“A problems” are for practice only, and should not be turned in.

Problem A1. Given an alphabet \(\Sigma \), prove that the relation \(\leq_1 \) over \(\Sigma^* \) defined such that
\[u \leq_1 v \text{ iff } u \text{ is a prefix of } v, \]
is a partial ordering. Prove that the relation \(\leq_2 \) over \(\Sigma^* \) defined
such that
\[u \leq_2 v \text{ iff } u \text{ is a substring of } v, \]
is a partial ordering.

Problem A2. Given an alphabet \(\Sigma \), for any language \(L \subseteq \Sigma^* \), prove that
\[L^{**} = L^* \]
and
\[L^* L^* = L^*. \]

Problem A3. Let \(D = (Q, \Sigma, \delta, q_0, F) \) be a DFA. Prove that for all \(p \in Q \) and all \(u, v \in \Sigma^* \),
\[\delta^*(p, uv) = \delta^*(\delta^*(p, u), v). \]

“B problems” must be turned in.

Problem B1 (30 pts). Let \(D = (Q, \Sigma, \delta, q_0, F) \) be a DFA. Recall that a state \(p \in Q \) is
accessible or reachable iff there is some string \(w \in \Sigma^* \), such that
\[\delta^*(q_0, w) = p, \]
i.e., there is some path from \(q_0 \) to \(p \) in \(D \). Consider the following method for computing the
set \(Q_r \) of reachable states (of \(D \)): define the sequence of sets \(Q^i_r \subseteq Q \), where
\[Q^0_r = \{q_0\}, \]
\[Q^{i+1}_r = \{q \in Q \mid \exists p \in Q^i_r, \exists a \in \Sigma, q = \delta(p, a)\}. \]
(i) Prove by induction on \(i \) that \(Q^i_r \) is the set of all states reachable from \(q_0 \) using paths
of length \(i \) (where \(i \) counts the number of edges).

Give an example of a DFA such that \(Q^{i+1}_r \neq Q^i_r \) for all \(i \geq 0 \).
(ii) Give an example of a DFA such that \(Q^i_r \neq Q_r \) for all \(i \geq 0 \).
(iii) Change the inductive definition of \(Q^i_r \) as follows:
\[Q^{i+1}_r = Q^i_r \cup \{q \in Q \mid \exists p \in Q^i_r, \exists a \in \Sigma, q = \delta(p, a)\}. \]
Prove that there is a smallest integer \(i_0 \) such that
\[
Q_r^{i_0+1} = Q_r^{i_0} = Q_r.
\]

Define the DFA \(D_r \) as follows: \(D_r = (Q_r, \Sigma, \delta_r, q_0, F \cap Q_r) \), where \(\delta_r : Q_r \times \Sigma \to Q_r \) is the restriction of \(\delta \) to \(Q_r \). Explain why \(D_r \) is indeed a DFA, and prove that \(L(D_r) = L(D) \). A DFA is said to be reachable, or trim, if \(D = D_r \).

Problem B2 (20 pts). Given a string \(w \), its reversal \(w^R \) is defined inductively as follows:
\[
\epsilon^R = \epsilon \quad \text{and} \quad (ua)^R = au^R, \quad \text{where} \quad a \in \Sigma \quad \text{and} \quad u \in \Sigma^*.\]
Prove that \((uv)^R = v^Ru^R \).

Problem B3 (20 pts). Construct DFA’s for the following languages:
(a) \(\{ w \mid w \in \{a, b\}^*, \ w \text{ has neither } aa \text{ nor } bb \text{ as a substring} \} \).
(b) \(\{ w \mid w \in \{a, b\}^*, \ w \text{ has an even number of } a \text{’s and an odd number of } b \text{’s} \} \).

Problem B4 (30 pts). Let \(L \) be a regular language. Are the following languages regular, and if so, give a proof (or construction).
(a) \(\text{Pre}(L) = \{ u \mid u \text{ is a prefix of some } w \in L \} \)
(b) \(\text{Suf}(L) = \{ u \mid u \text{ is a suffix of some } w \in L \} \)
(c) \(\text{Sub}(L) = \{ u \mid u \text{ is a substring of some } w \in L \} \)

Problem B5 (20 pts). Let \(L \) be any language over some alphabet \(\Sigma \).
(a) Prove that \(L = L^+ \) iff \(LL \subseteq L \).
(b) Prove that \((L = \emptyset \text{ or } L = L^*) \) iff \(LL = L \).

Problem B6 (40 pts). Given any two relatively prime integers \(p, q \geq 1 \), with \(p \neq q \), \(p \) and \(q \) are relatively prime iff their greatest common divisor is 1), consider the language \(L = \{a^p, a^q\}^* \). Prove that
\[
\{a^p, a^q\}^* = \{a^n \mid n \geq (p-1)(q-1) \} \cup F,
\]
where \(F \) is some finite set of strings (of length < \((p-1)(q-1) \)). Prove that \(L \) is a regular language.

Extra Credit (20 pts). Given any two relatively prime integers \(p, q \geq 1 \), with \(p \neq q \), prove that \(pq - p - q = (p-1)(q-1) - 1 \) is the largest integer not expressible as \(ph + kq \) with \(h, k \geq 0 \).

Problem B7 (20 pts). (a) Given the alphabet \(\Sigma = \{0, 1, c\} \), construct a DFA accepting the following language:
\[
L = \{ u_1cu_2c \cdots cu_{n-1}cu_n \mid n \geq 1, \ u_i \in \{00, 01, 10\} \}.
\]
(b) The strings in the above language can be interpreted as the coordinates of points in the plane as follows: Assume that you start with a square \(S_0 \), say of dimension \(2 \times 2 \), divided
into four equal subsquares. Then the lower left corner of each subsquare is referenced by one of the strings 00, 01, 10, or 11. A string $u_1u_2\ldots u_{n-1}u_n$ determines a point in the original square by proceeding recursively as follows: u_1 determines the subsquare S_1 whose lower left corner has coordinates u_1 in the original square; within the square S_1, u_2 determines the subsquare S_2 whose lower left corner has coordinates u_2; given the subsquare S_i obtained at the end of step i, within this subsquare S_i, u_{i+1} determines the subsquare S_{i+1} whose lower left corner has coordinates u_{i+1}. The procedure stops with a point in the square S_{n-1} obtained at stage $n-1$, the lower left corner of the subsquare S_n whose coordinates with respect to S_{n-1} are determined by u_n.

Draw a rough picture by plotting a number of these points. What sort of shape do you get?

Remark: The set of points defined above is a subset of the set of rational points of a fractal set known as the Sierpinski gasket.

Extra Credit (30 pts). Write a computer program to display the Sierpinski gasket.

TOTAL: 180 + 50 points.