Problem A1. Recall that two regular expressions \(R \) and \(S \) are equivalent, denoted as \(R \equiv S \), iff they denote the same regular language \(L[R] = L[S] \). Show that the following identities hold for regular expressions:

\[
R^{**} \equiv R^* \\
(R + S)^* \equiv (R^* + S^*)^* \\
(R + S)^* \equiv (R^*S^*)^* \\
(R + S)^* \equiv (R^*S^*)R^*
\]

Problem A2. Recall that a homomorphism \(h: \Sigma^* \to \Delta^* \) is a function such that \(h(uv) = h(u)h(v) \) for all \(u, v \in \Sigma^* \). Given any language, \(L \subseteq \Sigma^* \), we define \(h(L) \) as

\[
h(L) = \{h(w) \mid w \in L\}.
\]

Prove that if \(L \subseteq \Sigma^* \) is a regular language, then so is \(h(L) \).

Problem A3. Construct an NFA accepting the language \(L = \{aa, aaa\}^* \). Apply the subset construction to get a DFA accepting \(L \).

“B problems” must be turned in.

Problem B1 (25 pts). Let \(\Sigma = \{a_1, \ldots, a_n\} \) be an alphabet of \(n \) symbols.

(a) Construct an NFA with \(2n + 1 \) (or \(2n \)) states accepting the set \(L_n \) of strings over \(\Sigma \) such that, every string in \(L_n \) has an odd number of \(a_i \), for some \(a_i \in \Sigma \). Equivalently, if \(L_i \) is the set of all strings over \(\Sigma \) with an odd number of \(a_i \), then \(L_n = L_1 \cup \cdots \cup L_n \).

(b) Prove that there is a DFA with \(2^n \) states accepting the language \(L_n \).

(c) Prove that every DFA accepting \(L_n \) has at least \(2^n \) states.

Hint: If a DFA \(D \) with \(k < 2^n \) states accepts \(L_n \), show that there are two strings \(u, v \) with the property that, for some \(a_i \in \Sigma \), \(u \) contains an odd number of \(a_i \)’s, \(v \) contains an even
number of a_i's, and D ends in the same state after processing u and v. From this, conclude that D accepts incorrect strings.

Problem B2 (25 pts). (a) Let \(T = \{0, 1, 2\} \), let \(C \) be the set of 20 strings of length three over the alphabet \(T \),
\[
C = \{ u \in T^3 \mid u \notin \{110, 111, 112, 101, 121, 011, 211\} \},
\]
let \(\Sigma = \{0, 1, 2, c\} \) and consider the language
\[
L_M = \{ w \in \Sigma^* \mid w = u_1cu_2c\cdots cu_n, \ n \geq 1, u_i \in C \}.
\]
Prove that \(L \) is regular.

(b) The language \(L_M \) has a geometric interpretation as a certain subset of \(\mathbb{R}^3 \) (actually, \(\mathbb{Q}^3 \)), as follows: Given any string, \(w = u_1cu_2c\cdots cu_n \in L_M \), denoting the \(j \)th character in \(u_i \) by \(u_i^j \), where \(j \in \{1, 2, 3\} \), we obtain three strings
\[
\begin{align*}
 w^1 &= u_1^1u_2^1\cdots u_n^1 \\
 w^2 &= u_1^2u_2^2\cdots u_n^2 \\
 w^3 &= u_1^3u_2^3\cdots u_n^3.
\end{align*}
\]
For example, if \(w = 012c001c222c122 \) we have \(w^1 = 0021 \), \(w^2 = 1022 \), and \(w^3 = 2122 \). Now, a string \(v \in T^+ \) can be interpreted as a decimal real number written in base three! Indeed, if
\[
v = b_1b_2\cdots b_k, \quad \text{where } \ b_i \in \{0, 1, 2\} = T \ (1 \leq i \leq k),
\]
we interpret \(v \) as \(n(v) = 0.b_1b_2\cdots b_k \), i.e.,
\[
n(v) = b_13^{-1} + b_23^{-2} + \cdots + b_k3^{-k}.
\]
Finally, a string, \(w = u_1cu_2c\cdots cu_n \in L_M \), is interpreted as the point, \((x_w, y_w, z_w) \in \mathbb{R}^3\), where
\[
x_w = n(w^1), \ y_w = n(w^2), \ z_w = n(w^3).
\]
Therefore, the language, \(L_M \), is the encoding of a set of rational points in \(\mathbb{R}^3 \), call it \(M \). This turns out to be the rational part of a fractal known as the Menger sponge.

Explain the best you can what are the recursive rules to create the Menger sponge, starting from a unit cube in \(\mathbb{R}^3 \). Draw some pictures illustrating this process and showing approximations of the Menger sponge.

Extra Credit (20 points). Write a computer program to draw the Menger sponge (based on the ideas above).

Problem B3 (40 pts). Let \(D = (Q, \Sigma, \delta, q_0, F) \) be a deterministic finite automaton. Define the relations \(\approx \) and \(\sim \) on \(\Sigma^* \) as follows:
\[
x \approx y \quad \text{if and only if, for all } \ p \in Q,
\]
\[
\delta^*(p, x) \in F \quad \text{iff} \quad \delta^*(p, y) \in F,
\]

and $x \sim y$ if and only if, for all $p \in Q$, $\delta^*(p, x) = \delta^*(p, y)$.

(a) Show that \approx is a left-invariant equivalence relation and that \sim is an equivalence relation that is both left and right invariant. (A relation R on Σ^* is left invariant iff uRv implies that $wuRwv$ for all $w \in \Sigma^*$, and R is right invariant iff uRv implies that $uwRvw$ for all $w \in \Sigma^*$.)

(b) Let n be the number of states in Q (the set of states of D). Show that \approx has at most 2^n equivalence classes and that \sim has at most n^n equivalence classes.

(c) Given any language $L \subseteq \Sigma^*$, define the relations λ_L and μ_L on Σ^* as follows:

$$u \lambda_L v \text{ iff, for all } z \in \Sigma^*, zu \in L \text{ iff } zv \in L,$$

and

$$u \mu_L v \text{ iff, for all } x, y \in \Sigma^*, xuy \in L \text{ iff } xvy \in L.$$

Prove that λ_L is left-invariant, and that μ_L is left and right-invariant. Prove that if L is regular, then both λ_L and μ_L have a finite number of equivalence classes.

Hint: Show that the number of classes of λ_L is at most the number of classes of \approx, and that the number of classes of μ_L is at most the number of classes of \sim.

Problem B4 (70 pts). (i) Prove that the conclusion of the pumping lemma holds for the following language L over $\{a, b\}^*$, and yet, L is not regular!

$L = \{w \mid \exists n \geq 1, \exists x_i \in a^+, \exists y_i \in b^+, 1 \leq i \leq n, n \text{ is not prime, } w = x_1y_1 \cdots x_ny_n\}$.

(ii) Consider the following version of the pumping lemma. For any regular language L, there is some $m \geq 1$ so that for every $y \in \Sigma^*$, if $|y| = m$, then there exist $u, x, v \in \Sigma^*$ so that

1. $y = uxv$;
2. $x \neq \epsilon$;
3. For all $z \in \Sigma^*$,

$$yz \in L \text{ iff } ux^ivz \in L$$

for all $i \geq 0$.

Prove that this pumping lemma holds.

(iii) Prove that the converse of the pumping lemma in (ii) also holds, i.e., if a language L satisfies the pumping lemma in (ii), then it is regular.

(iv) Consider yet another version of the pumping lemma. For any regular language L, there is some $m \geq 1$ so that for every $y \in \Sigma^*$, if $|y| \geq m$, then there exist $u, x, v \in \Sigma^*$ so that
(1) $y = u x v$;
(2) $x \neq \epsilon$;
(3) For all $\alpha, \beta \in \Sigma^*$,
$$\alpha u \beta \in L \iff \alpha u x^i \beta \in L$$
for all $i \geq 0$.

Prove that this pumping lemma holds.

(v) Prove that the converse of the pumping lemma in (iv) also holds, i.e., if a language L satisfies the pumping lemma in (iv), then it is regular.

Problem B5 (10 pts). Is the following language regular? Justify your answer.

$L_3 = \{a^n \mid n \text{ is a prime number}\}$

TOTAL: 170 + 20 points.