PROCESSING CROSSED AND NESTED DEPENDENCIES:
AN AUTOMATON PERSPECTIVE ON THE
PSYCHOLINGUISTIC RESULTS*†‡

Aravind K. Joshi
Department of Computer and Information Science
Room 555, Moore School
University of Pennsylvania
Philadelphia, PA 19104

March 16, 1989
Revised, September 21, 1989

*This work was partially supported by NSF Grants MCS 82-19116-CER, MCS 82-07294, and DCR 84-10413.
†This paper is a revised version of a paper originally presented at the First CUNY Workshop on Sentence Processing, CUNY, New York, February 1988.
‡I want to thank Josef Bayer, Jack Hoeksema, Mark Johnson, Tony Kroch, Mitch Marcus, Beatrice Santorini, Mark Steedman, Bonnie Webber, K. Vijay-Shankar, David Weir, and an unknown referee of this paper for their valuable comments. Discussions with Tony Kroch, Mitch Marcus, and Mark Steedman were crucial to the development of the complexity measures in Section 5. I have also profited greatly from a talk on crossed dependencies presented by Emmon Bach at the Cognitive Science Colloquium at the University of Pennsylvania, October 1987.
Abstract

The clause-final verbal clusters in Dutch and German (and in general, in West Germanic languages) have been studied extensively in different syntactic theories. Standard Dutch prefers crossed dependencies (between verbs and their arguments) while Standard German prefers nested dependencies. Recently Bach, Brown, and Marslen-Wilson (1986) have investigated the consequences of these differences between Dutch and German for the processing complexity of sentences, containing either crossed or nested dependencies. Stated very simply, their results show that Dutch is ‘easier’ than German, thus showing that the push-down automaton (PDA) cannot be the universal basis for the human parsing mechanism. They provide an explanation for the inadequacy of PDA in terms of the kinds of partial interpretations the dependencies allow the listener to construct. Motivated by their results and their discussion of these results we introduce a principle of partial interpretation (PPI) and present an automaton, embedded push-down automaton (EPDA), which permits processing of crossed and nested dependencies consistent with PPI. We show that there are appropriate complexity measures (motivated by the discussion in Bach, Brown, and Marslen-Wilson (1986)) according to which the processing of crossed dependencies is easier than the processing of nested dependencies. We also discuss a case of mixed dependencies. This EPDA characterization of the processing of crossed and nested dependencies is significant because EPDAs are known to be exactly equivalent to Tree Adjoining Grammars (TAG), which are also capable of providing a linguistically motivated analysis for the crossed dependencies of Dutch (Kroch and Santorini 1988). This significance is further enhanced by the fact that two other grammatical formalisms, (Head Grammars (Pollard, 1984) and Combinatory Grammars (Steedman, 1987)), also capable of providing analysis for crossed dependencies of Dutch, have been shown recently to be equivalent to TAGs in their generative power. We have also discussed briefly some issues concerning the EPDAs and their associated grammars, and the relationship between these associated grammars and the corresponding ‘linguistic’ grammars.
1 Introduction

The clause-final verbal clusters in Dutch and German (and, in general, in West Germanic languages) have been studied extensively in different syntactic theories both from the point of view of their syntactic variation as well as on their own account (Evers, 1975; Zaenen, 1979; den Besten and Edmonson, 1983; Bresnan, Kaplan, Peters, and Zaenen, 1983; Ades and Steedman, 1985; Haegeman and van Riemsdijk, 1986; Kroe and Santorini, 1988, among others). The main observation for our purpose is that Standard Dutch prefers crossed dependencies (between verbs and their arguments), while Standard German prefers nested dependencies. Thus in Dutch we have

\[
\begin{array}{c}
\text{NP}_1 \quad \text{NP}_2 \quad \text{NP}_3 \quad \text{V}_1 \quad \text{V}_2 \quad \text{V}_3 \\
\text{Jan} & \text{Piet} & \text{Marie} & \text{zag} & \text{laten} & \text{zwemmen} \\
\text{Jan} & \text{Piet} & \text{Marie} & \text{saw} & \text{make} & \text{swim} \\
(\text{Jan} & \text{saw} & \text{Piet} & \text{make} & \text{Marie} & \text{swim})
\end{array}
\]

In (1) \(NP_3\) is an argument of \(V_3\), \(NP_2\) and \(S\) are arguments of \(V_2\), and \(NP_1\) and \(S\) are arguments of \(V_1\). The dependencies between \(V_1, V_2, V_3\) and their \(NP\) arguments, \(NP_1, NP_2,\) and \(NP_3\) are crossed as shown in (1). In contrast, in German we have

\[
\begin{array}{c}
\text{NP}_1 \quad \text{NP}_2 \quad \text{NP}_3 \quad \text{V}_3 \quad \text{V}_2 \quad \text{V}_1 \\
\text{Hans} & \text{Peter} & \text{Marie} & \text{schwimmen} & \text{lassen} & \text{sah} \\
\text{Hans} & \text{Peter} & \text{Marie} & \text{swim} & \text{make} & \text{saw} \\
(\text{Hans} & \text{saw} & \text{Peter} & \text{make} & \text{Marie} & \text{swim})
\end{array}
\]

The dependencies between \(V_1, V_2,\) and \(V_3\) and their \(NP\) arguments, \(NP_1, NP_2,\) and \(NP_3\) are nested as shown in (2).

Recently Bach, Brown, and Marslen-Wilson (1986) have investigated the consequences of these differences between Dutch and German for the processing complexity of sentences, containing either
crossed or nested dependencies. Stated very simply, their results show that Dutch is ‘easier’ than German. More specifically, in their study “German and Dutch subjects performed two tasks—ratings of comprehensibility and a test of successful comprehension—on matched sets of sentences which varied in complexity from a simple sentence to one containing three levels of embedding.” Their results show “no difference between Dutch and German for sentences within the normal range (up to one level of embedding), but with a significant preference emerging for the Dutch crossed order for the more complex strings.” Based on these results they argue that “this rules out the push-down stack as the universal basis for the human parsing mechanism.” The following table (Table 1) summarizes some of their results. Note that levels in Table 1 refer to the number of verbs in the sentences and thus the level will be one more than the level of embedding in the sentence. The level for sentences (1) and (2) above is 3. Henceforth, this is what we mean by level, which is also in accordance with the notation in Bach, Brown, and Marslen-Wilson.

<table>
<thead>
<tr>
<th>Level of embedding</th>
<th>Dutch</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.14</td>
<td>1.16</td>
</tr>
<tr>
<td>2</td>
<td>2.34</td>
<td>2.58</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.42)</td>
</tr>
<tr>
<td>3</td>
<td>5.42</td>
<td>5.80</td>
</tr>
<tr>
<td></td>
<td>(1.36)</td>
<td>(1.79)</td>
</tr>
<tr>
<td>4</td>
<td>7.66</td>
<td>7.86</td>
</tr>
<tr>
<td></td>
<td>(1.72)</td>
<td>(2.04)</td>
</tr>
</tbody>
</table>

Mean rating of comprehensibility (Test)
Difference in mean Test/Paraphrase ratings (numbers in parentheses)

As is evident from Table 1, Dutch is easier than German. At level 1, there is no difference; at level 2, the difference is small, still favoring Dutch; beyond level 2, Dutch is definitely easier than German. These results of Bach, Brown, and Marslen-Wilson confirm the intuitive claim of Evers (1975), in his syntactic study of these structures, that the crossed structures of Dutch are easier to process than the nested structures of German. Hoeksema (1981) made a similar claim in his study of Dutch vis-à-vis Frisian, which has nested dependencies.

\[\text{Table 1 shows the mean ratings of comprehensibility for different levels of embedding. In order to control for the semantic and propositional complexity, a comprehensibility test was carried out on paraphrase sentences (which were right branching structures). The numbers in parentheses are the differences between the Test and Paraphrase ratings. These numbers bring out the main point more clearly. For details, see Bach, Brown, and Marslen-Wilson (1986). The numbers for German are the means between the numbers for the infinitive and the past participle forms. Table 1 in Bach, Brown, and Marslen-Wilson gives both these numbers and the corresponding means.}\]
These results of Bach, Brown, and Marslen-Wilson show that the push-down automaton (PDA) cannot be the universal basis for the human parsing mechanism. Bach, Brown, and Marslen-Wilson offer an explanation for the inadequacy of PDA based on the kinds of partial interpretations that the crossed and nested dependencies allow the listener to construct. Their main suggestion is "that the most important variable in successful parsing and interpretation is not simply when information becomes available, but also what you can do with that information when you get it." Thus in (2) (German example), when the deepest NP and V are reached, i.e., NP₃V₃ (Marie schwimmen), we have a verb and its argument, however, we do not know at this stage where this structure belongs, i.e., we do not have a higher structure into which we can integrate this information. Hence, we must hold this information until a higher structure becomes available. The same consideration holds for NPᵥ₂. In contrast, in (1) (Dutch example), we can begin to build the matrix of higher verbs as soon as the verb cluster begins and the NP arguments can be integrated, without creating intermediate structures that do not have a place for them to fit into. The nested dependencies in German permit integration of structures (innermost to outermost) in a context-free manner (hence processed by a PDA) but it is not possible to decide what to do with this information until the higher verb(s) becomes available.

Motivated by the results of Bach, Brown, and Marslen-Wilson and their discussion of these results with respect to the inadequacies of PDA, we will introduce a principle of partial interpretation (PPI) which should be obeyed by an automaton if it is to be considered as a possible candidate for a universal mechanism for human sentence processing. PPI, as stated below, is an attempt to make some of the intuitions of Bach, Brown, and Marslen-Wilson more precise.

In an automaton, if a structure is popped, i.e., no longer stored by the automaton but discharged, possibly to another processor for further processing, the following conditions must hold:

1. The structure should be a properly integrated structure with respect to the predicate-argument structure (i.e., only predicates and arguments that go together should be integrated; ad-hoc packaging of predicates and arguments is disallowed), and there should be a place for it to go, if it is expected to fit into another structure, i.e., the structure into which it will fit must have been popped already.

2. If a structure which has a slot for receiving another structure has been popped then the structure that will fill this slot will be popped next.

In this paper, we will present an automaton, embedded push-down automaton (EPDA), which will permit processing of crossed and nested dependencies consistent with PPI. We then show that there are appropriate complexity measures (also motivated by the discussion in Bach, Brown, and Marslen-Wilson), according to which the processing of crossed dependencies is easier than the processing of nested dependencies, thus correctly predicting the main results of Bach, Brown, and
Marslen-Wilson. This EPDA characterization of the processing of crossed and nested dependencies is significant because EPDAs are known to be exactly equivalent to Tree Adjoining Grammars (TAG) in the sense that for any TAG, G, there is an EPDA, M, such that the language recognized by M, $L(M)$ is exactly the language generated by G, $L(G)$, and conversely for any EPDA, M', there is a TAG, G', such that $L(M') = L(G')$. TAGs were first introduced in Joshi, Levy and Takahashi (1975) and have been investigated actively since 1983 (e.g., Joshi, 1983; Kroch and Joshi, 1987; Joshi, 1987; Kroch, 1987; Vijay-Shanker, 1987; Weir, 1988; Joshi, Vijay-Shanker, and Weir, 1988). The proof of equivalence of TAGs and EPDAs appears in (Vijay-Shanker, 1987).

TAGs are more powerful than context-free grammars, but only mildly so, and are capable of providing a linguistically motivated analysis for the crossed dependencies in Dutch (Joshi, 1983; Kroch and Santorini, 1988). The significance of the EPDA characterization of crossed dependencies is enhanced even further because two other grammatical formalisms, (Head Grammars (Pollard, 1984) and Combinatory Categorial Grammars (Steedman, 1985, 1987)), based on principles completely different from those embodied in TAGs, which are also capable of providing analysis for crossed dependencies, have been shown to be equivalent to TAG in their generative power (Vijay-Shanker, Weir, and Joshi, 1985; Weir and Joshi, 1988).

The plan for the rest of the paper is as follows. In Sections 2 and 3, we will present a brief description of a push-down automaton (PDA) and an embedded push-down automaton (EPDA) respectively. In Section 4, we will show how EPDAs can process crossed and nested dependencies. Then in Section 5, we will consider some complexity measures for EPDAs, motivated by some of the discussion in Bach, Brown, and Marslen-Wilson, and show that with respect to both these measures, the crossed dependencies are easier to process than the nested dependencies. In Section 6, we will examine the relationship between EPDAs for processing crossed and nested dependencies, and their associated grammars. In Section 7, we will discuss a case of mixed dependencies where the first verb is in the crossed order and the remaining verbs are in the nested order. We will also discuss briefly some issues concerning the EPDAs and their associated grammars, and the relationship between these associated grammars and the corresponding ‘linguistic’ grammars.

2 Push-Down Automaton (PDA)

A PDA, M, consists of a finite control (with a finite number of states), an input tape which is scanned from left to right, and a push-down store (pds), or stack for short. The pds or stack discipline is as follows: In a given move of M, a specified string of symbols can be written on top of the stack, or the top symbol of the stack can be popped.

M starts in the initial state S_0 and the input head is on the leftmost symbol of the string on the input tape. The stack head is always on the top symbol of the stack. Z_0 is a special symbol
marking the bottom of the stack. The behavior of M is specified by a transition function, δ, which, for some given input symbol and the state of the finite control and the stack symbol (i.e., the topmost symbol on the stack), specifies the new state, and whether the stack is pushed or popped. If pushed, then the transition function specifies the string pushed on the stack. If popped, then the topmost symbol of the stack is removed. The input head either moves one symbol to the right or stays on the current symbol. Thus

$$\delta \text{ (input symbol, current state, stack symbol) } = \text{ (new state, push/pop)}$$

If M is nondeterministic, then with a given input symbol, current state, and the stack symbol, more than one (new state, push/pop) pairs could be associated. Of course, the transition function must also specify whether the input head moves one symbol to the right or stays where it is.

A string of symbols on the input tape is recognized (parsed, accepted) by M, if starting in the initial state and with the input head on the leftmost symbol of the input string, if there is a sequence of moves, as specified by δ, such that the input head moves past the rightmost symbol on the input tape and the stack is empty. There are alternate ways of defining recognition, e.g., by M entering one of the final states of M after the input head has moved past the leftmost symbol on the input; however, in this paper, we will define acceptance by empty stack. It is well-known that these two definitions are equivalent.

\[\text{PDA}\]

3 Embedded Push-Down Automaton (EPDA)

An EPDA, M', is very similar to a PDA, except that the push-down store is not necessarily just one stack but a sequence of stacks. The overall stack discipline is similar to a PDA, i.e., the stack head will be always at the top symbol of the top stack, and if the stack head ever reaches the bottom of a stack, then the stack head automatically moves to the top of the stack below (or to the left of) the current stack, if there is one (Vijay-Shanker, 1987; Joshi, 1987; Joshi, Vijay-Shanker, and Weir, 1988).
Initially, M' starts with only one stack, but unlike a PDA, an EPDA may create new stacks above and below (right and left of) the current stack. The behavior of M is specified by a transition function, δ', which for a given input symbol, the state of the finite control, and the stack symbol, specifies the new state, and whether the current stack is pushed or popped; it also specifies new stacks to be created above and below the current stack. The number of stacks to be created above and below the current stack are specified by the move. Also, in each one of the newly created stacks, some specified finite strings of symbols can be written (pushed). Thus:

$$\delta' \text{ (input symbol, current state, stack symbol)} =$$

$$(\text{new state, } sb_1, sb_2, \ldots, sb_m, \text{ push/pop on current stack, } st_1, st_2, \ldots, st_n)$$

where sb_1, sb_2, \ldots, sb_m are the stacks introduced below the current stack, and st_1, st_2, \ldots, st_n are the stacks introduced above the current stack\(^2\). In each one of the newly created stacks, specified information may be pushed. For simplicity, we have not shown this information explicitly in the above definition. As in the case of a PDA, an EPDA can be nondeterministic also.

A string of symbols on the input tape is recognized (parsed, accepted) by M', if starting in the initial state, and with the input head on the leftmost symbol of the string on the input tape, there is a sequence of moves as specified by δ' such that the input head moves past the rightmost symbol on the input tape and the current stack is empty, and there are no more stacks below the current stack.

The following two diagrams illustrate moves of an EPDA, M'.

Given the initial configuration as shown in (1), let us assume that for the given input symbol, the current state of the finite control, and the stack symbol, δ' specifies the move shown in (2):

\(^2\)The transition function must also specify whether the input head moves one symbol to the right or stays where it is.
In this move, 2 stacks have been created above (to the right of) the current stack (which is shown by dotted lines), and 3 stacks have been created below (to the left of) the current stack (i.e., the current stack in (1), the old current stack). W has been pushed on the current stack, \(X_0 \) and \(X_1 \), respectively, have been pushed on the two stacks introduced above the current stack, and \(Y_0, Y_1, \) and \(Y_2 \), respectively, have been pushed on the stacks created below the (old) current stack. The stack head has moved to the top of top stack, so now the topmost stack is the new current stack and the stack head is on the topmost symbol in the new current stack. We will use \(Z_0 \) to denote the bottom of each stack.

Let us assume that in the next move the configuration is as shown in (3) below:
In this move, 1 stack has been created below the current stack (which is shown by dotted lines) with V_0 pushed on it, 2 stacks have been created above the (old) current stack with T_0 and T_1 pushed on them, respectively. V is pushed on the (old) current stack. The stack head has again moved to the topmost symbol of top stack, which is now the new current stack.

Thus in an EPDA in a given configuration there is a sequence of stacks; however, the stack head is always at the top of the top stack at the end of a move. Thus although, unlike a PDA, there is a sequence of stacks in a given configuration, the overall stack discipline is the same as in a PDA. PDAs are special cases of EPDAs, where in each move no new stacks are created, only a push/pop is carried out on the current stack. Note that in an EPDA, during each move, push/pop is carried out on the current stack and pushes on the newly created stacks. Since, in a given move, the information popped from the current stack may be identical to the information pushed on a newly created stack, we will have the effect of moving information from one stack to another. In this case the information, although popped from the current stack, is still in the EPDA. We will use the term POP (capitalized) to denote the case when information is popped from the current stack and it is not ‘moved’ to a newly created stack, i.e., the information is discharged from the
EPDA and it is lost from the EPDA.

4 Crossed and Nested Dependencies

We will now illustrate how EPDAs can process crossed and nested dependencies consistent with the principle of partial interpretation (PPI) described in Section 1.
Crossed Dependencies (Dutch)

Rather than defining the EPDA, M_d, formally, (i.e. specifying the transition function completely), we will describe simply the moves M_d goes through during the processing of the input string. The symbols in the input string are indexed so as to bring out the dependencies explicitly and thus the indexing is only for convenience. Also NPs are treated as single symbols. In the initial
configuration, the input head is on NP_1 and the stack head is on top of the current stack. The first three moves of M_d, i.e., moves 1, 2, and 3, push NP_1, NP_2, NP_3 on the stack. At the end of the third move, the current stack has NP_1, NP_2, and NP_3 on it and the input head is on V_1. No new stacks have been created in these moves. In move 4, NP_3 is popped from the current stack and a new stack has been created below the current stack and NP_3 is pushed on this stack, thus NP_3 is still within the EPDA and not POPPED out of the EPDA. At the end of move 4, the stack head is on top of the topmost stack, i.e., on NP_2 and the input head stays at V_1. Moves 5 and 6 are similar to move 4. In move 5, NP_2 is popped from the current stack and a new stack with NP_2 on it is created below the current stack. Thus the stack containing NP_2 appears between the stack containing NP_3 and the current stack. The input head stays at V_1. Similarly, in move 6, NP_1 is popped from the current stack and a new stack is created below the current stack, and NP_1 is pushed on it. The input head stays at V_1. The current stack is now empty and since there are stacks below the current stack, the stack head moves to the top of topmost stack below the empty current stack, i.e., it is on NP_1. In move 7, NP_1 is POPPED. In effect, we have matched V_1 from the input to NP_1 and the structure $V_1(NP_1, S)$ is now POPPED and NP_1 is no longer held by M_d\footnote{Although we are encoding a structure, only a bounded amount of information is stored in the EPDA stacks. The symbols NP, S, etc. are all atomic symbols. In an EPDA behaving as a parser, these symbols can be regarded as pointers to relevant structures, already constructed, and outside the EPDA.}. $V_1(NP_1, S)$ denotes a structure encoding V_1 and its argument structure. Note that this structure has its predicate and one argument filled in, and it has a slot for an S type argument, which will be filled in by the next package that is POPPED by M_d. Thus we are following the principle of partial interpretation (PPI), as described in Section 1. Similarly in move 8, V_2 and NP_2 are matched and NP_2 is POPPED, i.e., the structure $V_2(NP_2, S)$ is POPPED. This structure now fills in the S argument of the structure POPPED earlier, and it itself is ready to receive a structure to fill its S argument. In move 9, V_3 and NP_3 are matched and NP_3 is POPPED, i.e., the structure $V_3(NP_3)$ is POPPED, which fills in the S argument of the structure previously POPPED. During the moves 7, 8, and 9, the input head moves one symbol to the right. Hence, at the end of move 9, the input head is past the rightmost symbol on the input tape; also, the current stack is empty and there are no stacks below the current stack. Hence, the input string has been successfully recognized (parsed).

We now turn to the processing of nested dependencies.
Once again, we will describe the various moves of the EPDA, M_g, during the processing of the input string. We assume as before that an appropriate transition function has been defined for M_g licensing the moves described below. Note that a PDA can process nested dependencies, but as discussed in Section 1, processing of nested dependencies by a PDA does not obey the principle of
partial interpretation (PPI) in Section 1. The EPDA, M_g, described here does obey PPI.

In the initial configuration, the input head is on NP_1 and the stack head is on top of the current stack. The first three moves of M_g push $NP_1, NP_2,$ and NP_3 on the current stack. No new stacks are created in these moves. During these moves, the input head moves to the right one symbol at a time, so that at the end of move 3, the input head is on V_3. The first three moves of M_g are identical to the first three moves of M_d, described earlier. In move 4, NP_3 is popped from the current stack, a new stack is created below the current stack with V_3^* pushed on it, and the input head moves to V_2 on the input string. V_3^* encodes the NP_3 argument together with the verb V_3 (which takes an NP argument), i.e., it encodes the structure $V_3(NP_3)^4$. Since V_3^* encodes the NP_3 argument, NP_3 is still in the EPDA, M_g, and not POPPED out of M_g. Thus in move 4, we have packaged V_3 and its argument and put it on a stack below the current stack. Moves 5, and 6 are similar to move 4. In move 5, NP_2 is popped from the current stack, a new stack is created below the current stack with V_2^* encoding the NP_2 argument and the verb V_2 (which takes NP and S as arguments), i.e., V_2^* encodes the structure $V_2(NP_2, S)$. In move 6, NP_1 is popped from the current stack, a new stack is created below the current stack with V_1^* pushed on it, and the input head moves to the right of V_1. V_1^* encodes the NP_1 argument and the verb V_1 (which takes NP and S as arguments), i.e., V_1^* encodes the structure $V_1(NP_1, S)$. At the end of move 6, the current stack is empty. Since there are stacks below the current stack, the stack head moves to the top of topmost stack below the current stack, i.e., it will be on V_1^*. The input head is to the right of V_1 on the input tape. During moves 7, 8, and 9, the input head will stay where it is, V_1^*, V_2^*, and V_3^* will be POPPED in that order, the stack head moving from V_1^* to V_2^* to V_3^*. In move 7, V_1^* is POPPED, i.e., the structure $V_1(NP_1, S)$ is POPPED and it is no longer held by M_g. This structure has its predicate and one argument filled in, and it has a slot for an S type argument, which will be filled in by the next package that is POPPED by M_g. This is consistent with the PPI. Similarly, in move 8, V_2^* is POPPED, i.e., the structure $V_2(NP_2, S)$ is POPPED. This structure has its predicate and one argument filled and it has a slot for an S type argument. This structure itself fills in the S slot in the structure popped in move 7. In move 9, V_3^* is POPPED, i.e., the structure $V_3(NP_3)$ is POPPED. This structure has its predicate and its argument filled in, and it itself fills in the S slot in the structure popped in move 8. At the end of move 9, the current stack is empty and there are no stacks below the current stack and the input head is to the right of the rightmost symbol in the input tape, hence M_g has successfully recognized (parsed) the input string, and interpretation has been built consistent with PPI.

\footnote{Strictly speaking, we should push a string $NP_3 V_3$ on the newly created stack, instead of V_3^*. Similarly for V_2^* and V_1^*. We will use the V^* notation, remembering that V^* encodes the corresponding NP arguments. If we push $NP_3 V_3$ then the moves of the automaton have to be modified somewhat, but these modifications are not relevant for our discussion in this section and the later sections. In counting the number of items stored on stacks, we will, of course, count V_3^* and V_2^*, in general, as two symbols (see footnote 5).}
5 Complexity of Processing

In Section 3, we have shown how an EPDA can process both the crossed and nested dependencies in accordance with PPI. The major result of Bach, Brown, and Marslen-Wilson (1986) as summarized in Section 1, is that the processing of crossed dependencies is ‘easier’ than the processing of nested dependencies, as illustrated in Table 1 in Section 1. In this Section, we will show that if a suitable measure of complexity of processing is defined for an EPDA (in the spirit of the discussion in Bach, Brown, and Marslen-Wilson (1986)), the processing of crossed dependencies is indeed, ‘easier’ than the processing of ‘nested’ dependencies, thus suggesting that EPDAs can model the processing of crossed and nested dependencies consistent with the experimental results of Bach, Brown, and Marslen-Wilson (1986). The main significance of this result is not just that there is an automaton with the appropriate behavior but rather this behavior is achieved by a class of automata that exactly corresponds to a class of grammars (called Tree Adjoining Grammars (TAG)) which are adequate to characterize both the crossed and nested dependencies. We will discuss this topic later in some detail.

What sort of complexity measure is appropriate? Let us consider the EPDAs M_d and M_g in Figures 1 and 2. If we measure the complexity just in terms of the total number of moves, then there is no distinction between the processing of crossed and nested dependencies. In each case, we have exactly 9 moves, (we have 3 levels of embedding here), and similarly the number of moves for both cases will be the same for other levels of embedding.

Motivated by the discussion in Bach, Brown, and Marslen-Wilson (1986), we will consider a measure which involves only the number of items from the input that the EPDA has to store (we will not attach any cost to the moves themselves, i.e., consider them (nearly) instantaneous). In particular, the measure will be the maximum number of input items stored during the entire computation. Thus in Figure 1, M_d stores 1, 2, and 3 items after moves 1, 2, and 3 respectively. After move 4, the number of items stored is still 3 because although NP_3 is popped from the current stack, it is pushed onto a newly created stack. Thus, after each one of the moves 5 and 6, we also have 3 items from input stored in M_d. After move 7, only 2 items are stored in M_d, after move 8, only 1, and after move 9, none. Thus the maximum number of input times stored during the entire computation is 3.

A similar computation shows that the maximum number of input items stored in the computation of M_g (for the nested case as shown in Figure 2) is 5. After move 3 (as in the case of M_d), M_g has stored 3 input items. After move 4, M_g has stored 4 items because V_3^* not only has NP_3 integrated in it but also V_3 from the input.\(^5\) Thus after move 5, M_g has stored 5 items, and after

\(^5\)As explained before, strictly speaking, we have a string NP_3V_3 but we are using the notation V^*, remembering that V^* encodes the corresponding NP argument.
move 6, 6 items. After move 7, only 4 items are stored, after move 8, only 2, and after move 9, none. Thus the maximum number of items stored is 6. However, it is possible to integrate moves 6 and 7, so that in move 6, we can immediately POP V_1, there is no need to first store it and then POP it in the next move. Thus after this newly defined move 6, M_g has stored only 4 items. Hence, the maximum number of input items stored in the entire computation is 5. (We have followed here a strategy of redefining a move of M_g to minimize its complexity. The idea is that by giving all the help which we can to M_g and by not giving any extra help to M_d, (the automaton for crossed dependencies), if it still turns out that the complexity of M_d is less than that of M_g, then we will have succeeded in making a stronger argument for our automaton model).

Table 2 below summarizes the complexity of processing as measured by the maximum number of input items stored during the entire computation.

<table>
<thead>
<tr>
<th>Level of Embedding</th>
<th>Dutch</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

In Table 2, we have shown only the relevant numbers for levels of embedding up to 4. It is possible to derive an exact formula for these numbers, but there is not much point in describing that formula because Bach, Brown, and Marslen-Wilson (1986) only give their numbers up to level 4. It is unlikely that reliable experimental data can be obtained for levels beyond 4. So any complexity numbers beyond level 4 will be merely mathematical curiosities.

In Table 2, the complexity numbers for M_d and M_g for level 1 are the same as one would expect. For level 2, the complexity for M_g is greater than the complexity for M_d. In Table 1 (in Section 1), the complexity of processing nested dependencies is only slightly more than that of crossed dependencies. In our case, the difference is not insignificant. Thus in our model, the difficulty of processing nested dependencies shows up even at level 2.

We will now consider a somewhat more fine-grained measure of complexity, still in terms of the number of input items stored. Instead of just counting the number of input items stored, we will also pay attention to the number of time units an input item i is stored, the time unit is in

6There is no claim here that this slightly more refined measure is a better measure than the previous one in terms of human processing load.
terms of the movement of the input head and not in terms of machine operations. (As before, we will not attach any cost to the moves themselves, i.e., consider them (nearly) instantaneous).

Let us consider Figure 1 (crossed dependencies) again. \(NP_1 \) is stored in move 1, i.e., after the input head moves past \(NP_1 \), it will continue to be stored until the input head is past \(NP_3 \). During moves 4, 5, 6, the input head stays on \(V_1 \). In move 7, \(NP_1 \) is POPPED. Thus if the time unit is measured in terms of the movement of the input head, \(NP_1 \) is stored for 3 time units. Similarly \(NP_2 \) and \(NP_3 \) are each stored for 3 time units. \(V_1, V_2, \) and \(V_3 \) are each stored for zero units. Hence, \(\sum_i T(i) = 9 \), where \(T(i) \) is the number of time units input item \(i \) is stored.

Now consider Figure 2 (nested dependencies). \(NP_1 \) is stored in move 1, i.e., after the input head moves past \(NP_1 \). It will continue to be stored until the input moves past \(V_1 \). During moves 7, 8, and 9, the input head does not move. Hence, if the time unit is counted in terms of the movement of the input head, \(NP_1 \) is stored for 6 time units. Similarly \(NP_2 \) is stored for 5 time units, \(NP_3 \) for 4 time units, \(V_3 \) for 3 time units, \(V_2 \) for 2 time units, and \(V_1 \) for 1 time unit. Thus \(\sum_i T(i) = 21 \). Once again, we can combine moves 6 and 7, i.e., there is no need to first store \(V_1^* \) and then POP it, we can POP it immediately. Thus the number of time units \(NP_1 \) is stored is reduced to 5, the number of time units for \(NP_2, NP_3, V_3 \), and \(V_2 \) are not affected. The number of time units \(V_1 \) is stored becomes zero. Hence, \(\sum_1 T(i) = 19 \). As before, we have followed the strategy of redefining moves of \(M_g \) to help reduce its complexity and not help \(M_d \) correspondingly. The reason for doing this is the same as before, i.e., even after helping \(M_g \) in this way, if we can show that the complexity of \(M_d \) is less than \(M_g \), then we will have succeeded in making a stronger argument for our automaton model. Table 3 summarizes the complexity of processing according to the \(\sum_i T(i) \) measure for different levels of embedding up to level 4. Once again, an exact formula for these numbers can be worked out for any level but there is not much point in presenting it, as the experimental data do not go beyond level 4. It can be seen easily that the overall behavior of our automaton model with respect to this somewhat fine-grained complexity measure is about the same as in Table 3.

<table>
<thead>
<tr>
<th>Level of Embedding</th>
<th>Dutch</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>34</td>
</tr>
</tbody>
</table>
6 EPDA and the associated grammars

In Section 4, we have shown how crossed and nested dependencies can be processed by EPDAs, in accordance with the principle of partial interpretation (PPI), as described in Section 1. This result has a larger significance because EPDAs are exactly equivalent to the Tree Adjoining Grammars (TAG), which are capable of providing a linguistically motivated analysis for Dutch crossed dependencies (Joshi 1985, Kroch and Santorini 1988).

The fundamental insight on which the TAG formalism is based is that local co-occurrence relations can be factored apart from the expression of recursion and unbounded dependencies. A TAG consists of a set of elementary trees on which local dependencies are stated and an adjunction operation, which composes elementary trees with one another to yield complex structures. The elementary trees of a TAG are divided into initial trees and auxiliary trees (Figure 3). Initial trees have the form of the tree in α. The root node of an initial tree is labeled S or \overline{S}, its internal nodes are all nonterminals (phrasal categories), and its frontier nodes are all lexical categories. Auxiliary trees have the form of the tree β. The root node of an auxiliary tree is a phrasal category, which we have labeled X, a nonterminal. Its frontier nodes are all lexical nodes except for one phrasal node which has the same category label as the root node.

![Figure 3](image-url)

We now define adjunction as follows. Let α be an elementary tree with a nonterminal node labeled X, and let β be an auxiliary tree with a root node X, the foot node, by definition has the label X also. The tree γ obtained by adjoining β to α at the node labeled X is defined as follows. The subtree at X in α is detached, the auxiliary tree β is attached to X, and then the detached subtree is attached to the foot node of β, in short, β is inserted at X in α. Adjunction, so defined, can be extended to derived trees in an obvious manner. There are other details such as constraints on adjoining, but for our purpose the short description given above is adequate.
The following TAG, G', in Figure 4, allows derivations of crossed dependencies. α is a an elementary tree and β is an auxiliary tree. Note that in each tree the verb is "raised." γ_0, γ_1, and γ_2 describe the derivation of (1) in Section 1. Indexing of NPs and Vs are for convenience only. Note that NP$_1$, NP$_2$, and NP$_3$ are crossed with respect to V$_1$, V$_2$, and V$_3$ but nested with respect to V'$_2$, V'$_3$ and V'$_1$ and these in turn are nested with respect to V$_1$, V$_2$, and V$_3$, thus the crossed dependencies between the NPs and (lexical) Vs is achieved by pair of nested dependencies which are coordinated through the (primed) Vs, which can be interpreted as traces.

$$G :$$

$\alpha : S$

```
   NP  VP  zwemmen
  NP  V  
   N  V
Marie  e
```

$\beta : S$

```
   NP  VP  laten
  NP  V  
   N  S  V
Piet  Jan
```

$$\gamma_0 = \alpha$$

```
   NP  VP  zwemmen
  NP  V  
   S  V
Piet  Jan
```

$$\gamma_1 = \alpha$$

```
   NP  VP  laten
  NP  V  
   S  V
Piet  Jan
```

$$\gamma_2 = \alpha$$

```
   NP  VP  zwemmen
  NP  V  
   S  V
Piet  Jan
```

Figure 4

20
(See Joshi 1983 and Kroch and Santorini 1987 for further details). We have slightly simplified the grammar given by Kroch and Santorini, without sacrificing the essential characteristics of the grammar).

The EPDA M_d described earlier does not correspond to TAG, G' in Figure 4. Since for every TAG there is a corresponding EPDA, we can construct an EPDA, say M'_d which corresponds to TAG, G'. Instead of describing M'_d in detail, we will briefly describe some essential aspects of this automaton. M'_d will behave like M_d in the first three moves. During moves 4, 5, and 6, M'_d will create new stacks each one containing V'_1, V'_2, and V'_3 respectively. Then in moves 7, 8, and 9, V_1, V_2, and V_3 from the input will match V'_1, V'_2, and V'_3 respectively. V'_1, V'_2, and V'_3 each will encode a variable of type V together with the appropriate arguments. M'_d will be highly nondeterministic because at the end of the first three moves, since the Vs from the input (certainly V_2 and V_3) are not visible yet, M'_d has to guess the subcategorization of these verbs. This automaton is not in the spirit of both the principle of partial interpretation (PPI) and the key idea in Bach, Brown, and Marslen-Wilson, (1986).

We now return to M_d in Figure 1. The TAG, G in Figure 5 corresponds to M_d.

![Figure 5](image_url)
G is not identical to G' but it is very close to it. In fact, it is easy to see how G' can be systematically converted to G. G corresponds to M_d and thus directly reflects PPI. G is not a grammar that a linguist would write (based on distributional considerations) but it is closely related to G' which is linguistically appropriate. Thus a grammar which directly encodes PPI is not necessarily identical to a linguistically appropriate grammar. G' and G are however equivalent and belong to the same class, i.e., to the class of TAGs.

We now turn to the case of nested dependencies. For nested dependencies of German, Kroch and Santorini gave the following TAG, G^{sd} (Figure 6). Note that here we do not have verb “raising”. The derivation of (2) in Section 1 consists of adjoining β to the root of α, deriving a tree γ, and then adjoining β to the root of γ, deriving a tree γ', resulting in the desired structure. We have not shown this derivation in Figure 6. PDAs are special cases of EPDAs. Thus an EPDA, say M'_g, essentially following the discipline of a PDA, can process G^{sd}, however, this M'_g will not be in accordance with the principle of partial interpretation (PPI). In Section 4, Figure 2 we have presented an EPDA, M_g which processes nested dependencies of German, in accordance with PPI. The TAG, G^{sd} does not directly map onto M_g. However, since for every EPDA there is an equivalent TAG, there is a TAG which is equivalent to M_g, say G^*. (See Figure 6 for G^{sd} and Figure 7 for G^*). The derivation in G^* consists of adjoining β to the interior S node α, marked by an arrow (and not to the root node of α as in the case of G^{sd}), deriving a tree γ and then adjoining β to γ as before, deriving γ', resulting in the desired structure. We have not shown this derivation in Figure 7.

\[
\begin{align*}
G^{*} : & \quad \alpha = S \\
& \quad NP \quad VP \\
& \quad | \quad | \\
& \quad N \quad V \\
& \quad | \quad | \\
& \quad Marie \quad schwimmen
\end{align*}
\]

\[
\begin{align*}
\beta = S \\
& \quad NP \quad VP \\
& \quad | \quad | \\
& \quad N \quad S \quad V \\
& \quad | \quad | \\
& \quad Peter \quad lassen \\
& \quad | \\
& \quad Hans \quad sah
\end{align*}
\]

Figure 6
G^* is clearly a TAG and it is a TAG for the nested dependencies. This grammar maps directly into M_g in the sense that it encodes, in a way, the behavior of M_g, which corresponds to withholding the intermediate level structures until the top level structure is reached, and then discharging them in the reverse order. G^* differs from G^v only in this respect. Clearly, G^v is a kind of grammar a linguist would write (based on the usual distributional considerations). G^* is not identical to G^v but is closely related to it. It can be easily seen how G^v can be systematically converted to G^*. Thus, once again a grammar which encodes PPI directly is not necessarily identical to a linguistically appropriate grammar. G^v and G^* are however equivalent and belong to the same class, i.e., to the class of TAGs.

In this section, we have shown that the grammars associated with the EPDAs (consistent with PPI) are related in systematic ways to the corresponding ‘linguistic’ grammars, but they are not identical to them. If we take the processing account as our primary concern the automaton models (such as the EPDAs) satisfying some processing constraints are the natural objects to investigate. This raises a question about the status of the grammars associated with the automaton models (EPDAs in our case), and more interestingly the ‘linguistic’ grammars themselves!

By a grammar we mean the set of elementary trees and the constraints that specify what auxiliary trees are adjoinable at what nodes in each elementary tree. These constraints are not shown explicitly in the grammars in Figs. 4, 5, 6, and 7.
7 Mixed Dependencies

So far we have considered processing crossed and nested dependencies. These are the only cases examined by Bach, Brown and Marslen-Wilson (1986). There are, of course, cases with mixed dependencies, i.e., both nested and crossed. Our purpose here is not to investigate these other patterns, many of which have been investigated in detail in the references mentioned in Section 1. However, since we have an automaton model which can behave according to PPI, it is of interest to see how it would behave for a case of mixed dependencies. In particular, we will examine the mixed dependencies in (3) below (for German):

The first NP and V are crossed but the subsequent NPs and Vs are nested. It is easy to construct an EPDA which can process mixed dependencies as shown in (3) in accordance with PPI. It can be shown also that the complexity (according to the measures we have introduced earlier) of processing by this EPDA will be in between the complexities of M_d and M_g (for crossed and nested dependencies); however, this EPDA is not really interesting because it corresponds to the case when we assume that the only dependencies we want to process are as in (3). The interesting case is when we have both nested (as in (2)) and mixed dependencies (as in (3)). Thus we have to process together:

(4) $NP_1\, NP_2\, NP_3\, V_3\, V_2\, V_1$

(5) $NP_1\, NP_2\, NP_3\, V_1\, V_3\, V_2$

That is, we cannot assume that we know beforehand whether we have a case of (4) or (5). It is only when we reach the first verb, that we will be able to determine whether we have a case of (4) or (5). This determination is possible from the subcategorization of the first verb. Once we know whether we have case (4) or (5) (after reaching the first verb), then the automaton must behave like M_g (for nested dependencies) if we have case (4), otherwise it must behave differently. The automaton must behave like M_g until we reach the first verb. Since M_g has been defined already, we will only describe the behavior of this automaton (M_m) only for the case (5), which we know after we reach the first verb. Figure 8 describes the behavior of M_m in this case.
Mixed Dependencies (German)

(Input) NP₁ NP₂ NP₃ V₁ V₃ V₂

(1) Z₀ NP₁
(2) Z₀ NP₁ NP₂
(3) Z₀ NP₁ NP₂ NP₃
(4) Z₀ NP₃ Z₀ NP₂
(5) Z₀ NP₃ Z₀ NP₂ Z₀ NP₁
(6) Z₀ NP₃ Z₀ NP₂ Z₀ NP₁ Z₀
(7) Z₀ NP₃ Z₀ NP₂ POP V₁ (NP₁, S)
(8) Z₀ NP₃ Z₀ V₃ Z₀ NP₂
(9) Z₀ NP₃ Z₀ V₃
(10) Z₀ NP₃ POP V₂ (NP₂, S)
(11) POP V₃ (NP)

Figure 8
The first three moves of M_m are the same as for M_g which processes nested dependencies. At the end of move 3, the input head is on V_1. From the subcategorization of this verb, we know the first verb is in the crossed order and the remaining verbs are in the nested order. Moves 4, 5, and 6 are then same as for M_d which processes crossed dependencies. At the end of the 6th move, the NPs are in the order NP_3, NP_2, NP_1. Move 7 is also the same as in M_d, thus V_1 is matched with NP_1 and $V_1(NP_1, S)$ is POPPED. In move 8, a new stack is created behind (to the left of) the current stack which holds NP_2. V_3 is pushed on this newly created stack. The input head is on V_2 now. In move 9, V_2 and NP_2 are matched and $V_2(NP_2, S)$ is POPPED. The input head is now past V_2 and will continue to stay there. In move 10, $V_3(NP)$ is POPPED. In move 11, NP_3 is popped which fills the NP argument in the previously popped structure. It should be noted that moves 8, 9, and 10 are quite different from the corresponding moves of M_g or M_d. They are all allowable EPDA moves, however, and are in accordance with PPI. Thus we have managed to deal with this case, preserving PPI, by making three special moves (8, 9, and 10). These special moves, although they depart from the corresponding moves of M_g or M_d, have helped us in this case. No such escape is available for the case of 4 or more verbs as we will see below.

If we had more than 3 verbs as in

(6) NP_1 NP_2 NP_3 NP_1 V_1 V_4 V_3 V_2

it will not be possible to instantiate an M_m as in Figure 8. The reason for this is as follows. At the end of the first 8 moves, the NPs are ordered as NP_3, NP_2, NP_1. In move 9, $V_1(NP_1, S)$ will be POPPED. In move 10, a new stack will be created behind (to the left of) the current stack and V_4 will be pushed on this stack. At the end of the move 10, the input head is on V_3 and the stack head is on the top of the top stack which is holding NP_2. In move 11, a new stack will be created behind the current stack and V_3 will be pushed onto it. Thus, at the end of move 11, the configuration will be as follows:

\[
\begin{array}{c|c}
Z_0 & NP_4 \\
Z_0 & NP_3 \\
Z_0 & V_4 \\
Z_0 & V_3 \\
Z_0 & NP_2 \\
\end{array}
\]

The input head is on V_2. In move 12, V_2 is matched with NP_2, and $V_2(NP_2, S)$ is POPPED. Now we have a problem. In the next two moves, we can POP structures such as $V_3(NP, S)$ and $V_4(NP)$. Thus, at the end of the move 14, we have POPPED structures with more than one NP slot required to be filled. In moves 15 and 16, we can POP NP_3 and NP_1, but without being able to uniquely determine where they go. Of course, the more verbs we have, the more NP arguments will remain to be filled. Thus beyond move 11, we are not able to instantiate M_m in accordance with PPI. (It should be noted that we are not saying there is no EPDA for mixed dependencies. There is indeed one as we have described above. If recognition was our only goal, then this EPDA is quite adequate. However, the behavior of the EPDA beyond move 11 is not in accordance with PPI).
In the case where we had only 3 verbs, after move 10 (in Figure 8) we have only one unfilled \(NP \) argument slot and the \(NP \) POPPED in move 11 can uniquely fill this slot. Thus in the case of 3 verbs we manage to hold on to PPI because there was only one unfilled \(NP \) slot after move 10. But with 4 or more verbs it is easy to see that there are no moves of EPDA (which are consistent with PPI) that can be made to fill the (more than one) unfilled \(NP \) slots. Thus with 4 or more verbs (for the mixed case) we cannot instantiate an EPDA consistent with PPI.

The following examples appear to confirm the above predictions. This section is based on the examples and the associated judgments provided by Jack Hoeksema and Beatrice Santorini.

(7) \[NP_1 \ NP_2 \ NP_3 \ V_1 \ V_3 \ V_2 \]
 Josef Maria das Kind sah beten lehren
 Joseph Maria the child saw pray teach
 (Joseph saw Maria teach the child pray)

(7) is not ruled out, it is marginal however. EPDA, \(M_m \), (Figure 8), just about manages to process (7), consistent with PPI.

(8) \[*NP_1 \ NP_2 \ NP_3 \ NP_1 \ V_1 \ V_4 \ V_3 \ V_2 \]
 Elisabeth Joseph Maria das Kind sah beten lehren helfen
 Elisabeth Joseph Maria the child saw pray teach help
 (Elisabeth saw Joseph help Maria teach the child pray)

(8) is ruled out. As we have shown above we cannot instantiate an EPDA for 8 which is consistent with PPI. We must, however, qualify our conclusion here. The unacceptability of (8) may be also due to the fact that we have 4 verbs. The corresponding nested version with 4 verbs is acceptable, but not very good.

In the case of 3 verbs, as in (7), if \(V_2 \) is a modal verb, then an EPDA, \(M_m \), as in Figure 8 can be instantiated without any special moves at the end. Of course, in this case, we have only 2 \(NPs \). Thus

(9) \[NP_1 \ NP_3 \ V_1 \ V_3 \ V_2 \]
 Joseph Maria sah beten wollen
 Joseph Maria saw pray want-to
 (Joseph saw Maria want to pray)

is fine. In fact, in principle we can have any number of modals beyond the second verb in the sentence. Thus

(10) \[NP_1 \ NP_1 \ V_1 \ V_1 \ V_3 \ V_2 \]
 Josef Maria sah beten können wollen
 Joseph Maria saw pray be-able-to want-to
 (Joseph saw Maria want to be able to pray)

is also fine. We can also instantiate an EPDA consistent with PPI.
It is worth noting that the TAG given in Kroch and Santorini (1988), for the case of mixed dependencies we have considered here (i.e., the finite verb in the crossed order and the remaining verbs in the nested order), predicts, that except for the first two verbs (i.e., the finite verb and the first verb in the nested order), all the remaining verbs are modal. Thus (9) and (10) are fine but (7) is ruled out for the TAG in Kroch and Santorini (1988).

8 Conclusion

Motivated by the results of Bach, Brown, and Marslen-Wilson (1986) and their discussion of these results concerning processing of crossed and nested dependencies, we have shown that the embedded push-down automaton (EPDA) permits processing of crossed and nested dependencies consistent with the principle of partial interpretation. We have shown that there are appropriate complexity measures according to which the processing of crossed dependencies is easier than the processing of nested dependencies. This EPDA characterization is significant because the EPDAs are exactly equivalent to Tree Adjoining Grammars, which are capable of providing a linguistically motivated analysis for the crossed dependencies. The significance of EPDA characterization is further enhanced because two other formalisms (Head Grammars and Combinatory Categorial Grammars), based on principles completely different from those embodied in TAGs, which are also capable of providing analysis for crossed dependencies, are known to be equivalent to TAGs. We have also briefly discussed some issues concerning the EPDAs (consistent with PPI) and the associated grammars, and their relationship to the corresponding ‘linguistic’ grammars.

We have also investigated a case of mixed dependencies (finite verb in the crossed order and the remaining verbs in the nested order) and shown that EPDAs following the principle of partial interpretation (PPI) cannot be instantiated for sentences containing more than three matched NPs and Vs, a prediction that appears to be consistent with the data.
References

