CIS 511: Spring 2012
Midterm Solutions

(1) Let \(B \) be any language over the alphabet \(\Sigma \). Prove that \(B = B^* \) iff \(BB \subseteq B \) and \(\varepsilon \in B \).

Answer: One direction is easy. If \(B = B^* \), then \(BB \subseteq B^* = B \) and \(\varepsilon \in B^* = B \).

Suppose now that \(BB \subseteq B \) and \(\varepsilon \in B \). We prove by induction that \(B^n \subseteq B \) for \(n \geq 2 \).

The base case is \(n = 2 \) is by hypothesis. Then \(B^2 = B^1B \subseteq BB \subseteq B \) (where the first inclusion is by the induction hypothesis). Noting that by hypothesis, \(\varepsilon \in B \), we conclude that for all \(n \geq 0 \), \(B^n \subseteq B \) and thus \(B^* = B \) (since \(B \subseteq B^* \) is trivial).

(2) Let \(\Sigma = \{0, 1, +, =\} \) and \(ADD = \{x = y + z \mid x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\} \)

Answer: Suppose \(ADD \) is regular. Let \(p \) be its pumping length. Take \(w \) to be the string \(1^p = 1^p + 0 \). Then let \(w = xyz \) be a partition of \(w \) with \(|xy| \leq p \) and \(|y| > 0 \). Note that \(y = 1^k \) for some \(1 \leq k \leq p \) and that \(1^p + 0 \) is contained fully in \(z \). Thus \(xy^2z \) is \(1^{p+k} = 1^k + 0 \), which is not in the language, contradicting the pumping lemma. Thus, \(ADD \) is not regular.

(3) Let \(L = \left\{ u_1 \# u_2 \# \cdots \# u_k \mid u_i \in \{0, 1\}^*, k \geq 2 \text{ and for some } i \text{ between } 1 \text{ and } k-1, u_i+1 \neq u_i^R \right\} \)

Show that \(L \) is context-free by describing a PDA for it.

Answer: The PDA will non-deterministically guess the index \(i \) for which \(u_i^R \neq u_{i+1} \). For the guessed \(i \), it will enter a state where it remembers \(u_i \) by pushing each symbol of \(u_i \) onto the stack. It knows what \(u_i \) ends since it is delimited by a \(\# \), so when it sees the \(\# \), it moves to the next state.

In this state, it compares \(u_{i+1} \) to the top symbol of the stack, discarding both, and repeating. If we see 0 from the input and 1 or \(\$ \) on the stack, we go to an accept state – regardless of what else happens, \(u_{i+1} \neq u_i^R \). Similarly for 1. If we see \(\# \) from the input and \(\$ \) on the stack, this means that \(u_i^R = u_{i+1} \) and this branch of computation should end. If we see \(\# \) from the input and 0 or 1 on the stack, this means that \(u_{i+1} \) is shorter than \(u_i^R \), and in particular not equal.

The accept state has a loop to itself on any symbol from the input.

(4) Consider the problem of deciding whether a two-tape Turing Machine ever writes a non-blank symbol on its second tape when it runs on input \(w \). Formulate this problem as a language and show that it is undecidable by reducing \(A_{TM} \) to it.

Answer:

\[L = \left\{ \langle M, w \rangle \mid M \text{ is a Turing Machine, which on input } w, \text{ writes a non-blank symbol on its second tape} \right\} \]

We define the following two-tape TM \(M_1 \). It takes as input a pair \(\langle M, w \rangle \) where \(M \) is a TM and \(w \) is some string. \(M_1 \) will simulate \(M \) using just its first tape (it will ignore the second tape until the end – this is possible since a one-tape TM can simulate any one-tape TM) on input \(w \). If \(M \) accepts \(w \), then \(M_1 \) writes a non-blank symbol from its alphabet on its second tape. If the simulation halts or rejects, we simply stop.

Now, suppose that \(T \) decides \(L \). Then we construct \(T' \) which decides \(A_{TM} \). On input \(\langle M, w \rangle \), it simulates the machine \(M_1 \) as described above, and then run \(T \) on \(M_1 \), and accept if \(T \) accepts, and reject if \(T \) rejects.
We see that T' accepts iff T accepts $\langle M_1, \langle M, w \rangle \rangle$ iff M_1 writes on its second tape iff M accepts w. Thus, T' decides A_{TM}. Since A_{TM} cannot have a decider, we see that there is no T deciding L, and so L is undecidable.

(5) Let
\[L = \{ \langle M, k \rangle \mid M \text{ accepts some string of length at most } k \} \]
Prove that L is undecidable.

Answer: Suppose L is decidable, and let R be a decider for L. Let $M_1(M, w)$ be a machine which operates as follows on input x: if $x \neq w$, we reject, otherwise, we run M on $w = x$ and accept if M accepts.

We then build the following decider, S, for A_{TM}: on input $\langle M, w \rangle$, construct M_1, and run R on M_1. If R accepts, we accept, and if R rejects, we reject.

Now note that S accepts $\langle M, w \rangle$ iff R accepts $M_1(M, w)$ iff M accepts w. That is, S decides A_{TM}: a contradiction. Thus, no such R exists, and L is undecidable.