Math 603, Spring 2003, HW 5, due 3/31/2003

Part A

AIII) Write A for an integral domain, $K = \text{Frac} \ A$, and set $\tilde{A} = \text{Int}_K(A)$. The domain \tilde{A} is called the \textit{normalization} of A. Now set
\[\mathcal{F} = (\tilde{A} \to A) = \{ \xi \in A \mid \xi \tilde{A} \subseteq A \} . \]

Of course, \mathcal{F} is an ideal of A, called the \textit{conductor} of A in \tilde{A} (German: Führer). Check that \mathcal{F} is also an ideal of \tilde{A}.

(a) If S is a multiplicative subset in A, show $S^{-1}\tilde{A} = \text{Int}_K(S^{-1}A)$. Prove further, $S^{-1}A$ is normal if $\mathcal{F} \cap S \neq \emptyset$.

(b) Assume \tilde{A} is a finitely generated A-module (frequently the case). Show that the conductor of $S^{-1}A$ in $S^{-1}\tilde{A}$ is the extended ideal \mathcal{F}^e. Show also in this case $S^{-1}A$ is normal if and only if $\mathcal{F} \cap S \neq \emptyset$.

(c) If \tilde{A} is a finitely generated A-module, then
\[\{ p \in \text{Spec} \ A \mid A_p \text{ is normal} \} \]

is open in Spec A, in fact it is a dense open of Spec A.

AII) A \textit{discrete valuation}, ν, on a (commutative) ring A, is a function $\nu : A \to \mathbb{Z} \cup \{ \infty \}$ satisfying
\begin{itemize}
 \item[(a)] $\nu(xy) = \nu(x) + \nu(y)$
 \item[(b)] $\nu(x + y) \geq \min\{\nu(x), \nu(y)\}$
 \item[(c)] $\nu(x) = \infty \iff x = 0$.
\end{itemize}

A pair (A, ν) where A a commutative ring and ν is a discrete valuation is called a \textit{discrete valuation ring} (DVR). Prove the following are equivalent:

(a) A is a DVR

(b) A is a local PID

(c) A is a local, noetherian, normal domain of Krull dimension 1

(d) A is a local, noetherian, normal domain and $(m_A \to a)(= \{ \xi \in \text{Frac} A \mid \xi m_A \subseteq A \}) \neq A$. Here, m_A is the maximal ideal of A.

AIII) Let A be a commutative ring with unity and assume A is semi-local (it possesses just finitely many maximal ideals). Write \mathcal{J} for the Jacobson radical of A and give A its \mathcal{J}-adic topology.

(a) Prove that A is noetherian iff each maximal ideal of A is finitely generated and each ideal is closed in the \mathcal{J}-adic topology.

(b) Assume A is noetherian, then the map $A \to A_{\text{rad}}$ gives A_{rad} its \mathcal{J}-adic topology. If A_{rad} is complete prove that A is complete.

AIV) (a) Let A be a local ring, give A its m-adic topology ($m = m_A$ is the maximal ideal of A) and assume A is complete. Given an A-algebra, B, suppose B is finitely generated as an A-module. Prove that B is a finite product of A-algebras each of which is a local ring. Give an example to show that some hypothesis like completeness is necessary for the conclusion to be valid.

(b) Again A is complete and local, assume $f(X) \in A[X]$ is a monic polynomial. Write $\overline{f}(X)$ for the image of f in $(A/m)[X]$. If $\overline{f}(X) \mid \overline{f}(X) = \overline{g}(X)\overline{h}(X)$ where g and h are relatively prime in $(A/m)[X]$, show that f factors as $G(X)H(X)$ where $G(X) = g(x); \overline{f}(X) = \overline{h}(X)$. What can you say about $\deg G$, $\deg H$ and uniqueness of this factorization? Compare parts (a) and (b).
Part B

BII) In this problem, A is an integral domain and $k = \text{Frac } A$. If ν and ω are two discrete valuations of k (c.f. AII, the functions ν and ω are defined on A and extended to k via $\nu(a/b) = \nu(a) - \nu(b)$, etc.), let's call ν, ω inequivalent iff one is not a constant multiple of the other. Write S for a set of inequivalent discrete valuations of k and say that A is adapted to S provided

$$A = \{ x \in k \mid (\forall \nu \in S)(\nu(x) \geq 0) \}.$$

(a) Prove the following are equivalent:
 i. A is a Dedekind domain
 ii. $(\forall$ ideals, a, of $A)(\forall x, x \neq 0, x \in a)(\exists y \in a)(a = (x, y))$.
 iii. There is a family of discrete valuations of k, say S, for which A is adapted to S and so that the following holds:
 $$(\forall \nu, \omega \in S) (\nu \neq \omega \implies (\exists a \in A)(\nu(a) \geq 1 \text{ and } \omega(a - 1) \geq 1)).$$

(b) Vis a vis part (a), describe a one-to-one correspondence $S \leftrightarrow \text{Max}(A)$.

(c) Take $k = \mathbb{Q}$, consider all prime numbers p with $p \equiv 1 \pmod{4}$, write $\text{ord}_p(n)$ for the highest exponent, e, so that $p^e \mid n$. Then ord_p is a discrete valuation of \mathbb{Q}, and we set $S = \{ \text{ord}_p \mid p \equiv 1 \pmod{4} \}$. Illustrate iii in part (a) above with this S. What is A, in concrete terms? It is pretty clear now how to make many Dedekind domains.

(d) Say A is a Dedekind domain and a, b are two non-zero ideals of A. Show $\exists x \in k(= \text{Frac } A)$, so that $a + xb = A$.

(e) Again let A be a Dedekind domain and let L be a finite subset of $\text{Max}(A)$. Write $A^L = \bigcap\{A_p \mid p \not\in L\}$, then $A \subseteq A^L$ and so $\mathbb{G}_m(A) \subseteq \mathbb{G}_m(A^L)$. Recall, $\mathbb{G}_m(B)$ is the group of units of the ring B. Prove that Pic(A) is a torsion group $\iff \mathbb{G}_m(A^L)/\mathbb{G}_m(A)$ is a free abelian group of rank $\#(L)$ for every finite set L of $\text{Max}(A)$.

BII) Here, k is a field and $A = k[X_\alpha]_{\alpha \in I}$. The index set, I, may possibly be infinite. Write m for the fractional ideal generated by all the X_α, $\alpha \in I$. Set $A_i = A/m^{i+1}$, so $A_0 = k$. These A_i form a left mapping system and we set

$$\hat{A} = \lim_{\leftarrow} A_i$$

and call \hat{A} the completion of A in the m-adic topology. Note that the kernel of $\hat{A} \to A_j$ is the closure of m^{j+1} in \hat{A}.

(a) Show that \hat{A} is canonically isomorphic to the ring of formal power series in the X_α in which only finitely many monomials of each degree occur.

(b) Now let $I = \mathbb{N}$ (the counting numbers) and write \hat{m} for the closure of m in \hat{A}. By adapting Cantor’s diagonal argument, prove that \hat{m} is NOT $\hat{A}m$. Which is bigger?

(c) Again, I as in (b). Let k be a finite field, prove the Lemma. If k is a finite field and $\lambda > 0$, $(\exists n_\lambda)(\forall n \geq n_\lambda)$, $\exists a \text{ homogeneous polynomial, } F_n \in k[n^2 \text{ variables}], \text{ so that } \deg F_n = n$ and $F_n \text{ cannot be written as the sum of terms of degree } n \text{ of any polynomial } P_1Q_1 + \cdots + P_nQ_n$, where P_j, Q_j are in $k[n^2 \text{ variables}]$ and have no constant term.

 Use the lemma to prove $(\hat{m})^2 \neq (\hat{m}^2)$.

(d) Use (b) and (c) to prove that \hat{A} is NOT complete in the \hat{m}-adic topology.

(e) All the pathology exhibited in (b), (c) and (d) arises as I is not finite, indeed when I is finite, prove:
i. \(\hat{m} \) is A\(\hat{m} \);
ii. \(\hat{m}^2 = (m^2) \);
iii. \(\hat{A} \) is complete in the \(\hat{m} \)-adic topology.

BIII) Say \(X \) denotes the category \(\text{TOP} \) (topological spaces and continuous maps) and \(\text{Haus}(X) \) the full subcategory of Hausdorff topological spaces.

(a) At first, use the ordinary Cartesian product in \(X \), with the product topology. Denote this \(Y \times Z \).
Show that \(Y \in \text{Haus}(X) \iff \) the diagonal map \(\Delta : Y \to Y \times Y \) is closed.

(b) For \(X, Y \in \text{Haus}(X) \), recall that \(X \xrightarrow{f} Y \) is called a proper map \(\iff f^{-1}(\text{compact}) = \text{compact} \).
(Of course, any map \(f : X \to Y \) will be proper if \(X \) is compact.) Show that \(f : X \to Y \) is proper iff \((\forall T \in \text{Haus}(X))(f_T : X \times T \to Y \times T \) is a closed map.)

(c) With (a) and (b) as background look at another subcategory, \(X_A \) of \(X \): here \(A \) is a commutative ring, \(X_A \) consists of the topological spaces \(\text{Spec} B \), where \(B \) is an \(A \)-algebra. Maps in \(X_A \) are those coming from homomorphisms of \(A \)-algebras, viz: \(B \to C \) gives \(\text{Spec} C \to \text{Spec} B \).
Define
\[
(\text{Spec} B) \amalg (\text{Spec} C) = \text{Spec} (B \otimes_A C)
\]
and prove that \(X_A \) possesses products.

NB:

i. The topology on \(\text{Spec} B \amalg \text{Spec} C \) is NOT the product topology—it is stronger (more opens and closeds)
ii. \(\text{Spec} B \amalg \text{Spec} C \neq \text{Spec} B \times \text{Spec} C \) as sets.

Prove: the diagonal map \(\Delta_Y : Y \to Y \amalg Y \) is closed \((Y = \text{Spec} B) \). This recaptures (a) in the non-Hausdorff setting of \(X_A \).

(d) Given \(f : \text{Spec} C \to \text{Spec} B \) (arising from an \(A \)-algebra map \(B \to C \)) call \(f \) proper \(\iff i) C \) is a finitely generated \(B \)-algebra and ii) \((\forall T = \text{Spec} D)(f_T : \text{Spec} C \amalg \text{Spec} D \to \text{Spec} B \amalg \text{Spec} D \) is a closed map.)

Prove: if \(C \) is integral over \(B \), then \(f \) is proper. However, prove also, \(\text{Spec} (B[T]) \to \text{Spec} B \) is never proper.

(e) Say \(A = C \). For which \(A \)-algebras \(B \) is the map \(\text{Spec} B \to \text{Spec} A \) proper?

BIV) \(A \) is noetherian local, \(m_A \) its maximal ideal, and
\[
\hat{A} = \lim_{\to \infty} A/m_A^{n+1} = \text{completion of} \ A \ in \ the \ m \text{-adic topology}.
\]

Let \(B, m_B \) be another noetherian local ring and its maximal ideal. Assume \(f : A \to B \) is a ring homomorphism and we always assume \(f(m_A) \subseteq m_B \).

(a) Prove: \(f \) gives rise to a homomorphism \(\hat{A} \xrightarrow{\hat{f}} \hat{B} \) (and \(\hat{m}_A \to \hat{m}_B \)).

(b) Prove: \(\hat{f} \) is an isomorphism \(\iff \)

i. \(B \) is flat over \(A \)
ii. \(f(m_A) \cdot B = m_B \)
iii. \(A/m_A \to B/m_B \) is an isomorphism.