All-Pairs-Shortest-Paths for Large Graphs on the GPU

Gary J Katz\(^1,2\), Joe Kider\(^1\)
\(^1\)University of Pennsylvania
\(^2\)Lockheed Martin IS&GS
What Will We Cover?

• Quick overview of Transitive Closure and All-Pairs Shortest Path
• Uses for Transitive Closure and All-Pairs
• GPUs, What are they and why do we care?
• The GPU problem with performing Transitive Closure and All-Pairs…..
• Solution, The Block Processing Method
• Memory formatting in global and shared memory
• Results
Previous Work

• “A Blocked All-Pairs Shortest-Paths Algorithm”
 Venkataraman et al.

• “Parallel FPGA-based All-Pairs Shortest Path in a Diverted Graph”
 Bondhugula et al.

• “Accelerating large graph algorithms on the GPU using CUDA”
 Harish
NVIDIA GPU Architecture

Issues
• No Access to main memory
• Programmer needs to explicitly reference L1 shared cache
• Can not synchronize multiprocessors
• Compute cores are not as smart as CPUs,
 does not handle if statements well
Background

• Some graph G with vertices V and edges E

• $G = (V, E)$

• For every pair of vertices u, v in V a shortest path from u to v, where the weight of a path is the sum of the weights of its edges
Adjacency Matrix

Directed Graph (a)

Undirected Graph (b)

Adjacency Matrix Representation (a)

Adjacency Matrix Representation (b)
Quick Overview of Transitive Closure

The **Transitive Closure** of G is defined as the graph $G^* = (V, E^*)$, where $E^* = \{(i,j) : \text{there is a path from vertex } i \text{ to vertex } j \text{ in } G\}$

-Introduction to Algorithms, T. Cormen

Simply Stated: The Transitive Closure of a graph is the list of edges for any vertices that can reach each other.
Warshall’s algorithm: transitive closure

- Computes the transitive closure of a relation
- (Alternatively: all paths in a directed graph)

Example of transitive closure:

```
    0 1 0 0
    1 0 1 0
    0 0 0 0
    0 0 0 0
```

```
    0 1 0 0
    1 1 1 1
    0 0 0 0
    1 1 1 1
```
Warshall’s algorithm

- Main idea: a path exists between two vertices i, j, iff
 - there is an edge from i to j; or
 - there is a path from i to j going through vertex 1; or
 - there is a path from i to j going through vertex 1 and/or 2; or
 - ...
 - there is a path from i to j going through vertex 1, 2, ... and/or k; or
 - ...
 - there is a path from i to j going through any of the other vertices
Idea: dynamic programming

- Let $V=\{1, \ldots, n\}$ and for $k \leq n$, $V_k=\{1, \ldots, k\}$
- For any pair of vertices $i, j \in V$, identify all paths from i to j whose intermediate vertices are all drawn from V_k: $P_{ij}^k=\{p_1, p_2, \ldots\}$, if $P_{ij}^k \neq \emptyset$ then $R^k[i, j]=1$

- For any pair of vertices i, j: $R^n[i, j]$, that is R^n
- Starting with $R^0=A$, the adjacency matrix, how to get $R^1 \Rightarrow \ldots \Rightarrow R^{k-1} \Rightarrow R^k \Rightarrow \ldots \Rightarrow R^n$
Warshall’s algorithm

Idea: dynamic programming

- $p \in P_{ij}^k$: p is a path from i to j with all intermediate vertices in V_k
- If k is not on p, then p is also a path from i to j with all intermediate vertices in V_{k-1}: $p \in P_{ij}^{k-1}$
Idea: dynamic programming

- \(p \in P_{ij}^k \): \(p \) is a path from \(i \) to \(j \) with all intermediate vertices in \(V_k \)
- If \(k \) is on \(p \), then we break down \(p \) into \(p_1 \) and \(p_2 \) where
 - \(p_1 \) is a path from \(i \) to \(k \) with all intermediate vertices in \(V_{k-1} \)
 - \(p_2 \) is a path from \(k \) to \(j \) with all intermediate vertices in \(V_{k-1} \)
Warshall’s algorithm

• In the k^{th} stage determine if a path exists between two vertices i, j using just vertices among 1, ..., k

$$R^{(k)}[i,j] = \begin{cases} R^{(k-1)}[i,j] \\ \text{or} \\ (R^{(k-1)}[i,k] \text{ and } R^{(k-1)}[k,j]) \end{cases}$$

(path using just 1, ..., k-1)

(path from i to k and from k to j using just 1, ..., k-1)

k^{th} stage
Quick Overview All-Pairs-Shortest-Path

The **All-Pairs Shortest-Path** of G is defined for every pair of vertices \(u, v \in V \) as the shortest (least weight) path from \(u \) to \(v \), where the weight of a path is the sum of the weights of its constituent edges.

-Introduction to Algorithms, T. Cormen

Simply Stated: The All-Pairs-Shortest-Path of a graph is the most optimal list of vertices connecting any two vertices that can reach each other.

Paths
1 → 5
2 → 1
4 → 2
4 → 3
6 → 3
8 → 6
2 → 1 → 5
8 → 6 → 3
7 → 8 → 6
7 → 8 → 6 → 3
Uses for Transitive Closure and All-Pairs
Floyd-Warshall Algorithm

```c
void Floyd_Warshall(Graph * W) {
    int n = NumOfRows(W);
    for(int k = 1; k < n; k++)
        for(int i = 1; i < n; i++)
            for(int j = 1; j < n; j++)
                W[i, j] = W[i, j] || (W[i, k] && W[k, j]);
}
```

Pass 1: Finds all connections that are connected through 1

Pass 6: Finds all connections that are connected through 6

Pass 8: Finds all connections that are connected through 8

Running Time = $O(V^3)$
There’s a short coming to this algorithm though...

```c
void Floyd_Warshall(Graph * W) {
    int n = NumOfRows(W);
    for(int k = 1; k < n; k++) {
        Parallel_Floyd_Warshall[i = 1:n, j = 1:n](W);
    }
}

void Parallel_Floyd_Warshall(Graph * W) {
    W[i,j] = W[i,j] | (W[i, k] && W[k, j]);
}
```
The Question

How do we calculate the transitive closure on the GPU to:

1. Take advantage of shared memory
2. Accommodate data sizes that do not fit in memory

Can we perform partial processing of the data?

```c
void Floyd_Warshall(Graph * W) {
    int n = NumOfRows(W);
    for(int k = 1; k < n; k++) {
        Parallel_Floyd_Warshall[i = 1:n, j = 1:n](W);
    }
}

void Parallel_Floyd_Warshall(Graph * W) {
    W[i,j] = W[i,j] || (W[i,k] && W[k,j]);
}
```
Block Processing of Floyd-Warshall

Organizational structure for block processing?
Block Processing of Floyd-Warshall

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The highlighted block is: 1 1

1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
Block Processing of Floyd-Warshall

```c
void Floyd_Warshall(Graph * W) {
    int n = NumOfRows(W);

    for(int k = 1; k < n; k++) {
        for(int i = 1; i < n; i++) {
            for(int j = 1; j < n; j++) {
                W[i, j] = W[i, j] | (W[i, k] & W[k, j]);
            }
        }
    }
}
```
Block Processing of Floyd-Warshall

\[W[i,j] = W[i,j] \mid (W[i,k] \&\& W[k,j]) \]

For each pass, k, the cells retrieved must be processed to at least k-1
Block Processing of Floyd-Warshall

- **Putting it all Together**
- **Processing** $K = [1-4]$

Pass 1:
- $i = [1-4], j = [1-4]$

Pass 2:
- $i = [5-8], j = [1-4]$
- $i = [1-4], j = [5-8]$

Pass 3:
- $i = [5-8], j = [5-8]$

Equation:

$$W[i,j] = W[i,j] \mid (W[i,k] \&\& W[k,j])$$
Block Processing of Floyd-Warshall

\[N = 8 \]

\[\text{void Floyd_Warshall(Graph * } W) \{ \]
\[\quad \text{int } n = \text{NumOfRows}(W); \]
\[\quad \text{for(int } k = 5; k <= 8; k++) \{ \]
\[\quad \quad \text{for(int } i = 5; i <= 8; i++) \{ \]
\[\quad \quad \quad \text{for(int } j = 5; j <= 8; j++) \{ \]
\[\quad \quad \quad \quad W[i,j] = W[i,j] \mid (W[i,k] \&\& W[k,j]); \]
\[\quad \quad \} \]
\[\quad \} \]
\[\}

Range:
\[i = [5, 8] \]
\[j = [5, 8] \]
\[k = [5, 8] \]

Computing \(k = [5-8] \)
Putting it all Together
Processing $K = [5-8]$

Pass 1:
\[i = [5-8], \; j = [5-8] \]

Pass 2:
\[i = [5-8], \; j = [1-4] \]
\[i = [1-4], \; j = [5-8] \]

Pass 3:
\[i = [1-4], \; j = [1-4] \]

Transitive Closure
Is complete for $k = [1-8]$

\[W[i,j] = W[i,j] \; | \; (W[i,k] \; \&\& \; W[k,j]) \]
Increasing the Number of Blocks

Primary blocks are along the diagonal
Secondary blocks are the rows and columns of the primary block
Tertiary blocks are all remaining blocks

Pass 1
Increasing the Number of Blocks

- Primary blocks are along the diagonal
- Secondary blocks are the rows and columns of the primary block
- Tertiary blocks are all remaining blocks

Pass 2
Increasing the Number of Blocks

- Primary blocks are along the diagonal
- Secondary blocks are the rows and columns of the primary block
- Tertiary blocks are all remaining blocks

Pass 3
Increasing the Number of Blocks

- Primary blocks are along the diagonal
- Secondary blocks are the rows and columns of the primary block
- Tertiary blocks are all remaining blocks

Pass 4
Increasing the Number of Blocks

- Primary blocks are along the diagonal
- Secondary blocks are the rows and columns of the primary block
- Tertiary blocks are all remaining blocks

Pass 5
Increasing the Number of Blocks

- Primary blocks are along the diagonal
- Secondary blocks are the rows and columns of the primary block
- Tertiary blocks are all remaining blocks

Pass 6
Increasing the Number of Blocks

- Primary blocks are along the diagonal
- Secondary blocks are the rows and columns of the primary block
- Tertiary blocks are all remaining blocks
Increasing the Number of Blocks

- Primary blocks are along the diagonal
- Secondary blocks are the rows and columns of the primary block
- Tertiary blocks are all remaining blocks

Pass 8

In Total:
N Passes
3 sub-passes per pass
Running it on the GPU

- **Using CUDA**
 - Written by NVIDIA to access GPU as a parallel processor
 - Do not need to use graphics API

- **Memory Indexing**
 - CUDA Provides
 - Grid Dimension
 - Block Dimension
 - Block Id
 - Thread Id
Partial Memory Indexing

- SP1
- SP2
- SP3

N - 1

0 1

N - 1

N - 1
Memory Format for All-Pairs Solution

All-Pairs requires twice the memory footprint of Transitive Closure

```
<table>
<thead>
<tr>
<th>Connecting Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 1</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>6</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>7</td>
<td>8 3 6 2</td>
</tr>
<tr>
<td>8</td>
<td>6 2 0 1</td>
</tr>
</tbody>
</table>
```

Shortest Path
SM cache efficient GPU implementation compared to standard GPU implementation
Results

SM cache efficient GPU implementation compared to standard CPU implementation and cache-efficient CPU implementation
SM cache efficient GPU implementation compared to best variant of Han et al.’s tuned code
Conclusion

- Advantages of Algorithm
 - Relatively Easy to Implement
 - Cheap Hardware
 - Much Faster than standard CPU version
 - Can work for any data size

Special thanks to NVIDIA for supporting our research
Backup
CUDA

- CompUte Driver Architecture
- Extension of C
- Automatically creates thousands of threads to run on a graphics card
- Used to create non-graphical applications

Pros:
- Allows user to design algorithms that will run in parallel
- Easy to learn, extension of C
- Has CPU version, implemented by kicking off threads

Cons:
- Low level, C like language
- Requires understanding of GPU architecture to fully exploit