNF: For any constant k, the representation class kDNFn consists of all Boolean formulae of
the form T1 _ � � � _ Tl, where each term Ti is a conjunction of at most k literals over the
Boolean variables x1; : : : ; xn.

Symmetric Functions: A symmetric function over the Boolean variables x1; : : : ; xn is a Boolean
function whose output is invariant under all permutations of the input bits. Such a function
can be represented by a Boolean array of size n + 1, where the ith entry indicates whether
the function is 0 or 1 on all inputs with exactly i bits set to 1. We denote by SFn the class
of all such representations.

Decision Lists: A decision list [19] is a list L = < (T1; b1); : : : ; (Tl; bl) >, where each Ti is a
monomial over the Boolean variables x1; : : : ; xn and each bi 2 f0; 1g. For ~v 2 f0; 1gn, we
de�ne L(~v) as follows: L(~v) = bj where 1 � j � l is the least value such that ~v satis�es
the monomial Tj ; if there is no such j then L(~v) = 0. We denote the class of all such
representations by DLn. For any constant k, if each monomial Ti has at most k literals, then
we have a k-decision list, and we denote the class of all such representations by kDLn.
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3 Absolute limits on learning with errors

In this section we prove theorems bounding the achievable error rate for both the malicious error
and classi�cation noise models. These bounds are absolute in the sense that they apply to any
learning algorithm, regardless of its computational complexity, the number of examples it uses, the
hypothesis space it uses, and so on. Our �rst such result states that the malicious error rate must
be smaller than the desired accuracy �. This is in sharp contrast to the classi�cation noise model,
where Angluin and Laird [1] proved, for example, Epoly

CN (kDNFn) � c0 for all n and any constant
c0 < 1=2.

Let us call a representation class C distinct if there exist representations c1; c2 2 C and points
u; v; w; x 2 X satisfying u 2 pos(c1); u 2 neg(c2), v 2 pos(c1); v 2 pos(c2), w 2 neg(c1); w 2 pos(c2),
and x 2 neg(c1); x 2 neg(c2).

Theorem 1 Let C be a distinct representation class. Then

EMAL(C) <
�

1 + �
:

Proof: We use a technique that we will call the method of induced distributions: we choose
l � 2 representations fcigi2f1;:::;lg � C, along with l pairs of target distributions fD+

cigi2f1;:::;lg
and fD�

ci
gi2f1;:::;lg. These representations and target distributions are such that for any i 6= j,

1 � i; j � l, cj is �-bad with respect to the distributions D
+
ci ; D

�
ci . Then adversaries fADV cigi2f1;:::;lg

are constructed for generating any errors when ci is the target representation such that the behavior
of the oracle POS�MAL is identical regardless of which ci is the target representation; the same is

true for the oracle NEG�
MAL, thus making it impossible for any learning algorithm to distinguish

the true target representation, and essentially forcing the algorithm to \guess" one of the ci.
In the case of Theorem 1, this technique is easily applied, with l = 2, as follows: let c1; c2 2 C

and u; v; w; x 2 X be as in the de�nition of distinct. De�ne the following target distributions for
c1:

D+
c1(u) = �

D+
c1(v) = 1� �

and

D�
c1(w) = �

D�
c1(x) = 1� �:

For c2, the target distributions are:

D+
c2(v) = 1� �

D+
c2(w) = �

and

D�
c2(u) = �

D�
c2(x) = 1� �:

11



Note that these distributions are such that any representation that disagrees with the target
representation on one of the points u; v; w; x is �-bad with respect to the target distributions. Now if
c1 is the target representation, then the adversary ADV c1 behaves as follows: on calls to POS�

MAL,

ADV c1 always returns the point w whenever an error occurs; on calls to NEG�
MAL, ADV c1 always

returns the point u whenever an error occurs. Under these de�nitions, the oracle POS�
MAL draws a

point from an induced distribution I+c1 that is determined by the joint behavior of the distribution
D+
c1 and the adversary ADV c1 , and is given by

I+c1(u) = (1� �)�

I+c1(v) = (1� �)(1� �)

I+c1(w) = �

where � is the malicious error rate. Similarly, the oracle NEG�
MAL draws from an induced distri-

bution I�c1 :

I�c1(u) = �

I�c1(w) = (1� �)�

I�c1(x) = (1� �)(1� �):

For target representation c2, the adversary ADV c2 always returns the point u whenever a call to

POS�
MAL results in an error, and always returns the point w whenever a call to NEG�

MAL results

in an error. Then the oracle POS�
MAL draws from the induced distribution

I+c2(u) = �

I+c2(v) = (1� �)(1� �)

I+c2(w) = (1� �)�

and the oracle NEG�
MAL from the induced distribution

I�c2(u) = (1� �)�

I�c2(w) = �

I�c2(x) = (1� �)(1� �):

It is easily veri�ed that if � = �=(1 + �), then the distributions I+c1 and I+c2 are identical, and
that I�c1 and I�c2 are identical; if � > �=(1 + �), the adversary may always choose to ip a biased
coin, and be \honest" (i.e., draw from the correct target distribution) when the outcome is heads,
thus reducing the e�ective error rate to exactly �=(1 + �). Thus, under these distributions and

adversaries, the behavior of the oracles POS�
MAL and NEG�

MAL is identical regardless of the target
representation. This implies that any algorithm that produces an �-good hypothesis for target
representation c1 with probability at least 1� � under the distributions D+

c1 and D�
c1 must fail to

output an �-good hypothesis for target representation c2 with probability at least 1� � under the
distributions D+

c2 and D
�
c2 , thus proving the theorem.

An intuitive interpretation of the result is that if we desire 90 percent accuracy from the hy-
pothesis, there must be less than about 10 percent error.
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We emphasize that Theorem 1 bounds the achievable malicious error rate for any learning
algorithm, regardless of computational complexity, sample complexity or the hypothesis class. Thus,
for distinct C, we always have EMAL(C) � �=(1 + �) = O(�). All of the representation classes
studied here are distinct. We shall see in Theorem 7 of Section 4 that any hypothesis that nearly
minimizes the number of disagreements with a large enough sample from POS�

MAL and NEG�
MAL

is �-good with high probability provided � < �=4. Thus, for the �nite representation classes we
study here (such as all the classes over the Boolean domain f0; 1gn), there is always a (possibly
super-polynomial time) exhaustive search algorithm A achieving EMAL(C;A) = 
(�); combined
with Theorem 1, this gives EMAL(C) = �(�) for these classes. However, we will primarily be
concerned with achieving the largest possible malicious error rate in polynomial time.

We now turn our attention to positive-only and negative-only learning in the presence of errors,
where we will see that for many representation classes, the absolute bounds on the achievable error
rate are even stronger than those given by Theorem 1.

Let C be a representation class. We will call C positive t-splittable if there exist representations
c1; : : : ; ct 2 C and points u1; : : : ; ut 2 X and v 2 X satisfying all of the following conditions:

ui 2 pos(cj); i 6= j; 1 � i; j � t

uj 2 neg(cj); 1 � j � t

v 2 pos(ci); 1 � i � t:

Similarly, C is negative t-splittable if we have

ui 2 neg(cj); i 6= j; 1 � i; j � t

uj 2 pos(cj); 1 � j � t

v 2 neg(ci); 1 � i � t:

Note that if vcd(C) = d, then C is both positive and negative d-splittable. The converse does not
necessarily hold.

Theorem 2 Let C be positive t-splittable (respectively, negative t-splittable). Then for � � 1=t,

EMAL;+(C) <
�

t � 1

(respectively, EMAL;�(C) < �
t�1).

Proof: The proof is by the method of induced distributions. We prove only the case that C
is positive t-splittable; the proof for C negative t-splittable is similar. Let c1; : : : ; ct 2 C and
u1; : : : ; ut; v 2 X be as in the de�nition of positive t-splittable. For target representation cj , de�ne
the target distributions D+

cj over pos(cj) and D
�
cj over neg(cj) as follows:

D+
cj (ui) =

�

t � 1
; 1 � i � t; i 6= j

D+
cj(v) = 1� �

and

D�
cj(uj) = 1:
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For target representation cj , the errors on calls to POS�
MAL are generated by an adversary ADV cj

who always returns the point uj whenever an error occurs. Then under these de�nitions, POS�MAL

draws a point from a distribution I+cj induced by the distribution D+
cj
and the adversary ADV cj .

This distribution is

I+cj (ui) = (1� �)
�

t� 1
; 1 � i � t; i 6= j

I+cj(v) = (1� �)(1� �)

I+cj (uj) = �:

If � = (1� �)(�=(t� 1)), then the induced distributions I+cj are all identical for 1 � j � t. Solving,
we obtain � = (�=(t� 1))=(1 + �=(t� 1)) < �=(t� 1). Now let � � �=(t� 1), and assume A is
a �-tolerant positive-only learning algorithm for C. If cj is the target representation, then with
probability at least 1 � �, ui 2 pos(hA) for some i 6= j, otherwise e+(hA) � � under the induced
distribution I+cj . Let k be such that

Pr[uk 2 pos(hA)] = max
1�i�t

fPr[ui 2 pos(hA)]g

where the probability is taken over all sequences of examples given to A by the oracle POS�MAL

and the coin tosses of A. Then we must have

Pr[uk 2 pos(hA)] � 1� �

t� 1
:

Choose � < 1=t. Then with probability at least �, e�(hA) = 1 when ck is the target representation,
with distributions D+

ck
and D�

ck
and adversary ADV ck . This contradicts the assumption that A is

a �-tolerant learning algorithm, and the theorem follows.
Note that the restriction � < 1=t in the proof of Theorem 2 is apparently necessary, since a

learning algorithm may always randomly choose a uj to be a positive example, and make all other
ui negative examples; the probability of failing to learn under the given distributions is then only
1=t. It would be interesting to �nd a di�erent proof that removed this restriction, or to prove that
it is required.

As in the case of Theorem 1, Theorem 2 is an upper bound on the achievable malicious error
rate for all learning algorithms, regardless of hypothesis representation, number of examples used
or computation time. For any representation class C, by computing a value t such that C is t-
splittable, we can obtain upper bounds on the positive-only and negative-only error rates for that
class. As examples, we state such results as corollaries for a few of the representation classes studied
here. Even in cases where the representation class is known to be not learnable from only positive
or only negative examples in polynomial time (for example, it is shown in Kearns et al. [13] that
monomials are not polynomially learnable from negative examples), the bounds on EMAL;+ and
EMAL;� are relevant since they also hold for algorithms that do not run in polynomial time.

Corollary 3 Let Mn be the class of monomials over x1; : : : ; xn. Then

EMAL;+(Mn) <
�

n� 1

and
EMAL;�(Mn) <

�

n� 1
:
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Corollary 4 For �xed k, let kDNFn be the class of kDNF formulae over x1; : : : ; xn. Then

EMAL;+(kDNFn) = O

�
�

nk

�

and

EMAL;�(kDNFn) = O

�
�

nk

�
:

Corollary 5 Let SFn be the class of symmetric functions over x1; : : : ; xn. Then

EMAL;+(SFn) <
�

n� 1

and
EMAL;�(SFn) <

�

n� 1
:

Proofs of these corollaries follow from the Vapnik-Chervonenkis dimension of the representation
classes and Theorem 2. Note that the proof of Theorem 2 shows that these corollaries actually hold
for any �xed � and n.

We note that Theorem 2 and its corollaries also hold for the classi�cation noise model. To
see this it su�ces to notice that the adversaries ADV cj in the proof of Theorem 2 simulated
the classi�cation noise model. Thus, for classi�cation noise we see that the power of using both
positive and negative examples may be dramatic: for kCNF we have Epoly

CN (kCNFn) � c0 for any
c0 < 1=2 due to Angluin and Laird [1] but ECN ;+(kCNFn) = O(�=nk) by Theorem 2. (Kearns
et al. [13] show that kCNF is not learnable in polynomial time from negative examples even in
the error-free model.) In fact, we can give a bound on ECN ;+ and ECN ;� that is weaker but more
general, and applies to almost any representation class. Note that by exhaustive search techniques,
we have that for any small constant �, ECN (C) � 1=2 � � for any �nite representation class C.
Thus the following result demonstrates that for representation classes over �nite domains in the
classi�cation noise model, the advantage of using both positive and negative examples is almost
always signi�cant.

We will call a representation class C positive (respectively, negative) incomparable if there are
representations c1; c2 2 C and points u; v; w 2 X satisfying u 2 pos(c1); u 2 neg(c2); v 2 pos(c1); v 2
pos(c2) (respectively, v 2 neg(c1); v 2 neg(c2)), w 2 neg(c1); w 2 pos(c2).

Theorem 6 Let C be positive (respectively, negative) incomparable. Then

ECN ;+(C) <
�

1 + �

(respectively, ECN ;�(C) < �
1+�).

Proof: By the method of induced distributions. We do the proof for the case that C is positive
incomparable; the proof when C is negative incomparable is similar. Let c1; c2 2 C and u; v; w 2 X
be as in the de�nition of positive incomparable. For target representation c1, we de�ne distributions

D+
c1(u) = �

D+
c1(v) = 1� �
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and

D�
c1(w) = 1:

Then in the classi�cation noise model, the oracle POS�
CN draws from the induced distribution

I+c1(u) = (1� �)�

I+c1(v) = (1� �)(1� �)

I+c1(w) = �:

For target representation c2, de�ne distributions

D+
c2(v) = 1� �

D+
c2(w) = �

and

D�
c2(u) = 1:

Then for target representation c2, oracle POS
�
CN draws from the induced distribution

I+c2(u) = �

I+c2(v) = (1� �)(1� �)

I+c2(w) = (1� �)�:

For � = �=(1 + �), distributions I+c1 and I+c2 are identical. Any positive-only algorithm learning c1
under D+

c1 and D�
c1 with probability at least 1 � � must fail with probability at least 1 � � when

learning c2 under D
+
c2 and D

�
c2 .

Thus, for positive (respectively, negative) incomparable C, ECN ;+(C) = O(�) (respectively,
ECN ;�(C) = O(�)). All of the representation classes studied here are both positive and negative
incomparable. Note that the proof of Theorem 6 depends upon the assumption that a learning
algorithm has only an upper bound on the noise rate, not the exact value; thus, the e�ective noise
rate may be less than the given upper bound. This issue does not arise in the malicious model,
where the adversary may always choose to draw from the correct target distribution with some
�xed probability, thus reducing the e�ective error rate to any value less than or equal to the given
upper bound.

4 E�cient error-tolerant learning

Given the absolute upper bounds on the achievable malicious error rate of Section 3, we now wish
to �nd e�cient algorithms tolerating a rate that comes as close as possible to these bounds, or give
evidence for the computational di�culty of approaching the optimal error rate. In this section we
give e�cient algorithms for several representation classes and analyze their tolerance to malicious
errors.

We begin by giving a generalization of Occam's Razor [4] for the case when errors are present
in the examples.
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Let C and H be representation classes over X . Let A be an algorithm accessing POS�MAL

and NEG�
MAL, and taking inputs 0 < �; � < 1. Suppose that for target representation c 2 C and

0 � � < �=4, A makes m calls to POS�
MAL and receives points u1; : : : ; um 2 X , and m calls to

NEG�
MAL and receives points v1; : : : ; vm 2 X , and outputs hA 2 H satisfying with probability at

least 1� �:

jfui : ui 2 neg(hA)gj � �

2
m (1)

jfvi : vi 2 pos(hA)gj � �

2
m: (2)

Thus, with high probability, hA is consistent with at least a fraction 1� �=2 of the sample received
from the faulty oracles POS�

MAL and NEG
�
MAL. We will call such an A a �-tolerant Occam algorithm

for C by H .

Theorem 7 Let � < �=4, and let A be a �-tolerant Occam algorithm for C by H. Then A
is a �-tolerant learning algorithm for C by H; the sample size required is m = O(1=� ln 1=� +
1=� ln jH j). If A is such that only Condition 1 (respectively, Condition 2) above holds, then e+(hA) <
� (respectively, e�(hA) < �) with probability at least 1� �.

Proof: We prove the statement where A meets Condition 1; the case for Condition 2 is similar.
Let h 2 H be such that e+(h) � �. Then the probability that h agrees with a point received from

the oracle POS�
MAL is bounded above by

(1� �)(1� �) + � � 1� 3�

4

for � < �=4. Thus the probability that h agrees with at least a fraction 1 � �=2 of m examples

received from POS�
MAL is

LE

�
3�

4
; m;

�

2
m

�
� e�m�=24

by Fact CB1. From this it follows that the probability that some h 2 H with e+(h) � � agrees with
a fraction 1� �=2 of the m examples is at most jH je�m�=24. Solving jH je�m�=24 � �=2, we obtain
m � 24=�(ln jH j + ln 2=�). This proves that any h meeting Condition 1 is with high probability
�-good with respect to D+, completing the proof.

To demonstrate that the suggested approach of �nding a nearly consistent hypothesis is in fact
a feasible one, we note that if c is the target representation, then the probability that c fails to
agree with at least a fraction 1� �=2 of m examples received from POS�

MAL is

GE

�
�

4
; m;

�

2
m

�
� �

2

for � � �=4 and m as in the statment of Theorem 7 by Fact CB2.
Thus, in the presence of errors of any kind, �nding an �=2-good hypothesis is as good as learning,

provided that � < �=4. This fact can be used to prove the correctness of the learning algorithms of
the following two theorems due to Valiant.
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Theorem 8 (Valiant [24]) Let Mn be the class of monomials over x1; : : : ; xn. Then

Epoly
MAL;+(Mn) = 


�
�

n

�
:

Theorem 9 (Valiant [24]) For �xed k, let kDNFn be the class of kDNF formulae over x1; : : : ; xn.
Then

Epoly
MAL;�(kDNFn) = 


�
�

nk

�
:

Similar results are obtained by duality for the class of disjunctions (learnable from negative

examples) and kCNF (learnable from positive examples); that is, Epoly
MAL;�(1DNFn) = 
(�=n)

and Epoly
MAL;+(kCNFn) = 
(�=nk). Note that the class of monomials (respectively, kDNF) is not

polynomially learnable even in the error-free case from negative (respectively, positive) examples [13]

Combining Corollaries 8 and 9 with Corollaries 3 and 4 we have E
poly
MAL;+(Mn) = �(�=n) and

Epoly
MAL;�(kDNFn) = �(�=nk), thus proving that the algorithms of Valiant [24] tolerate the optimal

malicious error rate with respect to positive-only and negative-only learning. The algorithm given
in the following theorem, similar to those of Valiant [24], proves an analogous result for e�ciently
learning symmetric functions from only one type of examples in the presence of errors.

Theorem 10 Let SFn be the class of symmetric functions over x1; : : : ; xn. Then

Epoly
MAL;+(SFn) = 


�
�

n

�
:

Proof: Let � � �=8n. The positive-only algorithm A maintains an integer array P indexed
0; : : : ; n and initialized to contain 0 at each location. A takes m (calculated below) examples from

POS�
MAL, and for each vector ~v received, increments P [index(~v)], where index(~v) is the number of

bits set to 1 in ~v. The hypothesis hA is de�ned as follows: all vectors of index i are contained in
pos(hA) if and only if P [i] � (�=4n)m; otherwise all vectors of index i are negative examples of hA.

Note that hA can disagree with at most a fraction (�=4n)(n+1) < �=2 of the m vectors received

from POS�
MAL, so e

+(hA) < � with high probability by Theorem 7. To prove that e�(hA) with high
probability, suppose that all vectors of index i are negative examples of the target representation
(call such an i a negative index). Then the probability that a vector of index i is received on a call

to POS�
MAL is at most � � �=8n, since this occurs only when there is an error on a call to POS�

MAL.

Thus the probability of receiving (�=4n)m vectors of index i in m calls to POS�MAL is

GE

�
�

8n
;m;

�

4n
m

�
� e�m�=24n

by Fact CB2. The probability that some negative index is classi�ed as a positive index by hA is
thus at most

(n+ 1)e�m�=24n � �

2

for m = O((n=�)(lnn+ ln 1=�)). Thus with high probability, e�(hA) = 0, completing the proof.

Thus, with Corollary 5 we have Epoly
MAL;+(SFn) = �(�=n). We can give a dual of the above

algorithm to prove Epoly
MAL;�(SFn) = �(�=n) as well. The number of examples required by the
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algorithm of Theorem 10 is a factor of n larger than the lower bound given by Ehrenfeucht et
al. [8] for the error-free case; whether this increase is necessary for positive-only algorithms in the
presence of malicious errors is an open problem.

The next theorem demonstrates that using both positive and negative examples can signi�cantly
increase the tolerated error rate in the malicious model.

Theorem 11 Let SFn be the class of symmetric functions over x1; : : : ; xn. Then

Epoly
MAL(SFn) = 
(�):

Proof: Algorithm A maintains two integer arrays P and N , each indexed 0; : : : ; n and initialized
to contain 0 at each location. A �rst takes m (calculated below) examples from POS�

MAL and for
each vector ~v received, increments P [index (~v)], where index(~v) is the number of bits set to 1 in ~v.

A then takes m examples from NEG�
MAL and increments N [index(~v)] for each vector ~v received.

The hypothesis hA is computed as follows: all vectors of index i are contained in pos(hA) if and
only if P [i] � N [i]; otherwise, all vectors of index i are contained in neg(hA).

We now show that for su�ciently largem, A is an �=8-tolerant Occam algorithm. For 0 � i � n,
let di = min(P [i]; N [i]). Then d =

Pn
i=0 di is the number of vectors in the sample of size 2m with

which hA disagrees. Now for each i, either P [i] or N [i] is a lower bound on the number ei of
malicious errors received that have index i; let e =

Pn
i=0 ei. Note that e � d. Now the probability

that e exceeds (�=4)(2m) in m calls POS�
MAL and m calls to NEG�

MAL for � � �=8 is

GE(
�

8
; 2m;

�

4
2m) � �

for m = O(1=� ln 1=�) by Fact CB2. Thus, with high probability the number of disagreements d
of hA on the examples received is less than (�=2)m. This shows that A is an �=8-tolerant Occam
algorithm for SF, and thus is a learning algorithm for SF by Theorem 7 form = O(1=� ln 1=�+n=�).

Thus, by Theorems 1 and 11 we have Epoly
MAL(SFn) = �(�) in contrast with Epoly

MAL;+(SFn) =

�(�=n) and Epoly
MAL;�(SFn) = �(�=n), a provable increase by using both types of examples. This

is also our �rst example of a nontrivial class for which the optimal error rate �(�) of Theorem 1
can be achieved by an e�cient algorithm. Furthermore, the sample complexity of algorithm A

above meets the lower bound (within a constant factor) for the error-free case given by Ehrenfeucht
et al. [8]; thus we have an algorithm with optimal sample complexity that tolerates the largest
possible malicious error rate. This also demonstrates that it may be di�cult to prove general
theorems providing hard trade-o�s between sample size and error rate.

We note that the proof of Theorem 11 relies only on the fact that there is a small number
of equivalence classes of f0; 1gn (namely, the sets of vectors with an equal number of bits set to
1) on which each symmetric function is constant. The same result thus holds for any Boolean
representation class with this property.

Now that we have given some simple and e�cient error-tolerant algorithms, we turn to the
more abstract issue of general-purpose methods of making algorithms more tolerant to errors. It
is reasonable to ask whether for an arbitrary representation class C, polynomial learnability of C
implies polynomial learnability of C with malicious error rate �, for some nontrivial value of � that
depends on C, � and �. The next theorem answers this in the a�rmative by giving an e�cient
technique for converting any learning algorithm into an error-tolerant learning algorithm.
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Theorem 12 Let A be a polynomial-time learning algorithm for C with sample complexity SA(�; �),
and let s = SA(�=8; 1=2). Then for � � 1=2,

E
poly
MAL(C) = 


�
ln s

s

�
:

Proof: We describe a polynomial-time algorithm A0 that tolerates the desired error rate and
uses A as a subroutine. Note that SA (and hence, s) may also depend upon n in the case of
parameterized C.

Algorithm A0 will run algorithm A many times with accuracy parameter �=8 and con�dence
parameter 1=2. The probability that no errors occur during a single such run is (1 � �)s. For
� � ln s=s we have

(1� �)s �
�
1� ln s

s

�s
� 1

s2
:

(This lower bound can be improved to 1=s� for any constant � > 1 provided there is a su�ciently
small constant upper bound on �.) Thus, on a single run of A there is probability at least (1 �
�)1=s2 = 1=2s2 that no errors occur and A outputs an �=8-good hypothesis hA (call a run of A
when this occurs a successful run). A0 will run A r times. In r runs of A, the probability that no
successful run of A occurs is at most �

1� 1

2s2

�r
<
�

3

for r > 2s2 ln 3=�. Let h1A; : : : ; h
r
A be the hypotheses output by A on these r runs. Suppose hiA

is an �-bad hypothesis with respect to the target distributions; without loss of generality, suppose
e+(hiA) � �. Then the probability that hiA agrees with an example returned by the oracle POS�MAL

is then at most (1 � �)(1 � �) + � � 1 � 3�=4 for � � �=8. Thus, the probability that hiA agrees

with at least a fraction 1� �=2 of m examples returned by POS�
MAL is

LE(
3�

4
; m;

�

2
m) � e�m�=24

by Fact CB1. Then it follows that the probability that some hiA with e+(hiA) � � agrees with a

fraction 1� �=2 of the m examples returned by POS�
MAL is at most

re�m�=24 <
�

3

for m = O(1=� ln r=�). Using Fact CB2, it can be shown that for � � �=8 the probability of an
�=8-good hiA failing to agree with at least a fraction 1� �=2 of the m examples is smaller than �=3.

Thus, if A is run r times and the resulting hypotheses are tested against m examples from
both POS�

MAL and NEG�
MAL, then with probability at least 1 � � the hypothesis with the fewest

disagreements is in fact an �-good hypothesis. Note that if A runs in polynomial time, A0 also runs
in polynomial time.

Note that the trick used in the proof of Theorem 12 to eliminate the dependence of the tolerated
error rate on � is general: we may always set � = 1=2 and run A repeatedly to get a good hypothesis
with high probability (provided we are willing to sacri�ce a possible increase in the number of
examples used). This technique has also been noted in the error-free setting by Haussler et al. [10].
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It is shown by Ehrenfeucht et al. [8] that any learning algorithm A for a representation class C
must have sample complexity

SA(�; �) = 


�
1

�

�
ln
1

�
+ vcd(C)

��
:

Suppose that a learning algorithm A achieves this optimal sample complexity. Then applying
Theorem 12, we immediately obtain an algorithm for C that tolerates a malicious error rate of




�
�

vcd(C)
ln
vcd(C)

�

�
:

This rate is also the best that can be obtained by applying Theorem 12. By applying this technique
to the algorithm of Valiant [23] for the class of monomials in the error-free model, we obtain the
following corollary:

Corollary 13 Let Mn be the class of monomials over x1; : : : ; xn. Then

Epoly
MAL(Mn) = 


�
�

n
ln
n

�

�
:

This improves the malicious error rate tolerated by the polynomial-time algorithm of Valiant [24]

in Theorem 8 by a logarithmic factor. Furthermore, since Epoly
MAL;+(M) = �(�=n) this proves that, as

in the case of symmetric functions, using both oracles improves the tolerable error rate. Similarly, a
slight improvement over the malicious error rate given in Theorem 9 for kDNF can also be shown.
For decision lists, we can apply the algorithm of Rivest [19] and the sample size bounds given by
Ehrenfeucht et al. [8] to obtain the following:

Corollary 14 Let kDLn be the class of k-decision lists over x1; : : : ; xn. Then

Epoly
MAL(kDLn) = 


�
�

nk

�
:

Despite the small improvement in the tolerable error rate for monomials of Corollary 13, there
is still a signi�cant gap between the absolute upper bound of �=(1 + �) on the achievable malicious
error rate for monomials implied by Theorem 1 and the 
(�=n lnn=�) polynomial-time error rate of
Corollary 13. We now describe further improvements that allow the error rate to primarily depend
only on the number of relevant variables. We describe an algorithm tolerating a larger error rate
for the class M s

n of monomials with at most s literals, where s may depend on n, the total number
of variables. Our algorithm will tolerate a larger rate of error when the number s of relevant
attributes is considerably smaller than the total number of variables n. Other improvements in the
performance of learning algorithms in the presence of many irrelevant attributes are investigated
by Littlestone [16] and Blum [3].

We note that by applying Theorem 2 we can show that even for M1
n , the class of monomials of

length 1, the positive-only and negative-only malicious error rates are bounded by �=(n� 1). This
is again an absolute bound, holding regardless of the computational complexity of the learning
algorithm. Thus, the positive-only algorithm of Valiant [24] in Theorem 8 cannot exhibit an
improved error rate when restricted to the subclass M s

n for any value of s.
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Our error-tolerant learning algorithm for monomials is based on an approximation algorithm
for a generalization of the set cover problem that we call the partial cover problem, which is de�ned
below. This approximation algorithm is of independent interest and has found application in other
learning algorithms [14, 26]. Our analysis and notation rely heavily on the work of Chvatal [7]; the
reader may �nd it helpful to read his paper �rst.
The Partial Cover Problem:

Input: Finite sets S1; : : : ; Sn with positive real costs c1; : : : ; cn, and a positive fraction 0 < p � 1.
We assume without loss of generality that

Sn
i=1 Si = f1; : : : ; mg = T and we de�ne J =

f1; : : : ; ng.
Output: J� � J such that

j
[
j2J�

Sj j � pm

(we call such a J� a p-cover of the Si) and such that costPC (J
�) =

P
j2J� cj is minimized.

Following Chvatal [7], for notational convenience we identify a partial cover fSj1 ; : : : ; Sjsg with
the index set fj1; : : : ; jsg.

The partial cover problem is NP-hard, since it contains the set cover problem as a special case
(p = 1) [9]. We now give a greedy approximation algorithm G for the partial cover problem.
Algorithm G:

Step 1. Initialize J� = ;.
Step 2. If jSj2J� Sj j � pm then halt and output J�, since J� is a p-cover.

Step 3. Set q = pm� jSj2J� Sj j (thus q is the number of still-uncovered elements that we must
cover in order to have a p-cover). For each j 62 J�, if jSj j > q, delete any jSj j � q elements
from Sj (delete excess elements from any remaining set that covers more than q elements).

Step 4. Find a k minimizing the ratio ck=jSkj. Add k to J�, and replace each Sj by Sj � Sk .
Return to Step 2.

Chvatal [7] shows that the greedy algorithm for the set cover problem cannot do better than
H(m) times the cost of an optimal cover, where H(m) =

Pm
i=1 1=i = �(logm). By a padding

argument, this can also be shown to hold for algorithm G above, for any �xed p. We now prove
that G can always achieve this approximation bound within a constant factor.

Theorem 15 Let I be an instance of partial cover and let optPC (I) denote the cost of an optimal
p-cover for I. Then the cost of the p-cover J� produced by algorithm G satis�es

costPC (J
�) � (2H(m) + 3)optPC (I):

Proof: Let Jopt be an optimal p-cover (i.e., costPC (Jopt ) = optPC (I)). Let

Topt =
[

j2Jopt
Sj
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(these are the elements covered by Jopt ) and

T � =
[
j2J�

Sj

(these are the elements covered by J�) where J� is the p-cover output by algorithm G. Notice that
jTopt j � pm since Jopt is a p-cover.

Let Srj be set of elements remaining in the set Sj immediately before Step 3 in algorithm G
is executed for the rth time (i.e., at the start of the rth iteration of Steps 2-4). By appropriate
renaming of the Sj , we may assume without loss of generality that J� = f1; : : : ; rg (recall that J�
is the set of indices of sets chosen by algorithm G) immediately after Step 4 is executed for the rth
time (i.e., at the end of the rth iteration of Steps 2-4). Let J� = f1; : : : ; tg when G halts, so there
are a total of t iterations.

De�ne T �� = T � � S0t, where S 0t is the union of all elements deleted from the set St on all
executions of Step 3. Intuitively, T �� consists of those elements that algorithm G \credits" itself
with having covered during its execution (as opposed to those elements regarded as \excess" that
were covered because G may cover more than the required minimum fraction p). We say that a set
Sj is at capacity when in Step 3, jSj j � q. Note that once Sj reaches capacity, it remains at capacity
until it is chosen in Step 4 or until G halts. This is because if l elements are removed from Sj on
an execution of Step 4, the value of q in Step 3 will decrease by at least l on the next iteration.
Furthermore, since G halts the �rst time a set at capacity is chosen, and by the above de�nitions
St is the last set chosen by G, we have that T �� =

St
r=1 S

r
r . Thus we have jS0tj = jT �j � pm and

jT ��j = pm.
The set Srr can be regarded as the set of previously uncovered elements that are added to T ��

on the rth iteration. We wish to amortize the cost cr over the elements covered. For each i 2 T �,
we de�ne a number yi, which is intuitively the cost we paid to put i in T �:

yi =

(
cr=jSrr j if for some r, i 2 Srr
0 i is not in T ��

Since for i 2 T � � T ��, yi = 0, we haveX
i2T ��

yi =
X
i2T �

yi

=
tX

r=1

X
i2Sr

r

yi

=
tX

r=1

cr

=
X
j2J�

cj

= costPC (J
�):

Thus to bound costPC (J�), we now bound
P

i2T �� yi in two parts, �rst bounding
P

i2T ���Topt yi
and then bounding

P
i2T ��\Topt yi.

23



Lemma 16 X
i2T ���Topt

yi � (H(m) + 2)optPC (I):

Proof: If T �� � Topt then the lemma follows trivially. We therefore assume T �� 6� Topt . Since
jTopt j � pm and jT ��j = pm, this implies Topt � T �� 6= ;. Pick j 2 Jopt such that

cj
jSj � T ��j

is minimized. Now

optPC (I)

jTopt � T ��j =
P

i2Jopt ci
jSi2Jopt(Si � T ��)j

�
P

i2Jopt ciP
i2Jopt jSi � T ��j

� cj
jSj � T ��j :

Thus
optPC (I) � jTopt � T ��j cj

jSj � T ��j :

Let r0 be the �rst execution of Step 3 in which jSj j > q (i.e., Sj reaches capacity on the r0th
iteration). We will analyze the behavior of G before and after the r0th iteration separately. Let T ��0
denote the set of elements that were added to T �� prior to the r0 iteration. For each i 2 T ��0 �Topt ,
the cost yi must satisfy

yi � cj
jSj � T ��j

because otherwise G would have already added Sj to J
�. Since jTopt � T ��j � jT ��� Topt j we haveX

i2T ��
0
�Topt

yi �
X

i2T ��
0
�Topt

cj
jSj � T ��j

� jTopt � T ��j cj
jSj � T ��j

� optPC (I):

For iterations r � r0, whenever an element i is added to T ��1 = T �� � T ��0 , an element is deleted
from Sj in Step 3, since Sj is at capacity. We charge yi to this element as follows:X

i2T ��
1
�Topt

yi �
X
i2T ��

1

yi

=
tX

r=r0

X
i2Sr

r

yi

�
t�1X
r=r0

X
i2Sr

r

yi + cj
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(because on iteration t, both Sj and St are at capacity, so ct � cj)

�
t�1X
r=r0

cr
jSrr j

jSrj � Sr+1j j+ cj

(because since Sj is at capacity, jSrj � Sr+1j j = jSrr j)

�
t�1X
r=r0

cj
jSrj j

jSrj � Sr+1j j+ cj

(because otherwise G would have chosen Sj at time r)

= cj

t�1X
r=r0

1

jSrj j
jSrj � Sr+1j j+ cj

� cjH(jSjj) + cj

= cj(H(jSjj) + 1):

Combining the two parts, we have

X
i2T ���Topt

yi =
X

i2T ��
0
�Topt

yi +
X

i2T ��
1
�Topt

yi

� optPC (I) + cj(H(m) + 1)

� (H(m) + 2)optPC (I):

(Lemma 16)

Lemma 17 X
i2T ��\Topt

yi � (H(m) + 1)optPC (I):

Proof: We generalize the idea used by Chvatal [7]. For j 2 Jopt and Sj TT �� 6= ;,

X
i2Sj\T ��

yi =
tX

r=1

X
i2Sj\Sr

r

yi

�
t�1X
r=1

cr
jSrr j

jSrj � Sr+1j j+ cj

(because the average cost of elements in St is lower than in Sj , and we are summing over at most
jSj j elements)

�
sX

r=1

cj
jSrj j

jSrj � Sr+1j j+ cj
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(where s = minfmaxfk : Skj 6= ;g; tg)

= cj

sX
r=1

1

jSrj j
jSrj � Sr+1j j+ cj

� cjH(jSjj) + cj

= cj(H(jSjj) + 1):

Now by the above, X
i2T ��\Topt

yi �
X

j2Jopt

X
i2Sj\T ��

yi

�
X

j2Jopt
(H(m) + 1)cj

� (H(m) + 1)optPC (I):

(Lemma 17)
Combining Lemmas 16 and 17, we haveX

j2J�

cj =
X
i2T �

yi

=
X
i2T ��

yi

=
X

i2T ���Topt
yi +

X
i2T ��\Topt

yi

� (H(m) + 2)optPC (I) + (H(m) + 1)optPC (I)

= (2H(m) + 3)optPC (I):

This completes the proof of Theorem 15.
We now use algorithm G as a subroutine in constructing our error-tolerant learning algorithm

for M s
n.

Theorem 18 LetM s
n be the class of monomials over x1; : : : ; xn containing at most s literals. Then

Epoly
MAL(M

s
n) = 


 
�

s log s logn
�

!
:

Proof: We construct an Occam algorithm A for M s
n that tolerates the desired malicious error

rate, and uses the algorithm G for the partial cover problem as a subroutine.
Let 0 � � < �=8, and let c 2 M s

n be the target monomial. A �rst takes mN points from the

oracle NEG�
MAL, where mN = O(1=� ln 1=�+ 1=� ln jM s

nj) as in the statement of Theorem 7. Let S

denote the multiset of points received by A from NEG�
MAL. For 1 � i � n, de�ne the multisets

S0i = f~v 2 S : vi = 0g
and

S1i = f~v 2 S : vi = 1g:

26



We now de�ne a pairing between monomials and partial covers of the set S as follows: the literal
xi is paired with the partial cover consisting of the single set S0i and the literal xi is paired with the
partial cover consisting of the single set S1i . Then any monomial c is paired with the partial cover
obtained by including exactly those S0i and S

1
i that are paired with the literals appearing in c. Note

that the multiset neg(c)\ S contains exactly those vectors that are covered by the corresponding
partial cover.

Now with high probability, there must be some collection of the S0i and S1i that together form
a 1� �=2 cover of S: namely, if (without loss of generality) the target monomial c 2M s

n is

c = x1 � � �xrxr+1 � � �xs
then with high probability the sets

S01 ; : : : ; S
0
r ; S

1
r+1; : : : ; S

1
s

form a 1� �=2 cover of S, since for � � �=8, the probability that the target monomial c disagrees

with a fraction larger than �=2 of a sample of size mN from NEG�
MAL can be shown to be smaller

than �=2 by Fact CB2.
Thus, A will input the sets S01 ; : : : ; S

0
n; S

1
1; : : : ; S

1
n and the value p = 1 � �=2 to algorithm G.

The costs for these sets input to G are de�ned below. However, note that regardless of these costs,
if hG is the monomial paired with the p-cover output by G, then since jneg(hG)\Sj � (1� �=2)mN

(where neg(hG) \ S is interpreted as a multiset), e�(hG) < � with high probability by Theorem 7.
We now show that for � as in the statement of the theorem, we can choose the costs input to G so
as to force e+(hG) < � as well.

For any monomial c, let p(c) denote the probability that c disagrees with a vector returned

by POS�
MAL

1, and let costPC (c) denote the cost of the partial cover that is paired with c. To

determine the costs of the sets input to G, A next samples POS�
MAL enough times (determined by

application of Facts CB1 and CB2) to obtain an estimate for p(xi) and p(xi) for 1 � i � n that is
accurate within a multiplicative factor of 2 | that is, if p̂(xi) is the estimate computed by A, then
p(xi)=2 � p̂(xi) � 2p(xi) with high probability for each i. The same bounds hold for the estimate
p̂(xi). Then the cost for set S0i input to G by A is p̂(xi) and the cost for set S1i is p̂(xi).

Note that for any monomial c = x1 � � �xrxr+1 � � �xs, we have with high probability

p(c) � p(x1) + � � �+ p(xr) + p(xr+1) + � � �+ p(xs)

� 2p̂(x1) + � � �+ 2p̂(xr) + 2p̂(xr+1) + � � �+ 2p̂(xs)

= 2costPC (c):

By Theorem 18, the output hG of G must satisfy

costPC (hG) � (H(mN) + 2)costPC (copt) (3)

1Note that technically this probability may not be well-de�ned since the behavior of the oracle POS
�

MAL may
depend on the entire history of the computation so far. If this is the case, however, we may use the following trick:
rather than running the algorithm using POS

�

MAL
, we instead take a su�ciently large number of examples l from

POS
�

MAL, and then run the algorithm using a uniform distribution over these l examples (treated as a multiset, not a
set). The algorithm may need to be run more than once in order to �nd an appropriate setting of the error parameter
used; this technique is detailed and shown correct in Theorem 20. For the rest of the proof, therefore, we assume
without loss of generality that p(c) is well-de�ned.
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where copt is the monomial paired with a p-cover of minimum cost. But for the target monomial c
we have

p(c) � � (4)

2sp(c) � costPC (c) (5)

where Equation 4 holds absolutely and Equation 5 holds with high probability, since c contains at
most s literals.

From Equations 3, 4 and 5 we obtain with high probability

p(hG) � 2costPC (hG)

� 2(H(mN) + 2)costPC (copt)

� 2(H(mN) + 2)costPC (c)

� 4sp(c)(H(mN) + 2)

� 4s�(H(mN) + 2):

Thus, if we set

� =
�

4s(H(mN) + 2)
= 
(

�

s logmN
)

then e+(hG) < � with high probability by Theorem 7. We can remove the dependence of � on � by
method used in the proof of Theorem 12, thus obtaining an error rate of




 
�

s log s logn
�

!

completing the proof.
As an example, if s =

p
n then Theorem 18 gives

Epoly
MAL(M

p
n

n ) = 
(
�p

n log n
�

)

as opposed to the the bound of 
(�=n ln �=n) of Theorem 13.
Littlestone [16] shows that the Vapnik-Chervonenkis dimension ofM s

n is �(s ln(1+n=s)). Since
the algorithm of Valiant [23] can be modi�ed to have optimal sample complexity forM s

n, by applying
Theorem 12 to this modi�ed algorithm we obtain

E
poly
MAL(M

s
n) = 


 
� ln( s� ln(1 +

n
s ))

s ln(1 + n
s )

!
:

This lower bound on Epoly
MAL(M

s
n) is incomparable to that of Theorem 18. We may decide at run

time which algorithm will tolerate the larger error rate, thus giving

Epoly
MAL(M

s
n) = 


 
min

 
� ln( s� ln(1 +

n
s ))

s ln(1 + n
s )

;
�

s log s logn
�

!!
:

By using transformation techniques similar to those described Kearns et al. [13] it can be shown
that the algorithm of Theorem 18 (as well as that obtained from Theorem 12) can be used to
obtain an improvement in the error rate over the negative-only algorithm of Valiant [24] for the
class kDNFn;s of kDNF formulae with at most s terms. Briey, the appropriate transformation
regards a kDNF formulae as a 1DNF formulae in a space of �(nk) variables, one variable for each
of the possible terms (monomials) of length at most k.
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5 Limits on e�cient learning with errors

In Section 3, we saw that there was an absolute bound of �=(1 + �) on the achievable malicious error
rate for most interesting representation classes. It was also argued there that, at least for our �nite
representation classes over f0; 1gn, this bound could always be achieved by a super-polynomial
time exhaustive search learning algorithm. Then in Section 4 we gave polynomial-time learning
algorithms that in some cases achieved the optimal error rate O(�), but in other cases fell short.
These observations raise the natural question of whether for some classes it is possible to prove
bounds stronger than �=(1 + �) on the malicious error rate for learning algorithms constrained
to run in polynomial time. In particular, for parameterized representation classes, under what
conditions must the error rate tolerated by a polynomial-time learning algorithm decrease as the
number of variables n increases? If we informally regard the problem of learning with malicious
errors as an optimization problem where the objective is to maximize the achievable error rate in
polynomial time, and �=(1 + �) is the optimal value, then we might expect such hardness results to
take the form of hardness results for the approximation of NP-hard optimization problems. This
is the approach we pursue in this section.

By reducing standard combinatorial optimization problems to learning problems, we state the-
orems indicating that e�ciently learning with an error rate approaching �(�) is eventually as hard
as approximations for NP-hard problems.

In Section 4 we gave an error-tolerant algorithm for learning monomials by monomials that was
based on an approximation algorithm for a generalization of set cover. Our next theorem gives a
reduction in the opposite direction: an algorithm learning monomials by monomials and tolerating
a malicious error rate approaching �(�) can be used to obtain an improved approximation algorithm
for set cover.

Theorem 19 Let Mn be the class of monomials over x1; : : : ; xn. Suppose there is a polynomial-
time learning algorithm A for Mn using hypothesis space Mn such that

Epoly
MAL(Mn; A) =

�

r(n)
:

Then there is a polynomial-time algorithm for the weighted set cover problem that outputs (with
high probability) a cover whose cost is at most 2r(n) times the optimal cost, where n is the number
of sets.

Proof: We describe an approximation algorithm A0 for set cover that uses the learning algorithm
A as a subroutine. Given an instance I of set cover with sets S1; : : : ; Sn and costs c1; : : : ; cn, let
Jopt � f1; : : : ; ng be an optimal cover of T =

Sn
j=1 Sj = f1; : : : ; mg, where we identify a cover

fSj1 ; : : : ; Sjsg with its index set fj1; : : : ; jsg. Let costSC (J) denote the set cover cost of any cover J
of T , and let optSC (I) = costSC (Jopt ). As in the proof of Theorem 18, we pair a cover fj1; : : : ; jsg
of T with the monomial xj1 � � �xjs over the variables x1; : : : ; xn. Let copt be the monomial paired
with the optimal cover Jopt .

The goal of A0 is to simulate algorithm A with the intention that copt is the target monomial,
and use the monomial hA output by A to obtain the desired cover of T . The examples given to A on
calls to NEG�

MAL during this simulation will be constructed so as to guarantee that the collection

of sets paired with hA is actually a cover of T , while the examples given to A on calls to POS�MAL

guarantee that this cover has a cost within a multiplicative factor of 2r(n) of the optimal cost.
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We �rst describe the examples A0 generates for A on calls to NEG�
MAL. For each i 2 T , let

~ui 2 f0; 1gn be the vector whose jth bit is 0 if and only if i 2 Sj , and let the multiset U be
U =

S
i2Tf~uig. Then fj1; : : : ; jsg is a cover of T if and only if U � neg(xj1 � � �xjs). In particular,

we must have U � neg(copt). Thus, de�ne the target distribution D� for copt to be uniform over U .

Note that this distribution can be generated in polynomial time by A0. On calls of A to NEG�
MAL,

A0 will simply draw from D�; thus if we regard copt as the target monomial, there are no errors in
the negative examples. A0 will simulate A with accuracy parameter � � 1=jU j, thus forcing A to
output an hypothesis monomial hA such that U � neg(hA); by the above argument, this implies
that the collection of sets paired with the monomial hA is a cover of T . Note that jU j (and therefore
1=�) may be super-polynomial in n, but it is polynomial in the size of the instance I .

We now describe the examples A0 generates for A on calls to POS�MAL. Instead of de�ning
the target distribution D+ for copt , we de�ne an induced distribution I+ from which the oracle

POS�
MAL will draw. Thus, I+ will describe the joint behavior of the underlying distribution D+

on copt and an adversary generating the malicious errors. For each 1 � j � n, let ~vj 2 f0; 1gn be
the vector whose jth bit is 0, and all other bits are 1. Let I+(~vj) = cj for each j, where cj is the
cost of the set Sj , and we assume without loss of generality that

Pn
j=1 cj � �=r(n) (if not, we can

normalize the weights without changing the relative costs of covers). We complete the de�nition
of I+ by letting I+((1; : : : ; 1)) = 1 �Pn

j=1 cj . Then the probability that a monomial xi1 � � �xis
disagrees with a point drawn from POS�

MAL is exactly ci1 + � � �+ cis, the cost of the corresponding
cover. Thus since optSC (I) �

Pn
j=1 cj � �=r(n) = �, I+ is an induced distribution for copt with

malicious error rate �. Note that I+ can be generated by A0 in polynomial time. When A requests
an example from POS�MAL, A

0 will simply draw from I+.

A0 will run algorithm A many times with the oracles POS�MAL and NEG�
MAL for copt described

above, each time with a progressively smaller value for the accuracy parameter, starting with
� = 1=jU j.

Now if optSC (I) << �=r(n), then algorithm A may output a monomial hA whose corresponding
cover has a cost much larger than 4r(n)�optSC (I), since hA is only guaranteed to satisfy e+(hA) < �.

We solve this problem by repeated scaling: A0 �rst runs algorithm A with the oracles POS�
MAL and

NEG�
MAL as they have been described. After each run, A0 divides the accuracy parameter � by 2,

so that on some run �=2r(n) � optSC (I) � �=r(n). On this run, we may regard I+ as an induced
distribution on the positive examples of copt , with malicious error rate at most � = �=r(n) �
2optSC (I). Then the error e+(hA) on the underlying distribution D+ over pos(copt) is at most � �
2r(n)optSC (I). The desired cover is thus the one paired with the monomial hA. Note that without
knowing copt , we have no way of knowing what the underlying target distribution D+ is, but it is
enough to know that I+ is a \close" distribution. The only problem with the simulation described
occurs when optSC (I) <<

Pn
j=1 cj, in which case it may take a super-polynomial number of runs

of A to guarantee �=2r(n) � optSC (I) � �=r(n). We solve this by preprocessing: before running
the described simulation, A0 runs the greedy approximation algorithm analyzed by Chvatal [7] on
the set cover instance I , and removes any set whose cost is larger than the entire cost of the greedy
cover. Then for the new (smaller) instance I 0, every cost is within a multiplicative factor of logm
of every other cost.

Thus, if r(n) << log n, then Theorem 19 says that a polynomial time algorithm A forMn (using

hypothesis space Mn) tolerating E
poly
MAL(Mn; A) � �=r(n) would imply a signi�cant breakthrough

in approximation algorithms for set cover, since the best algorithm for this problem remains the
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greedy method analyzed by Chvatal and others [7, 11, 17, 18]. Note that the proof of Theorem 19
in fact shows the result holds for the class of monotone monomials.

Theorem 18 took an approximation algorithm for an optimization problem (the partial cover
problem), and used it as a subroutine in obtaining an error-tolerant learning algorithm forM s

n. The-
orem 19 proved that when learning algorithms are restricted to hypothesis class M , any learning
algorithm forM yields an algorithm for set cover with only a constant factor blowup in the approx-
imation. Thus, we see that there are strong ties between learning with errors and approximating
combinatorial optimization problems. Our goal now is to generalize and strengthen these ideas.
We show that for any representation class C, the problem of learning C with errors is equivalent
to a combinatorial optimization problem with only a constant factor blowup in the approximation
in each direction of the reduction.

For domain X , de�ne a balanced sample of X to be a sample

S =< x1; 1 >; : : : ; < xm; 1 >;< y1; 0 >; : : : ; < ym; 0 >

where xi; yi 2 X; 1 � i � m. If C is a representation class over X and c 2 C, de�ne

costMD(c; S) = jf< xi; 1 >2 S : xi 2 neg(c)gj
+jf< yi; 0 >2 S : yi 2 pos(c)gj+ 1:

Thus, costMD(c; S) is simply one more than the number of disagreements between the balanced
sample S and the representation c. We now de�ne the following optimization problem for C:
The Minimize Disagreements Problem for C (denoted MD(C )):

Input: Balanced sample S of X .

Output: Representation c 2 C such that costMD(c; S) is minimized.

Theorem 20 Let C be a representation class over X. If there exists a polynomial-time algorithm
A0 for MD(C ) that outputs hA0 2 C such that costMD(hA0 ; S) is at most r times the optimal cost,
then C is learnable by C by an algorithm A that runs in time polynomial in 1=�; 1=� and ln jCj,
and satis�es

Epoly
MAL(C;A) �

�

8r
:

Conversely, if algorithm A learns C by C in polynomial time with error rate Epoly
MAL(C;A) � �=r,

then there exists a polynomial-time algorithm A0 for MD(C ) that outputs (with high probability)
hA0 2 C such that costMD(hA0 ; S) is at most 2r times the optimal cost.

Proof: Let S be a balanced sample of X , and let A0 be an approximation algorithm for MD(C )
such that the output hA0 satis�es costMD(hA0 ; S) � r � optMD(S), where

optMD = min
h2C

(costMD(h; S)):

Let � = �=8r. To learn C by C in polynomial time with error rate �, we take m random examples

x1; : : : ; xm from the oracle POS�MAL and m random examples y1; : : : ; ym from the oracle NEG�
MAL,

where m is as in the statement of Theorem 7. Let S be the balanced sample consisting of the xi and
yj . Now with probability at least 1� �, the target representation c 2 C disagrees with fewer than
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4�m elements of S by Fact CB2, so optMD(S) � 4�m with high probability. Thus, algorithm A0,
when given S as input, will satisfy costMD(hA0 ; S) � r(4�m) = (�=2)m. This implies that hA0 can
disagree with at most a fraction �=2 of the xi and at most a fraction �=2 of the yi. By Theorem 7,
hA0 is an �-good hypothesis with high probability.

For the other direction, we use an algorithm A for learning C by C with � = �=r to obtain an
approximation algorithm for MD(C ) as follows: given the balanced sample S, let hopt 2 C be such
that costMD(hopt ; S) = optMD(S) and assume without loss of generality that m=r � optMD(S)
(otherwise any hypothesis has cost at most 2r times the optimal). De�ne

c0 = maxfjfxi 2 S : xi 2 neg(hopt)gj; jfyi 2 S : yi 2 pos(hopt )gjg:

Note that optMD(S) � c0 � optMD(S)=2. Now let I+ be the uniform distribution over the xi,
and let I� be the uniform distribution over the yi. Then I+ and I� can be regarded as induced
distributions for hopt with error rate �0 = c0=m. I+ is induced by the joint behavior of the uniform
distribution D+ over fxi 2 S : xi 2 pos(hopt)g, and an adversary that draws a point uniformly
from fxi 2 S : xi 2 neg(hopt)g; I� can be decomposed over the yi in a similar fashion.

Algorithm A0 runs algorithm A many times, starting with accuracy parameter � = 1, and
drawing from I+ on each call to POS�

MAL and from I� on each call to NEG�
MAL. Note that if hA is

an �-good hypothesis with respect to D+ and D�, then we have costMD(hA; S) � 2�m+optMD(S).
After each run, A0 divides � by 2. On some run of A, �=r � c0=2m, and for this run we have
costMD(hA; S) � (r + 1)optMD(S) � 2roptMD(S), as desired.

The �rst direction of this equivalence is also given by Blumer et al. [5]. Note that this equivalence
as it is stated is representation-based, in the sense that it relies on the learning algorithm representing
its hypothesis as a monomial. With more technical de�nitions for the problem MD(C ;H ), we can
in fact give a straightforward generalization of Theorem 20 for the problem of learning C by H
in the presence of malicious errors, giving an equivalent optimization problem. In addition to
simplifying the analysis of learning with errors in the distribution-free model | we only need to
look at the equivalent optimization problem | these results allow us to weaken our restrictions
on the adversary generating the errors. In particular, since there is no guarantee in the Minimize
Disagreements problem on how the errors in the input sample are generated, it can be shown that
the adversary gains no power by being allowed to see all coin ips of the learning algorithm, and
all examples to be received by the learning algorithm before he generates the errors. This allows
our model to incorporate faults such as error bursts, where all examples are in error for a short
amount of time.

Figures 1 and 2 summarize some of the results in this paper.
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EMAL;+(C) ECN ;+(C)
and EMAL(C) and ECN (C)

EMAL;�(C) ECN ;�(C)
Upper bound
on the optimal �=(t(C)� 1) �=(1 + �) �=(1 + �); �=(t(C)� 1) 1=2

error rate [1]

Figure 1: Summary of general upper bounds on the optimal error rates for the malicious and noise
models. We denote by t(C) the largest value of t such that C is (positive or negative) t-splittable.

Epoly
MAL;+(C)

Epoly
MAL;�(C)

and Epoly
MAL(C) Epoly

CN (C)

Epoly
CN ;+

(C)

Class C Epoly
CN ;�

(C)

Upper bound O(�)
Mn �(�=n) �(1)

Lower bound [24] 
(ln(n=�)�=n) [1]
Upper bound O(�)

M s

n
�(�=n) 
((�=s) ln((s=�) ln(1 + n=s))=ln(1 + n=s)) �(1)

Lower bound [24] 
((�=s)(1=log((s lnn)=�))) [1]
Upper bound

SFn �(�=n) �(�) �(1)
Lower bound

Figure 2: Summary of upper and lower bounds on the optimal polynomial time error rate (malicious
and noise models) for the classes of monomials Mn, monomials of length s M s

n, and symmetric
functions SFn.
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