Advanced Programming
Handout 9

Qualified Types
(SOE Chapter 12)
Motivation

- What should the principal type of (+) be?
 - `Int -> Int -> Int` -- too specific
 - `a -> a -> a` -- too general

- It seems like we need something “in between”, that restricts “a” to be from the set of all number types, say `Num = {Int, Integer, Float, Double, etc.}`.

- The type `a -> a -> a` is really shorthand for `(\forall a) a -> a -> a`

- *Qualified types* generalize this by qualifying the type variable, as in `(\forall a \in Num) a -> a -> a`, which in Haskell we write as `Num a => a -> a -> a`
Type Classes

- “Num” in the previous example is called a *type class*, and should not be confused with a type constructor or a value constructor.
- “Num T” should be read “T is a member of (or an instance of) the type class Num”.
- Haskell’s type classes are one of its most innovative features.
- This capability is also called “overloading”, because one function name is used for potentially very different purposes.
- There are many pre-defined type classes, but you can also define your own.
Example: Equality

- Like addition, equality is not defined on all types (how would we test the equality of two functions, for example?).
- So the equality operator (==) in Haskell has type `Eq a => a -> a -> Bool`. For example:

 - `42 == 42` ➞ True
 - `'a' == 'a'` ➞ True
 - `'a' == 42` ➞ type error! (types don’t match)
 - `(+1) == (\x->x+1)` ➞ type error! ((->) is not an instance of Eq)

- Note: the type errors occur at compile time!
Equality, cont’d

- Eq is defined by this type class declaration:

```haskell
class Eq a where
  (==), (=/=) :: a -> a -> Bool
  x /= y     =  not (x == y)
  x == y     =  not (x /= y)
```

- The last two lines are default methods for the operators defined to be in this class.

- A type is made an instance of a class by an instance declaration. For example:

```haskell
instance Eq Int where
  x == y = intEq x y -- primitive equality for Ints
instance Eq Float where
  x == y = floatEq x y -- primitive equality for Floats
```
Equality, cont’d

- **User-defined** data types can also be made instances of `Eq`. For example:

  ```haskell
data Tree a = Leaf a | Branch (Tree a) (Tree a)

instance Eq (Tree a) where
  Leaf a1 == Leaf a2 = a1 == a2
  Branch l1 r1 == Branch l2 r2 = l1==l2 && r1==r2
  _ == _ = False
```

- But something is strange here: is “`a1 == a2`” on the right-hand side correct? How do we know that equality is defined on the type “`a`”???

User-defined data types can also be made instances of Eq. For example:

```haskell
data Tree a = Leaf a | Branch (Tree a) (Tree a)

instance Eq a => Eq (Tree a) where
  Leaf a1 == Leaf a2 = a1 == a2
  Branch l1 r1 == Branch l2 r2 = l1==l2 && r1==r2
  _ == _ = False
```

But something is strange here: is “a1 == a2” on the right-hand side correct? How do we know that equality is defined on the type “a”???

Answer: Add a constraint that requires a to be an equality type.
Constraints / Contexts are Propagated

- Consider this function:

 \[
 \begin{align*}
 x \ `elem` [] & = \text{False} \\
 x \ `elem` (y:ys) & = x == y \ || x \ `elem` ys
 \end{align*}
 \]

- Note the use of (==) on the right-hand side of the second equation. So the principal type for elem is:

  ```hs
  elem :: Eq a => a -> [a] -> Bool
  ```

- This is inferred automatically by Haskell, but, as always, it is recommended that you provide your own type signature for all functions.
Useful slogan:

“polymorphism captures similar structure over different values, while type classes capture similar operations over different structures.”

For a simple example, recall from Chapter 8:

```
containsS :: Shape -> Point -> Bool
containsR :: Region -> Point -> Bool
```

These are similar ops over different structures. So:

```
class PC t where
  contains :: t -> Point -> Bool
instance PC Shape where
  contains = containsS
instance PC Region where
  contains = containsR
```
Haskell’s numeric types are embedded in a very rich, hierarchical set of type classes. For example, the `Num` class is defined by:

```
class (Eq a, Show a) => Num a where
    (+), (-), (*) :: a -> a -> a
    negate :: a -> a
    abs, signum :: a -> a
    fromInteger :: Integer -> a
```

...where `Show` is a type class whose main operator is

```
show :: Show a => a -> String
```

See the Numeric Class Hierarchy in the Haskell Report on the next slide.
Haskell’s Numeric Class Hierarchy
Coercions

- Note this method in the class **Num**:
  ```haskell```
  fromInteger :: Num a => Integer -> a
  ```haskell```

- Also, in the class **Integral**:
  ```haskell```
  toInteger :: Integral a => a -> Integer
  ```haskell```

- This explains the definition of **intToFloat**:
  ```haskell```
  intToFloat :: Int -> Float
  intToFloat n = fromInteger (toInteger n)
  ```haskell```

- These generic coercion functions avoid a quadratic blowup in the number of coercion functions.

- Also, every integer literal, say “42”, is really shorthand for “fromInteger 42”, thus allowing that number to be typed as *any* member of **Num**.
Derived Instances

- Instances of the following type classes may be automatically *derived*:
 - `Eq`, `Ord`, `Enum`, `Bounded`, `Ix`, `Read`, and `Show`
- This is done by adding a `deriving` clause to the `data` declaration. For example:
  ```haskell
data Tree a = Leaf a | Branch (Tree a) (Tree a)
deriving (Show, Eq)
```
- This will automatically create an instance for `Show (Tree a)` as well as one for `Eq (Tree a)` that is precisely equivalent to the one we defined earlier.
Derived vs. User-Defined

Suppose we define an implementation of finite sets in terms of lists, like this:

```haskell
data Set a = Set [a]

insert (Set s) x = Set (x:s)

member (Set s) x = elem x s

union (Set s) (Set t) = Set (s++t)
```
Derived vs. User-Defined

- We can automatically derive an equality function just by adding “deriving Eq” to the declaration.

```haskell
data Set a = Set [a]
  deriving Eq

insert (Set s) x = Set (x:s)

member (Set s) x = elem x s

union (Set s) (Set t) = Set (s++t)
```

But is this really what we want??
Derived vs. User-Defined

- No!
- E.g.,

 \[(\text{Set } [1,2,3]) == (\text{Set } [1,1,2,2,3,3]) \Rightarrow \text{False}\]
A Better Way

data Set a = Set [a]

instance Eq a => Eq (Set a) where
 s == t = subset s t && subset t s

subset (Set ss) t = all (member t) ss
Reasoning About Type Classes

- Most type classes implicitly carry a set of laws.
- For example, the Eq class is expected to obey:
 \[(a /= b) = \text{not} \ (a == b)\]
 \[(a == b) \&\& (b == c) \supseteq (a == c)\]

- Similarly, for the Ord class:
 \[a <= a\]
 \[(a <= b) \&\& (b <= c) \supseteq (a <= c)\]
 \[(a <= b) \&\& (b <= a) \supseteq (a == b)\]
 \[(a /= b) \supseteq (a < b) \lor (b < a)\]

- These laws capture the properties of an equivalence class and a total order, respectively.

- Unfortunately, there is nothing in Haskell that enforces the laws – its up to the programmer!