CSE399: Advanced Programming
Handout 20
Tail Recursion
Ordinary factorial function:

\[
\text{fact } n = \text{if } n == 0 \text{ then } 1 \text{ else } \text{fact}(n-1)
\]
Tail-recursive factorial:

\[
\text{fact'} \ n \ a = \begin{cases}
 a & \text{if } n = 0 \\
 \text{fact} \ (n-1) \ (a \times n) & \text{else}
\end{cases}
\]

\[
\text{fact''} \ n = \text{fact'} \ n \ 1
\]

The second one will be compiled to much more efficient code, because the compiler can see that the recursive call to \text{fact'} is in tail position—i.e., its result is the result of the whole body of \text{fact'}.

This means that the stack frame for the current call to \text{fact'} is not needed any more, so the recursive call can just re-use the same stack frame. (The “call” instruction becomes a “jump.”)

I.e., \text{fact'} will be compiled to a loop.
But what, exactly, is this notion of “tail position”?
Not “rightmost subexpression,” because this also describes the (non-tail) recursive call in the original `fact`.
And conversely, tail calls may also occur in non-rightmost positions, textually:

```haskell
fact4 n a = if n/=0 then fact (n-1) (a*n) else a
```

We can make the notion precise by introducing the idea of continuations.
Continuations
At each point during a computation, we can think of (1) some subcomputation that is eventually going to yield a value and, (2) some context that is waiting for this value and is going to use it to finish computing the final value of the whole program.

(2) is called the continuation of (1).

E.g., the continuation of the subexpression fact 3 in the computation of fact 6 is.

\[6 \times (5 \times (4 \times \square)) \]

where \(\square \) indicates the place where the value of fact 3 will be used.
A continuation can be thought of as a function from the result of the subexpression to the final result of the whole computation. I.e., we can write the continuation from the previous slide as

\[x \rightarrow 6 \times (5 \times (4 \times x)) \]
We can use this observation to write another version of `fact` that makes these continuations explicit:

```haskell
fact_cps n k =
  if n==0
    then k 1
    else fact_cps (n-1) (\x -> k (n*x))
```

Note that all calls in `fact_cps` are in tail position. I.e., every call can be compiled as a jump. (A continuation can be described as a “goto with arguments.”)

Q: So when does the stack grow?
This programming style is called *continuation-passing style*: every function is explicitly passed its continuation—i.e., another function to which it should send its result.
Here’s a CPS variant of another familiar function:

\[
\begin{align*}
\text{length}_\text{cps} \; [] \; k &= k \; 0 \\
\text{length}_\text{cps} \; (x:xs) \; k &= \text{length}_\text{cps} \; xs \; (\lambda x \to k \; (x+1))
\end{align*}
\]

Q: What is the type of \texttt{length}_\text{cps}?
Many WASH programs are written in continuation-passing style: the “callback” argument to \texttt{ask} never returns—it just keeps (often recursively) making new calls to \texttt{ask} until the interaction is finished.
It is sometimes useful to define functions taking multiple continuations.

For example, programs that perform some kind of search can often be expressed very naturally using continuations. A searching function is passed two continuations:

- a success continuation that tells it what is the next subgoal to try if this one works, and
- a failure continuation that tells it how to “unwind” to a previous choice point, if something fails.
data Tree a b = Leaf a b | Node (Tree a b) (Tree a b)
myTree = Node (Leaf 5 3) (Leaf 2 4)

findk :: Eq a => a -> (Tree a b) -> (Maybe b -> r) -> r -> r
findk a t sk fk =
 case t of
 Leaf a' b | a==a' -> sk (Just b)
 | a/=a' -> fk
 Node t1 t2 -> findk a t1 sk (findk a t2 sk fk)

find a t = findk a t (\b -> b) Nothing

main =
do print (find 1 myTree)
 print (find 2 myTree)
To make the failure continuation more interesting, let’s keep track of how many nodes had to be searched to find the given key.

```haskell
findk :: Eq a => a -> (Tree a b) -> Int ->
    (Maybe (b,Int) -> r) -> (Int->r) ->
    r
findk a t count sk fk =
    case t of
        Leaf a' b   | a==a' -> sk (Just (b,count))
          | a/=a' -> fk count
        Node t1 t2  -> findk a t1 (count+1)
                        sk (\c -> findk a t2 c sk fk)

find a t = findk a t 1 (\b -> b) (\c -> Nothing)

main =
do print (find 1 myTree)
print (find 2 myTree)
```
It is possible to rewrite any program in continuation-passing style.

Indeed, there is a mechanical procedure (called a CPS transform) that will take an arbitrary program and produce an equivalent CPS program.

This transformation plays a critical role in some compilers for functional languages.
Many functional languages (including Scheme, Standard ML, and Haskell’s Cont monad) provide an operator for gaining explicit access to the “current continuation” at any point in a program.

This operator is traditionally called call/cc.

It can be used for many amazing and mind-bending programming tricks.