Distributed Mechanism Design and Computer Security

John Mitchell Vanessa Teague
Stanford University
Multicast cost sharing

- Distribute some good
- Each node has some utility for the good
- Each link has some cost
- Which nodes get the transmission?
Two models

- Tamper-proof nodes (FPS)
 - Obedient processor

- Strategic nodes

Acknowledgements: J. Feigenbaum, R. Sami, A. Scedrov ...
FPS Pricing Mechanism

◆ Motivation
 • Want agents to reveal true utility so we can decide which agents get transmission

◆ Distribution
 • Transmission goes into every subtree with non-negative welfare (utilities minus link costs)

◆ Payments
 • If agent doesn’t receive the good, it pays nothing
 • If agent receives the good, it pays: the minimum bid needed to get the transmission, given the other players’ bids

This is a VCG mechanism
Strategyproof and Efficient

Efficient (max welfare) by construction
- Add omitted subtree -> decrease welfare
- Remove routed subtree -> decrease welfare
 This argument assumes agents tell truth

Agent can bid true utility
- Payment is independent of bid, given outcome
- Bid more than utility ⇒
 - doesn’t help, or pay too much
- Bid less than utility ⇒
 - doesn’t help, or don’t get the transmission
Distributed implementation (tamper-proof nodes model)

1) Send welfare up tree
2) Send min welfare W_{min} down tree
3) Compute payment = utility - W_{min}
Node can cheat its children (strategic nodes model)

The truth

Parent pays 1
Child pays 6

Child can’t see that parent doesn’t pay

The cheat

Parent pays 0
Child pays 7

Cost 5

Welfare 2-3+2 = 1
Wmin = 1

Cost 3

Welfare 2-3+2 = 1
Wmin = 1

Cost 5

Welfare 7-5 = 2
Wmin = 1

Cost 3

Welfare 7-5 = 2
Wmin = 1
Authenticated protocol

- Assume public-key infrastructure
 - Each node has verifiable signature

- Augment messages
 - Sign data from FPS algorithm
 - Parent returns signed W to child

- Nodes send payment, proof to content source
 - Proof: signed data, payment calculated correctly
 - If nobody cheated, transmission is sent
 - Otherwise, cheater is fined; no transmission

- Make punishment high enough so benefit of cheating is negative
Preventing mischief

Node J passes on parent’s data

\[D = \text{Sign}(p, W_{\text{min}}), \text{Sign}(p, W_j) \]

Children verify J’s calculation of \(W_{\text{min}} \)
Security in FPS model

Let the adversary be node A

Lemma

- Case 1: A wasn’t going to receive the transmission by bidding zero
 - then it can’t reduce the group welfare by more than it pays

- Case 2: A was going to receive the transmission by bidding zero
 - then it can’t reduce the group welfare
Security of anti-mischief protocol

- Assume malicious node has honest neighbours
- Theorem: Security “Almost as good” as in FPS model
- Denial-of-service attacks easy
 - Don’t send any messages, so protocol doesn’t terminate
 - Detected cheating stops the protocol
Conclusion

- Pricing function provides incentive
- Distributed algorithm computes price
- Techniques to encourage compliance
 - Nodes save signed confirmation of msgs
 - Randomized auditing incents compliance
- Security against irrational agent
 - Close to model with tamper-proof algorithm