Model Checking with CTL

Presented by Jason Simas
Model Checking with CTL

Based Upon:

Model Checking. Clarke, Grumberg and Peled. 1999. (1-26)
Content

- Context
 - Model Checking
 - Models

- CTL
 - Syntax
 - Semantics
 - Checking Algorithm
Model Checking

- $M \models \varphi$
 - M is the model
 - Requires a description language
 - φ is the property to check
 - Requires a specification language
 - \models is the “satisfaction relation”
 - Algorithm to check whether $(M, \varphi) \in \models$
 - Outputs either “yes” or “no” (+ trace)
Models

- Fundamentals
- Language Definition
- Example Model
Fundamentals

- Want to prove properties
- Model all relevant sub properties
- Model abstraction level \leq properties
- \Rightarrow Model how properties change
 - Over time? (sort of)
 - Over property change? (yes)
 - Abstract out time
Modeling Property Change

- Model = States + Transitions + Labels
 - States
 - Possibilities of which properties can be true together +
 - Possibilities of which properties can follow each other +
 - Transitions
 - Possibilities of which states can follow each other
 - Labels
 - Possibilities of which properties are true for each state
- States need not be unique wrt labels
- Use a directed graph
Definition: Model for CTL

\[M = (S, \rightarrow, L) \]

- \(S \) is a finite set of states \(\{s_0, s_1, \ldots, s_n\} \)
- \(\rightarrow \) is a set of transitions
 - \(\rightarrow \subseteq S \times S \) and
 - for every \(s \in S \) there is some \(s' \in S \) such that \(s \rightarrow s' \)
- \(L \) is a labeling function \(L: S \rightarrow \mathcal{P}(\text{Atoms}) \)
 - \(S \) is the set of states of \(M \)
 - \(\mathcal{P}(\text{Atoms}) \) is the power set of \(\text{Atoms} \)
 - \(\text{Atoms} \) is the set of all propositions
Mutual Exclusion (Interleaved)
Mutual Exclusion (Interleaved)

\[M = (S, \rightarrow, L) \text{ where} \]

- \[S = \{ s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_9, \} \]
- \[\rightarrow = \]
 - \{ (s_0, s_1), (s_1, s_2), (s_1, s_3), (s_2, s_4), (s_3, s_4), (s_2, s_0), (s_4, s_5), (s_0, s_5), (s_5, s_6), (s_5, s_9), (s_6, s_7), (s_9, s_7), (s_6, s_0), (s_7, s_1) \}
- \[L = \]
 - \{ (s_0, \{n_1, n_2\}), (s_1, \{t_1, n_2\}), (s_2, \{c_1, n_2\}), (s_3, \{t_1, t_2\}), (s_4, \{c_1, t_2\}), (s_5, \{n_1, t_2\}), (s_6, \{n_1, c_2\}), (s_7, \{t_1, c_2\}), (s_9, \{t_1, t_2\}) \}

- Note: \(s_3, s_9 \) are distinct for “turns”
Properties

- Remember \(M \models \varphi \)
 - \(\varphi \) specifies properties of states/transitions
 - Need a specification language for \(\varphi \), CTL

- CTL: Computation Tree Logic
 - Specifying properties of “computation trees”
 - “Logic” = Language + Inference Rules
 - Inference Rules = Algorithm for check
Computation Trees

- A tree such that starting at some state \(s \),
 - There exists edges to each of its children \((s \rightarrow s') \)
 - Same is true for each child, ad infinitum
Example: “Efficiency”

- For each “cycle” (n_i → n_i) some process enters its critical section
- CTL: $AG ((s_1 \lor s_5) \rightarrow AX (A\neg(s_1 \lor s_5) \lor (c_1 \lor c_2)))$
CTL Syntax

\[\varphi := \]
\[\bot | \top | p | \]
\[(\neg \varphi) | (\varphi \land \varphi) | (\varphi \lor \varphi) | (\varphi \rightarrow \varphi) \]
\[AX \varphi | EX \varphi | A[\varphi U \varphi] | E[\varphi U \varphi] | AG \varphi | EG \varphi | AF \varphi | EF \varphi \]

Atoms: \(\bot, \top, p \)
- p is an arbitrary atomic property either true or false
 - Example: \(c_1 \): “process 1 is in its critical section”

Propositional Connectives: \(\land, \lor, \neg, \rightarrow \)

Temporal Connectives: \(EG, AG, EX, AX, EF, AF, EU, AU \)
- Note: \(EU \varphi_1 \varphi_2 \) same as \(E[\varphi_1 U \varphi_2] \)

Binding Precedence:
- Unary Connectives: \(\neg, AX, EX, AG, EG, AF, EF \)
- Binary Connectives: \(\rightarrow, AU, EU \)

\(\top, c_1, c_1 \land c_2, AX (c_1 \land c_2), A[c_1 U c_1], E[\top U (AX (c_1 \land c_2))] \)
CTL Semantics

- $M,s \models \varphi$ where φ is a CTL formula
 - "is φ true for the model M at state s?"
 - when s is the initial state: $M \models \varphi$
 - Irrelevant whether φ is true/false at other states

- Temporal Connectives:
 - A,E: range over paths from s
 - G,X,F,U: range over states on a path from s
\[\top, \bot, p \]

- \(M,s \models \top \) and not \(M,s \models \bot \) for all \(s \in S \)

- \(M,s \models p \) iff \(p \in L(s) \)
\[M,s \models \neg \varphi \text{ iff not } M,s \models \varphi \]
\(\land, \lor \)

- \(M,s \models \varphi_1 \land \varphi_2 \iff M,s \models \varphi_1 \) and \(M,s \models \varphi_2 \)
- \(M,s \models \varphi_1 \lor \varphi_2 \iff M,s \models \varphi_1 \) or \(M,s \models \varphi_2 \)
\[M,s \models \varphi_1 \rightarrow \varphi_2 \iff \text{not } M,s \models \varphi_1 \text{ or } M,s \models \varphi_2 \]
AX, EX

- AX
 - $M,s \models AX \varphi$ iff for all s' such that $s \rightarrow s'$ we have $M,s' \models \varphi$
 - “For all paths, for the next state, φ is true”

- EX
 - $M,s \models EX \varphi$ iff for some s' such that $s \rightarrow s'$ we have $M,s' \models \varphi$
 - “For some path, for the next state, φ is true”
M, s |= AG φ iff for all paths s_1 → s_2 → s_3 → ... where s_1 equals s and for all s_i along the path, we have M, s_i |= φ

“For all paths, for all states along each path, φ is true”
\[\text{EG} \]

- \(M, s \models \text{EG} \varphi \) iff for some path \(s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ... \) where \(s_1 \) equals \(s \) and for all \(s_i \) along the path, we have \(M, s_i \models \varphi \)
 - “For some path, for all states along the path, \(\varphi \) is true”
M,s \models AF \phi \text{ iff for all paths } s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots \text{ where } s_1 \text{ is } s \text{ and for some } s_i \text{ along each path, we have } M,s_i \models \phi

- “For all paths, for some state along each path, } \phi \text{ is true“}
EF

- $M, s \models EF \varphi$ iff for some path $s_1 \to s_2 \to s_3 \to \ldots$ where s_1 equals s and for some s_i along the path, we have $M, s_i \models \varphi$
 - “For some path, for some state along each path, φ is true”
M, s \models A [\varphi_1 \text{ U } \varphi_2] \text{ iff for all paths } s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots \text{ where } s_1 \text{ equals } s, \text{ each path satisfies } \varphi_1 \text{ U } \varphi_2 \text{ (i.e. there is some } s_i \text{ along the path such that } M, s_i \models \varphi_2 \text{ and for each } j < i \text{ we have } M, s_j \models \varphi_1)\n
“\text{For all paths, for every state in each path } \varphi_1 \text{ until } \varphi_2”
EU

- \(M, s \models E [\varphi_1 U \varphi_2] \) iff for some path \(s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow... \)
 where \(s_1 \) equals \(s \), the path satisfies \(\varphi_1 U \varphi_2 \)
 (i.e. there is some \(s_i \) along the path such that \(M, s_i \models \varphi_2 \) and for each \(j < i \) we have \(M, s_j \models \varphi_1 \))
- “For some path \(\varphi_1 \) until \(\varphi_2 \)”
Inclusion of “s” in Condition

- “s” is the first state checked
 - For G, F, U
 - But not for X

Examples:
- \(M \models AF (n_1 \land n_2) \)
- \(M \models EG \neg(n_1 \land n_2) \)
- \(M \models A [\perp U (n_1 \land n_2)] \)

To exclude “s”, use X \(\varphi \)
Mutual Exclusion Properties

- **Safety:**
 - Only one process shall be in its critical section at any time
 - $AG \neg(c_1 \land c_2)$
- **Liveness:**
 - Whenever any process wants to enter its critical section, it will eventually be permitted to do so
 - $AG (t_1 \rightarrow AF c_1) \land AG (t_2 \rightarrow AF c_2)$
- **Non-blocking**
 - A process can always request to enter its critical section
 - $AG (n_1 \rightarrow EX t_1) \land AG (n_2 \rightarrow EX t_2)$
- **No strict sequencing:**
 - Processes need not enter their critical section in strict sequence
 - $EF (c_1 \land E[c_1 U (\neg c_1 \land E[\neg c_2 U c_1])]) \lor$
 $EF (c_2 \land E[c_2 U (\neg c_2 \land E[\neg c_1 U c_2])])$
Checking Algorithm

- Minimal Set of Connectives
- Algorithm
- Correctness
- Complexity
- Implementation
Minimal Set of Connectives

- Two CTL formulas φ and ψ are semantically equivalent iff any state in any model which satisfies one of them also satisfies the other
 - De Morgan’s Law
 - $\neg AF \varphi = EG \neg \varphi$
 - $\neg EF \varphi = AG \neg \varphi$
 - Minimal Set of Connectives: $\land, \neg, \bot, AF, EX, EU$
 - Translate: AG, EG, EF, AX, AU
 - For AG: $AG \varphi = \neg EF \neg \varphi$
 - For EG: $EG \varphi = \neg AF \neg \varphi$
 - For EF: $EF \varphi = E [\bot U \varphi]$
 - For AX: $AX \varphi = \neg EX \neg \varphi$
 - For AU: $A [\bot U \varphi] = AF \varphi$
Algorithm

- **Input:** The model M and the CTL formula φ
- **Output:** The set of states of M that satisfy φ
- **Steps:**
 - Translate φ to φ' where φ' only has connectives in the minimal set
 - Label the states of M with the sub formulas of φ that are satisfied there, starting with the smallest sub formulas and working outwards towards φ
 - If s_0 is an element of the output, then “yes”
\(\bot \): then no states are labeled with \(\bot \)

\(\top \): then all states are labeled with \(\top \)
P, ¬

- p: then label s with p if $p \in L(s)$
- $\neg \psi_1$: label s with $\neg \psi_1$ if s is not already labeled with ψ_1
\(\land, \lor \)

- \(\psi_1 \land \psi_2\): label \(s\) with \(\psi_1 \land \psi_2\) if \(s\) is already labeled with both \(\psi_1\) and \(\psi_2\)
- \(\psi_1 \lor \psi_2\): label \(s\) with \(\psi_1 \lor \psi_2\) if \(s\) is already labeled with \(\psi_1\) or \(\psi_2\)
EX

- EX ψ_1: label any state with EX ψ_1 if one of its successors is labeled with ψ_1
AF

- AF ψ_1:
 - If any state s is labeled with ψ_1, label it with AF ψ_1
 - Repeat: label any state with AF ψ_1 if all successor states
EU

- $E[\psi_1 \cup \psi_2]$:
 - If any state s is labeled with ψ_2, label it with $E[\psi_1 \cup \psi_2]$
 - Repeat: label any state with $E[\psi_1 \cup \psi_2]$ if it is labeled with ψ_1 and at least one of its successors is labeled with $E[\psi_1 \cup \psi_2]$, until there is no change
Correctness: Termination

- Repeat until no change of AF and EU
 - Required since algorithm may add states and existence of states is part of condition
- Problem: “repeat” may not terminate
- Show that the functions for AF and UE terminate
 - Show that \(F_0 (F_1 (\ldots F_n (S))) = F_0 (F_1 (\ldots F_{n+1} (S))) \) for some \(n \)
Fixpoints

- **Given:** F is a function $F: P(S) \rightarrow P(S)$

- **Fixpoint Sets**
 - A subset X of S is called a fixpoint of F if $F(X) = X$
 - If we prove “repeat” has a fixpoint then we’ve proved “repeat” terminates

- **Known Theorem:**
 Every monotone function has a fixpoint
 - Is “repeat” monotone?
Monotone Functions

- Monotone Functions:
 - F is monotone
 iff $X \subseteq Y$ implies $F(X) \subseteq F(Y)$ for all subsets X and Y of S

- F_{AF} is monotone
 - X, Y are the set of states with a label AF_{φ}
 - F_{AF} only adds states, that is $F_{AF}(Z) = Z \cup \{\ldots\}$
 - Condition for what is in $\{\ldots\}$ is dependent on Z
 - “More states in Z, then more potential for adding states”
 - Since X is “contained” in Y, then Y has all the potential of X (i.e. $F_{AF}(X) = F_{AF}(Y)$)
 - And if X is smaller than Y, then Y has more potential than X (i.e. $F_{AF}(X) \subseteq F_{AF}(Y)$)
 - So if $X \subseteq Y$ then $F_{AF}(X) \subseteq F_{AF}(Y)$

- F_{EU} is similarly monotone
Complexity

- This Algorithm: $O(f \times V \times (V + E))$
 - f is the number of connectives in the formula
 - V is the number of states
 - E is the number of transitions
 - “linear in the size of the formula and quadratic in the size of the model”

- Better Algorithms: $O(f \times (V + E))$
Complexity: State Explosion

- Problem is size of model, not algorithm
 - Size of model \((V + E)\) is exponential in the number of variables (or properties on them)
 - Size of model \((V+E)\) is exponential in the number of components that can execute in parallel
Implementations

- SMV
 - Model Checker
 - Available from CMU
 - Created by K. McMillan
- NuSMV
 - Reimplementation
- Cadence SMV
 - Reimplementation + Compositional Focus