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ABSTRACT
Overlay networks create new networking services across nodes
that communicate using pre-existing networks. MOSAIC is
a unified declarative platform for constructing new overlay
networks from multiple existing overlays, each possessing a
subset of the desired new network’s characteristics. MOSAIC
overlays are specified using Mozlog, a new declarative lan-
guage for expressing overlay properties independently from
their particular implementation or underlying network.

This paper focuses on the runtime aspects of MOSAIC:
composition and deployment of control and/or data plane
functions of different overlay networks, dynamic composi-
tions of overlay networks to meet changing application needs
and network conditions, and seamless support for legacy ap-
plications. MOSAIC is validated experimentally using com-
positions specified in Mozlog: we combine an indirection
overlay that supports mobility (i3), a resilient overlay (RON),
and scalable lookups (Chord), to provide new overlay net-
works with new functions. MOSAIC uses runtime compo-
sition to simultaneously deliver application-aware mobility,
NAT traversal and reliability. We further demonstrate MO-
SAIC’s dynamic composition capabilities by Chord switch-
ing its underlay from IP to RON at runtime. These benefits
are obtained at a low performance cost, as demonstrated by
measurements on both a local cluster and PlanetLab.

1. INTRODUCTION
The Internet faces new challenges, ranging from unwanted

or harmful traffic to increasingly complex and fragile inter-
domain routing. At the same time, new applications demand
new capabilities such as mobility, content-based routing, and
quality-of-service (QoS) routing. Overlay networks [23, 24]
use the existing Internet to provide connectivity for new ser-
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vices, and permit deployable network evolution, while in
some cases continuing to support legacy functionality [11].

Overlay networks have not, however, addressed the full set
of challenges and evolutionary needs. We argue this is due to
the lack of inter-operability among different overlays. Most
overlays are targeted at vertical domains (e.g., mobility [34,
20], security [13], reliability [1]). However, many emerg-
ing applications and application domains have needs that are
difficult to address using a single overlay. We illustrate an
example usage scenario:

EXAMPLE 1.1. Alice and Bob use private networks be-
hind separate NATs, and wish to communicate regularly via
VoIP or video conferencing, occasionally sharing data from
internal web servers with trusted friends. As Alice and Bob
travel regularly, and their IP addresses change, continued
contact and communications should be seamless.

In principle, Alice and Bob can use a combination of i3 [29]
for NAT traversal, ROAM [34] for mobility, RON [1] for re-
liability, and if DoS attack prevention is important, a secure
overlay such as SOS [13] can be added. This type of cus-
tom overlay offers benefits over a monolithic approach, e.g.,
Skype [28]: it can accommodate future application needs
and changing network conditions. For example, RON may
be excessive for a network with limited failures, and hence
it may be desirable to remove it; whereas, in a partially-
connected network, epidemic routing [30] would be desired.
Further, Alice and Bob may require session-layer mobility
support, hence requiring DHARMA [20] instead of ROAM.

Combining overlays to achieve desired capabilities sounds
straightforward, but it is challenging in practice. One must
first identify combinations of overlays that can work together
and provide the right set of capabilities. Then the mechanics
of interconnecting the overlays must be tackled. Previous
work [11] has shown that bridging between different over-
lays requires significant “glue code.” Layering one overlay
over another is generally not even feasible, as each layer as-
sumes it is running directly over IP.

In this paper, we propose MOSAIC, a unified system that
provides a declarative framework for developing, deploying,
combining, and composing overlay networks — one capable
of bridging between overlays, stacking them in layers, dy-
namically changing the layers or bridges, and allowing for
rapid extensibility with new functionalities. It enables (1)
rapid authoring and deployment of new overlay networks,
(2) dynamic adaptivity to compose overlay networks to meet



changing application needs and network conditions, and (3)
seamless support for legacy overlay networks and applica-
tions within the infrastructure.

This approach enables modular reuse of resources and func-
tions. It also facilitates rapid experimentation and the de-
ployment of new network features. This is a major step for-
ward compared with existing hand-coded approaches [11]
for manually bridging amongst different overlays.

MOSAIC is based on declarative networking [17, 16], a
declarative, database-inspired extensible infrastructure using
query languages to specify behavior. Declarative program-
ming allow programmers to say “what” they want, without
worrying about the details of “how” to achieve it. This pro-
gramming paradigm makes it easy to compose protocols,
either vertically (layering) or horizontally (bridging), since
composition is largely confined to the “what”, while compo-
sition of the “how” can be automated. It also provides better
language and runtime support for dynamic adaption.

In MOSAIC, overlay compositions are specified in a high-
level specification language, which is then further compiled
into the Mozlog declarative networking language that defines
the composed network protocols. Unlike previous declara-
tive networking languages, Mozlog provides several novel
language features essential for dynamic composition: dy-
namic location specifiers, combined with runtime types, en-
able flexible naming and addressing; composable virtual views
support modularity and composability; data and control plane
extensibility supports composition; declarative tunneling and
proxying enable support for legacy applications.

Our ultimate vision of automatically and dynamically com-
posing overlays is well beyond the scope of a single paper.
We do not propose that MOSAIC in its current form can serve
as a “plug and play” replacement for existing network in-
frastructures. In particular, our work provides an execution
framework, we leave as future work the challenges of auto-
matic composition, including overlay network feature inter-
actions. Our work is best viewed as a building block and
step towards the grander agenda of intelligent, self-tuning
networks [5].

Organization: Section 2 describes the options for overlay
composition. Section 3 presents an architectural overview
of the MOSAIC infrastructure. Section 4 summarizes the as-
pects of Mozlog important to MOSAIC. Section 5 illustrates
the process of generating composition in Mozlog and use ex-
amples. In Section 6, we demonstrate how Mozlog specifi-
cations can be executed within a distributed query proces-
sor via modifications to the P2 declarative networking sys-
tem. In Section 7, measurement results are presented for net-
works created on a local cluster and the PlanetLab testbed.
We show that MOSAIC’s ability to support dynamic, flexible
compositions can enable application-aware mobility, flexi-
bility, and resilience with low overhead.

2. OVERLAY COMPOSITION
Overlay network composition combines distinct parts or el-

ements of existing overlay networks to create a new overlay
network with new functionalities. MOSAIC enables overlay
composition along both the data and control planes.
Data plane composition. The data planes of two overlay
networks can be composed horizontally by bridging between

bridging

Network3

(QoS)
S d

IP tunnel

Receiver B

Network2

Network1

(confidentiality)

Sender

Receiver A
Network2

(reliability)

( y)

Figure 1: Overlay composition by bridging.

the networks, or they can be composed vertically by layering
one overlay over the other.

In bridging (see Figure 1), each overlay network runs on
top of the same substrate (e.g., the IP network) directly. How-
ever, for a variety of reasons (e.g., sending from a wireless
to a wired network), it may be necessary to send a packet
across multiple overlay networks to reach the receiver. This
is usually done via a gateway node that belongs to both net-
works. If such gateways do not exist, two nodes from each
network need to be connected via an IP tunnel to route pack-
ets. In Figure 1, a sending laptop using wireless may use an
overlay that provides confidentiality to route traffic over the
wireless links, then use an overlay with reliability guarantees
to deliver important but not time-sensitive data to receiver A,
while using a QoS overlay to deliver multimedia traffic to re-
ceiver B.
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Figure 2: Overlay composition by layering.

In layering, logically a packet is routed within a single
data plane of an existing overlay network. However, the
data paths between the nodes inside the overlay may be con-
structed on top of other overlay networks, rather than IP.
For example, RON only works for nodes that have publicly
routable IP addresses. As shown in Figure 2, by composing
RON on top of another overlay protocol that enables NAT
traversal, such as i3, nodes behind NAT should be able to
join the RON network.

We note that the two data plane compositions listed above
are not mutually exclusive; some data composition scenarios
may combine both layering and bridging. Prior attempts to
combine overlay networks [11] only support bridging but not
layering. Layering adds a powerful new composition prim-
itive that enhances individual overlay network nodes with
multiple new services.
Control plane composition. One overlay network’s control
plane may be layered over either the data plane or the con-
trol plane of another overlay. For example, it is possible to
build the control message channels of DHT protocols such
as Chord over the data plane of RON. Typically, the failure
detection components of DHTs assume that hosts unreach-



able via IP are dead. In fact, some hosts may be alive and
functioning, but temporary network routing failures may cre-
ate the illusion of node failure to part of the overlay nodes.
If the network failures occur intermittently, churn rate is in-
creased and may create unnecessary state inconsistency [9].
Using a resilient overlay such as RON can overcome some
of the network failures and reduce churn. In a highly discon-
nected environment, one can further utilize epidemic [30]
forwarding of control plane messages.

Some overlay network protocols have complex, layered
control planes. For example, both i3 and DOA [3] use DHTs
for either forwarding or lookup. RON and OverQoS heav-
ily depend on measurements of underlying network perfor-
mance characteristics such as latency and bandwidth. When
overlay networks are built from scratch over IP, it is conceiv-
able that different logical overlays built on the same physi-
cal IP topology may duplicate the effort to maintain DHTs
or perform network measurements. Nakao, et al. [22], ob-
served that on PlanetLab, each node had 1GB outgoing ping
traffic daily: many overlay networks running on the same
node were probing the same set of hosts without coordina-
tion. Such duplicated probing traffic can be wasteful, and in-
teractions between probe traffic may introduce measurement
error. A composition-driven approach is to build smaller ele-
ments that provide well defined interfaces (e.g., OpenDHT [26]
for DHT lookup and iPlane [18] for measurement) so that
they can be easily composed with upper layer overlay net-
work control planes to share rather than compete for resources.

3. MOSAIC OVERVIEW
In this section, we provide an overview of MOSAIC, and

describe how it provides a framework for composing and
re-composing overlay networks. Note that we do not cur-
rently tackle the issue of determining the compositions, but
rather provide the overlay composition specification and im-
plementation framework.

MOSAIC is designed to be deployed as a composition ser-
vice on a shared overlay infrastructure where all nodes run
the MOSAIC engine. On this infrastructure, several over-
lay networks may co-exist, and are not necessarily deployed
on all nodes. Individual overlay protocols are specified us-
ing the Mozlog declarative networking language, then com-
piled and executed in MOSAIC. Composed overlay networks
are instantiated by leveraging existing deployed overlays, ei-
ther by layering (above or below) or bridging with them. In
addition, private networks outside of the infrastructure are
bridged via public gateways with overlays deployed on this
infrastructure. Since the composition glue code is written in
Mozlog, it is most natural to implement each individual over-
lay as a declarative network in Mozlog. However, MOSAIC
can also support legacy overlays with the use of an adapter
(see Section 6.2).
MOSAIC engine. Figure 3 illustrates the MOSAIC en-
gine from the perspective of a single node. MOSAIC is po-
sitioned at the network layer in the network stack, replac-
ing IP. It exposes a simple interface to the transport layer
by providing two primitives: send(DestAddress, Packet)

and recv(Packet). In IP, a packet consists of an IP header
with fixed format and a data payload not interpreted by IP.
In MOSAIC, Packet is represented abstractly as a structured

data element, which might be a set of scalar values or even
nested tuples. The encoding of this packet is up to the spe-
cific overlay protocol, and declarative mappings or transfor-
mations can convert between the packet formats of different
overlays (see Section 4). DestAddress is a specially typed
tuple, with the first attribute being the identifier of the over-
lay network to which the packet belongs. This identifier is
used to demultiplex the send requests to different overlays or
IP at the network layer. A send request will trigger a recv

event at the node or nodes who own the DestAddress if the
network successfully routes the packet.
Directory service. For each overlay running on the in-
frastructure, there is a directory service that maintains the
following information: (1) A unique identifier for the over-
lay; (2) The list of physical nodes that is currently executing
the overlay; (3) The list of users who can utilize the overlay,
and their privileges (e.g., whether they can bridge with this
overlay). These privileges are set by an overlay’s owner; and
(4) Additional meta-data that describes the overlay, such as
its attributes, node constraints, etc. As part of the process of
creating a composed overlay, the user may issue queries to
the directory, searching for existing overlays that meet their
criteria for composition.

The directory service may be provided either by a central-
ized server or in a distributed fashion [7, 2] for scalability.
The design choice of the directory service is orthogonal to
the MOSAIC architecture. In this paper, we focus on the use
of a centralized server. We note that a centralized service is
sufficient for maintaining the metadata information for thou-
sands of infrastructure nodes, as demonstrated by PlanetLab
central [24].
Composition process. To create a composed overlay net-
work, a MOSAIC user (e.g. a network administrator) first
uses the directory service to locate overlay networks that
meet their criteria for composition, and retrieves relative meta-
data information . Second, the administrator creates a com-
position specification, which is a high-level graph-based de-
scription of the desired component overlay networks and
their interactions. Then, the specification is compiled into
the Mozlog language used by MOSAIC’s compiler, described
in Section 5. As part of this process, new code is created
that “glues” the compositions together. Finally the gener-
ated Mozlog code is deployed to the physical nodes to start
the new network, and the directory information is updated
regarding the newly composed network.

The declarative approach provides major benefits. First,
there are the traditional benefits of declarative networks in
terms of compactness and safety. Second, protocols are spec-
ified at a higher level, making them more modular. Finally,
high-level composition specifications have potential for cor-
rectness checks and for making inferences about the com-
positions’ attributes — and especially for reasoning about
feature interactions among different overlays. For example,
an insecure overlay when bridged with a secure overlay will
result in an end-to-end insecure overlay. A scalable lookup
overlay will increase its robustness when executing over a
resilient overlay, at the expense of its performance.

3.1 Composition Specifications
Figure 4 shows a graphical representation of a composi-
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tion specification, based on the example scenario introduced
in Section 1. We chose XML as the internal representation
to describe the graph. Due to space constraints, the corre-
sponding XML representation is presented in the technical
report [21]. Each module (node) represents a component
overlay network (e.g., i3 and RON) deployed on the infras-
tructure, or a private network. The links represent connec-
tors, where vertical and horizontal links denote layering and
bridging, respectively. Here, the i3 overlay is layered over
RON; Alice and Bob’s private networks are bridged to RON.
In addition to a unique overlay identifier, each module con-
figuration consists of the following:
• Physical node constraints: When the overlay is first de-

ployed, the user who created the overlay can constrain the
set of nodes on which the overlay may execute. This can
be in the form of a prefix to indicate that nodes must be
deployed on particular subnets, or enforce the inclusion of
particular nodes (e.g. Alice’s and Bob’s gateways) must be
on both the i3 and RON networks.

• Attributes: Each overlay network has properties that char-
acterize its capabilities, including mobility, secure rout-
ing, NAT traversal, resilient routing, anonymity, private
networks, etc. These properties can be queried by users to
identify overlays that meet their requirements.

• Code: If a module is loaded for the first time, code can
be included in the configuration. This can either be legacy
code, or Mozlog specifications for declarative networks.

• Default gateway: Each module can specify a default
gateway for bridging. In the absence of a specified gate-
way, the a common physical node sitting on both networks
is selected to serve as the gateway.

• Access control: MOSAIC supports restrictions on which
users can utilize an overlay, and their privileges (e.g., lay-
ering above or below, and bridging, etc.).

The connectors between modules have properties associ-
ated with them. Bridging (horizontal lines) must specify
whether there are default gateways to be used, and whether
tunneling is permitted. If two modules are specified to be
bridged via a default gateway node, both overlays must run
on the specified gateway. Layering (vertical lines) also has
constraints on whether the overlay has to be layered on all
or subset of the nodes. In this example, to get the full bene-
fits of RON, all i3 nodes should utilize RON as their under-
lay. However, this is not strictly required: i3 nodes that do
not run RON will default to using IP. For both bridging and
layering, one can further specify whether some connections
replace existing ones.

3.2 Composition Compilation
Once the composition is specified, a composition compiler

is used to generate the Mozlog code that “glues” together
different overlay networks based on the specifications. The
compiler is either a client-side software, or deployed as a
service in conjunction with the directory service.

The compilation process can be performed in two different
ways. First, a composition can create overlays, either from
scratch where each module contains the code implementing
each overlay, or incrementally where the new overlay is built
on existing ones, e.g., by adding new overlays over existing
ones, or bridging overlays via identified gateways. Creating
overlays incrementally requires the composition specifica-
tions to refer to existing overlays by their unique identifiers.
Second, a composition can also modify overlays, which in-
volves replacing existing modules with new ones, and this
requires connectors to indicate that they are replacing exist-
ing composition links.

Given the above mechanisms, we outline how layering and
bridging can be achieved by compiling modules and connec-
tors, and provide a detailed process description and exam-
ples in Section 5. The first step is to perform basic checks
to ensure all the links are legal, based on the attribute con-
straints and physical node constraints. E.g., one cannot layer
one overlay over another if they are configured for com-
pletely disjoint sets of nodes. Two overlays cannot be bridged
if their bridge connector does not permit tunneling and the
two overlays do not share any common node. Once vali-
dated, Mozlog rules for composition and all required overlay
code are uploaded to relevant nodes for execution.

3.2.1 Layering
Layering of a control or data plane over another overlay’s

data plane is achieved by ensuring that every protocol uses
logical addresses — rather than being bound to physical ad-
dresses. At runtime MOSAIC will bind (or rebind) the up-
per layer’s logical address to the underlay address. These
bindings are stored in a separate table that can be updated to
facilitate dynamic changes to layering.

MOSAIC allows the control plane of one overlay network
to layer over another overlay’s control plane, accessing its
internal state. Here, each overlay exports the state of its com-
posable components, in the form of database logical views
(query results presented as a named table). An example of
such state is a distributed hash table’s contents, which can be
modeled as a relation with tuples associating keys and val-
ues. Importantly, accessing a neighboring protocol’s state



can be done within the overlays’ specification language —
there is no “impedance mismatch” between languages, and
interoperability issues are minimal.

3.2.2 Bridging
Depending on requirements, bridging can be done either

pre-configured or on-demand in MOSAIC.
Pre-configured method. When the composition specifi-
cation involves bridging multiple overlays, forwarding state
is created on designated gateways based on the bridge con-
nectors indicated in the composition specifications. When a
sender sends a packet whose destination contains an address
of an overlay in which the sender does not participate, MO-
SAIC routes the packet to the gateway, which then continues
to forward the packet along the bridged overlay. In addition
to a static gateway, the sender can also use a pre-configured
anycast service [12, 8] to select and route packets to one of
the overlay nodes, preferably close in terms of network dis-
tance to the sender.
On-demand method. The sender utilizes source routing to
explicitly describe the data path to the destination via desig-
nated gateways among different overlays found in the speci-
fication. Alternatively, the gateway holds address translation
state that uniquely identifies the flow between the sender and
the receivers, it performs indirection. The on-demand mech-
anism enables user-driven dynamic bridging. We will de-
scribe several examples of such compositions in Section 5.4
using the Mozlog language.

3.3 Dynamic compositions
MOSAIC exploits Mozlog’s declarative model to facilitate

dynamic overlay composition: since network definitions in
MOSAIC separate specification from implementation, the sys-
tem can (assuming the right constraints are met) freely re-
place either the IP or an existing overlay underneath one
overlay network with a second overlay network — i.e., it
can layer networks. For example, the protocol used in RON
is a modified link-state protocol, which is general enough
to operate on any connected graph. The original RON im-
plementation assumes IPv4 as a substrate, and hence it is
hard-coded to use publicly routable IP addresses. In MO-
SAIC, protocols are written with a network-agnostic address-
ing scheme, so a RON overlay can instead use addresses
from one or more lower-level overlay networks, provided
they are reachable from one another. This allows MOSAIC to
dynamically switch an existing overlay’s underlay based on
the network conditions, e.g., an executing overlay that uti-
lizes IP can dynamically layer itself over RON when routing
losses are high, or further switch to an epidemic forwarding
strategy when the network is disconnected.

Dynamic overlay switching in MOSAIC is achieved by chang-
ing the binding between an upper overlay’s logical addresses
and the underlying network and its (lower-level) addresses.
This technique is overlay-agnostic. However, we must be
careful to preserve application and overlay semantics. In
particular, if dynamically switching maintains the same end-
points on route requests (as RON, above, does), then the
switch is permissible. Likewise, if the lower overlay state is
not visible to the layers above, and all endpoints provide the
same functionality (e.g., in a content distribution network),

then the switch is also permissible. In other cases, we would
need to re-architect the overlays and possibly the application
to redistribute state over the new underlay, and to be tolerant
of transient states.

4. THE MOZLOG LANGUAGE
Having described MOSAIC’s basic composition framework,

we next present the Mozlog declarative networking language
that is generated from the composition specifications. As
with previous declarative networking languages [17, 16], Mo-
zlog is based on the Datalog [25] query language, and ex-
tends Datalog in novel ways to support composition.

As background, each Datalog rule has the form p :- q1,

q2, ..., qn., which can be read informally as “q1 and q2

and ... and qn implies p”. Here, p is the head of the rule,
and q1, q2,...,qn is a list of literals that constitutes the body of
the rule. Literals are either predicates with attributes (which
are bound to variables or constants), or boolean expressions
that involve function symbols (including arithmetic) applied
to attributes. (Predicates in Datalog are typically relations,
although in some cases they may represent functions.)

Datalog rules can refer to one another in a cyclic fashion to
express recursion. The order in which the rules are presented
in a program is semantically immaterial; likewise, the order
predicates appear in a rule is not semantically meaningful.
Commas are interpreted as logical conjunctions (AND). The
names of predicates, function symbols, and constants begin
with a lowercase letter, while variable names begin with an
uppercase letter.

Mozlog is a distributed variant of traditional Datalog, pri-
marily designed for expressing distributed recursive compu-
tations common in network protocols. We illustrate Mozlog
using a simple example of two rules that compute all pairs
of reachable nodes:
r1 reachable(@S,D):-link(@S,D).
r2 reachable(@S,D):-link(@S,Z), reachable(@Z,D).

The rules r1 and r2 specify a distributed transitive clo-
sure computation, where rule r1 computes all pairs of nodes
reachable within a single hop from all input links, and rule r2
expresses that “if there is a link from S to Z, and Z can reach
D, then S can reach D.” By modifying this simple example,
we can construct more complex routing protocols, such as
the distance vector and path vector routing protocols.

Mozlog supports a location specifier in each predicate, ex-
pressed with @ symbol followed by an attribute. This at-
tribute is used to denote the source location of each corre-
sponding tuple. For example, all reachable and link tuples
are stored based on the @S address field. The output of inter-
est is the set of all reachable(@S,D) tuples stored at node S,
representing reachable pairs of nodes from S to D.

In this section, we highlight the Mozlog language itself;
we provide detailed compilation process from composition
specification to Mozlog and use cases in Section 5, and dis-
cuss implementation details in Section 6. We focus first on
key language features necessary to support overlay compo-
sition we then briefly summarize other interesting language
features in Section 4.3.

4.1 Addressing
Mozlog has two distinctive features for addressing nodes

in the network. First, a location specifier is decoupled from



the data tuple so that tuples can be accessed from multiple
logical overlay networks that the host belongs to. Second,
because multiple overlays are selected and composed dy-
namically, location specifiers are not bound to IP addresses
anymore. Each location specifier is associated with a run-
time type which is bound to an overlay.

4.1.1 Decoupling Location from Data
Mozlog predicates have the following syntax:

predicate[@Spec](Attrib1, Attrib2, ..)

In the absence of any location specifier, predicate is as-
sumed to refer to local data. In this case, the rule body is
executed as a Cartesian product across all input tables. For
example, in the following rule,
a1 alarm@R(L, N) :- periodic(10), cpuLoad(L),

nodeName(N), monitorServer(R), L>20.

periodic is a built-in local event that will be triggered ev-
ery 10 seconds. The predicates cpuLoad, nodeName, and
monitorServer are local tables. The rule specifies that for
every 10 seconds, if the CPU load is above the threshold 20,
an alarm event containing the current load L and host name
N will be sent to the monitoring server R.

Decoupling data from its location enhances interoperabil-
ity and reusability, as well as dynamic re-binding of ad-
dresses. Multiple overlays can interoperate (i.e., exchange
state) by sending network-independent data tuples in a com-
mon data representation. Moreover, since these rules are
rewritten in a location-independent fashion, they can be reused
on different network types (e.g., i3, RON, or IP). Finally,
since it does not bind addresses to data, the language is friendly
to mobility, where host movement (and hence a resulting
change in its IP address) does not invalidate its local tables.

4.1.2 Runtime Types for Location Specifiers
Another Mozlog feature involves adding support for run-

time types to location specifiers. This feature is necessary for
dynamically composing multiple overlays at runtime. Loca-
tion specifiers are denoted by an [oID::]nID element, where
oID is an optional overlay identifier, and nID is a manda-
tory overlay node identifier. For example, consider i3 and
RON overlays with identifiers i3 oid and ron oid respec-
tively. i3 oid::0x123456789I denotes an i3 node with iden-
tifier 0x123456789I, and ron oid::12.34.56.78 denotes a
RON node with IP address 12.34.56.78. In the absence of
any overlay identifier, IP is assumed.

At runtime, MOSAIC examines the location specifier of
each tuple and routes it along the appropriate network. To
illustrate the flexibility of our addressing scheme, consider
the CPU load monitoring example from Section 4.1. Rule
a1 can be rewritten as a2, in which the monitoring server R
refers to an i3 key generated as a hash of its name N instead
of an IP address:
a2 alarm@R(L, N) :- periodic(10), cpuLoad(L),

nodeName(N), serverName(SN), L>20,
Key := f_sha1(SN), R:=i3_oid::Key.

4.2 Data and Control Plane Integration
Overlay composition requires the integration of the data

and control planes of multiple overlays. To achieve this,

Mozlog enables declarative specification of the data plane
behavior. Given an overlay oid, oid.send and oid.recv

event predicates specify the data forwarding algorithm. We
will describe how these send and recv events are generated
within the dataflow execution framework later in Section 6.
Focusing on the language feature now, we illustrate this fea-
ture via an example based on the data plane of an RON over-
lay ron oid.
snd ron_oid.send@Next(Dest,Pkt) :-

ron_oid.send(Dest, Pkt), ron_oid.RT(Dest, Next),
localAddr(Local), Local!=Dest.

rcv ron_oid.recv(Pkt) :- ron_oid.send(Dest, Pkt),
localAddr(Local), Local==Dest.

The table ron oid.RT denotes the RON routing table. Rule
snd expresses that for all non-local Dest addresses, the data
packet (Pkt) is sent along the next hop (Next) which is deter-
mined via a join with RON’s routing table (ron oid.RT) us-
ing Dest as the join key. These packets are then received via
the rule rcv at node (Dest), which generates a oid.recv(Pkt)
event at Dest.

In Mozlog, the send and recv predicates are usually not
directly used by other rules, but rather automatically invoked
by the MOSAIC runtime engine when the location specifier
type of a tuple matches the overlay. As a result, one can
bridge the data planes of different overlays together, or layer
the control plane of one overlay network over the data plane
of another. We provide more details in Section 5.

4.3 Other Language Features
Finally, we briefly present several language features that,

although not directly used in composition, are essential for
rapid development, code reuse, and legacy application sup-
port.

Mozlog supports Composable Virtual Views (CViews), that
define rule groups that, when executed together, perform
a specific functionality, such as DHT lookup and network
measurement. CViews promote code reuse and enable func-
tional composition between different overlays. In addition,
CViews abstract details of asynchronous event-driven pro-
gramming. This enhances readability and makes the code
even more concise: the use of CViews reduced the number
of lines in Chord by 8 rules (from 43 to 35). A detailed dis-
cussion of CView is outside the scope of this paper.

Mozlog also supports a built-in tun predicate specifically
reserved for representing tunneled traffic via the tun virtual
network device. This allows legacy applications listening on
the tun device to seamlessly tunnel traffic through MOSAIC
overlay compositions. The tun predicate has the following
schema: tun(IPPkt [,SrcIP, DestIP, Protocol, TTL]).
IPPkt represents the IP packet that is being tunneled. In ad-
dition, the IP header fields SrcIP, DestIP, Protocol and TTL

are optionally extracted and included as additional attributes
when they are required in Mozlog rules. The following rules
demonstrate the tun predicate for tunneling via a point-to-
point and i3 overlay respectively:
p2p_tun tun@Peer(Pkt) :- tun(Pkt),

Peer:="12.34.56.78:1086".
i3_tun tun@Peer(Pkt) :- tun(Pkt, Src, Dest),

Key:=f_sha1(Dest), Peer:=i3_oid::Key.

Rule p2p tun sets up a point-to-point UDP tunnel between
the local node and the remote node listening at the UDP ad-



dress 12.32.56.78:1086. This allows legacy applications
at two end-points to communicate via a UDP tunnel imple-
mented by MOSAIC. Similarly, in rule i3 tun, a tunnel is set
up via the i3 overlay. All packets generated by the legacy ap-
plication is sent via this rule to a remote legacy application
running at the i3 node with logical address Key generated
using the SHA-1 hash of the destination tunneling address.
See Section 6.2 for implementation details.

5. COMPILING COMPOSITIONS
This section describes how the MOSAIC compiler automat-

ically translates specifications into Mozlog rules. We first
define the following reserved tables at each node, which are
used in the composition process later:
• netAddress(OID,Addr) tracks all current addresses Addr

of the overlays OID in which the node participates. If a
node has a publicly reachable IP address, a default entry is
added as (0,current ip), where 0 is a reserved ID for the
Internet. OID can also refer to a bridged network, in which
case Addr can refer to a source routing address (See Sec-
tion 5.3). Other overlay specific addresses are maintained
by the corresponding overlay modules.

• underlay(OID,Addr) is used in layering. It stores the
mapping from an overlay’s OID to its current underlay’s
runtime address Addr for each deployed overlay. By up-
dating this table, one can switch the underlay being used.

• forward(OID,Addr) is used in bridging. It specifies that
all packets designated for overlay OID are to be sent to the
designated gateway with address Addr.

5.1 Compilation Steps
To create an overlay network composition from scratch,

the MOSAIC compiler takes as input a composition speci-
fication as presented in Section 3, and then automatically
performs the following steps to generate Mozlog rules that
bridge and layer the appropriate overlay modules:

• Check that the specification includes gateway nodes that
are shared by both networks to be bridged, or anycast ser-
vices are provided to locate overlay entry nodes.

• Compute the node membership sets to which each overlay
module is to be deployed. This includes all nodes satisfy-
ing the physical node constraints discussed in Section 3.1,
which are also members of any underlay network.

• For each overlay layered over another module, add map-
pings binding each node’s logical address in the current
overlay to a lower-level underlay address in the underlay

table. (Section 5.2.)
• For each overlay module with a bridge, based on the spec-

ification, add pre-configured forwarding state entries in
the forward table or on-demand source routing rules to
all member nodes, specifying either the static address of
each bridged network’s gateway node or the anycast ad-
dress with each bridged network’s ID. (Section 5.3.)

• For all newly created overlays, including both bridged and
layered ones, add a rule to store the overlay’s address in
the netAddress table. See Section 5.2-5.3 for details.

After the compilation, the rules are shipped to the corre-
sponding physical nodes for deployment.

To modify an existing network composition, most of the
procedure remains the same except that the node member-
ship sets of existing overlays are obtained by querying the
directory service, and modified Mozlog rules are uploaded
to the physical nodes to implement the new composition.

5.2 Layering
Layering of a control or data plane over another overlay’s

data plane is achieved through the use of the underlay table
describing bindings from each overlay node to its current
runtime underlay address. Abstracting the bindings into a
table provides a simple mechanism for switching overlays:
MOSAIC can simply update the underlay table — changing
both the underlay protocol and node address as appropriate.

Given a composition specification with layering connec-
tors, Mozlog rules are generated to implement the layering
in an overlay-specific fashion. We illustrate using an exam-
ple where there are two RON overlays, layered over IP and
i3. Based on the specifications, at every node, there are two
instances of RON executing ( ron oid1 and ron oid2), and
one instance of i3 (i3 oid). The following Mozlog rules b1

and b2 are generated to build the two networks:
b1 underlay(ron_oid1,U):-netAddress(0,U).
b2 underlay(ron_oid2,U):-netAddress(i3_oid,U).

Since ron oid1 utilizes IP for routing, rule b1 takes as in-
put netAddress(0,U), based on the executing node’s default
IP address. On the other hand, ron oid2 routes over i3,
hence its underlay tuple stores the address of the underly-
ing i3 oid node retrieved from the local netAddress table.

Note that the layering association is not static. A deployed,
running overlay network can switch the underlying network
from one to another by updating its underlay table entries
at runtime. This enables dynamic overlay composition. We
will discuss an example of dynamic switching in Section 5.4.

Next, the rule to update the netAddress table is generated
for the newly created overlay. For example, consider the i3
and RON overlays with identifiers i3 oid and ron oid re-
spectively. In i3, its overlay address is the SHA-1 hash of
the node’s public key K (as shown in rule d1).
d1 netAddress(i3_oid, A) :-

publicKey(K), A:=i3_oid::f_sha1(K).

On the other hand, in RON, since its routable address is
tightly coupled with its underlay, its address is its own un-
derlay address (typically the IP address that RON uses) an-
notated with the overlay id as shown rule d2:
d2 netAddress(ron_oid, A):-

underlay(ron_oid,U), A:=ron_oid::U.

Finally, data plane forwarding rules may also need to be
slightly changed. We update the RON forwarding rules snd

and rcv from Section 4.2 in the context of layering:
snd ron_oid.send@Next(Dest,Packet) :-

ron_oid.send(Dest, Packet), ron_oid.RT(Dest, Next),
underlay(ron_oid, Local), Local!=Dest.

rcv ron_oid.recv(Packet) :-
ron_oid.send(Dest, Packet),
underlay(ron_oid, Local), Local==Dest.

The local address stored in localAddr is replaced by
underlay(ron oid,Local), where Local is the current un-
derlay address of the overlay ron oid. Note that while the
above rules achieve the same functionality as the previous
two rules in Section 4.2, they are more flexible in allowing
packets to route over underlays that can be switched at run-
time.



5.3 Bridging
Language-level support for bridging is accomplished in ei-

ther of two ways. In the pre-configured method, the default
gateway Addr for overlay oid in the specifications is stored
in the table. MOSAIC routes a packet designated to overlay
oid towards Addr, and the process repeats recursively until
the gateway is reached; at that point, the forward table will
no longer have an entry for the overlay oid, and instead it
will route the packet according to its own policy. If Addr is
set to a static IP address, this is equivalent to setting up an
IP tunnel to the gateway. If Addr is an anycast address, e.g.
oasis oid::oid, the forwarding plane will invoke the Oasis
anycast service to locate the closest oid overlay node from
the current node, and use it to enter the overlay.

Alternatively, in the on-demand method, a source route can
be set up for each packet. Mozlog supports an address type of
the form sr::[gateway, dest], which explicitly describes
the data path in terms of logical addresses. All nodes will
automatically handle the forwarding of such messages to the
next recipient in the path.

Dynamic location specifiers enable bridging of different
overlays easily. For example, node A is hosted in an internal
network with an internal IP address ip a. Thus its address is
recorded in the netAddress table as (a net id, ip a). Here
a net id is a unique identifier of A’s internal network. Rec-
ognizing that ip a is an internal IP, the composition server
will create a routing path via the gateway node that sits on
both the Internet and the internal net to bridge the two net-
works. The bridged network address is encoded in the source
routing format as sr::[ip gw, ip a] and stored in the
netAddress table. If we layer RON over the source rout-
ing address, node A can immediately join a RON network
without a public IP address.

5.4 Composition Examples
We now demonstrate MOSAIC’s ability to support flexible

overlay compositions including bridging, layering and hy-
brid compositions. We present two examples, one that revis-
its the mobile VoIP example introduced in Section 1, and a
second example that illustrates dynamic composition.

VoIP between Alice and Bob: Consider the example men-
tioned in Section 1. An overlay composition can solve the
problem. Suppose there is a publicly available i3 overlay
network, and Alice uses her gateway node at home to form
a private RON network with Bob and her other friends. Al-
ice and Bob agree on the composition specification shown
in Figure 4. Based on the overlay specification, MOSAIC
generates the Mozlog rules to compose overlays together.

Because Alice’s situation mirrors Bob’s, we use Alice’s
rules and network state to explain the composition process.
First, at Alice’s gateway, we configure the RON overlay net-
work over IP as:
c1 underlay(ron_oid,A):-netAddress(0,A).

We then use bridging to create publicly reachable addresses
br1 and br2 as shown in Table 1. br1 bridges the inter-
nal network AliceNet with the public IP network, and br2

bridges AliceNet with the RON network.
Finally, we layer i3 over the bridged networks we create.

Because Alice wants to have reliability for VoIP, we choose
the bridging overlay with BR2 as i3’s underlay. The compo-
sition rules deployed at the Alice node is as follows:

overlay id address
alice net alice internal ip

br1 sr::[alice gateway ip, alice internal ip]
br2 sr::[ron::alice gateway ip, alice internal ip]

i3 oid i3 oid::alice id

Table 1: netAddress table at Alice

overlay id address
0 alice gateway ip

alice net alice gw internal ip
ron oid ron oid::alice gateway ip

Table 2: netAddress table at Alice’s gateway

c2 underlay(i3_oid,A):-netAddress(br2,A).

When Bob initiates a VoIP call to Alice, he first uses Al-
ice’s i3 ID to look up her public trigger, and sends traffic to
Alice via i3’s indirection path. After they have located each
other, they switch to the i3 shortcut data path as the underlay
network specifies, which is layered on top of RON and can
traverse internal networks (e.g., those behind NATs) using
source routing along the gateways.

Dynamic Composition of Chord over IP and RON: To
illustrate dynamic composition, we use the Chord DHT to
show the benefit of dynamically switching the underlying
data path from IP to RON. In Chord, temporary network
failures may create non-transitive connectivity between the
nodes, possibly creating problems such as invisible nodes,
routing loops and broken return paths [9]. Instead of alter-
ing the DHT protocol, an alternative is to layer Chord over a
resilient routing protocol such as RON that eliminates non-
transitivity. Layering Chord over RON can be viewed as
trading scalability for performance.

The following rules define two type of layering: Chord
over IP and Chord over RON:
s1 underlay(chord_oid,A):- netAddress(OID,A),

switchUnderlay(OID).
s2 underlay(ron_oid,A):- netAddress(0,A).

In s1-s2, we added a switchUnderlay(OID) predicate to
switch Chord’s underlay to that indicated by the OID vari-
able. This switchUnderlay can itself be triggered by an
event sent from the administrator based on changes to the
overlay specifications. Rule s1 indicates that Chord uses IP
as the underlying address when OID is 0, and RON when OID

is ron oid. Rule s2 defaults RON to use IP at all times. To
switch between the two layering schemes, one only needs to
generate switchUnderlay accordingly.

Dynamic switching is useful because the trade-off between
scalability and performance is at the discretion of the Chord
administrators, who can make decisions based on network
conditions, requirements, etc. Suppose a new overlay pro-
viding both resiliency and scalability (e.g. SOSR [10]) is
available later, one can switch Chord’s underlay from RON
to the new one to further improve scalability. Unlike restart-
ing Chord from scratch, dynamic switching preserves exist-
ing state in the network such as key/value pairs without dis-
rupting the DHT lookup service. Once the Chord underlay
network address is changed on a node, the stabilization pro-
cess will propagate it to the node’s successors, predecessor
and other nodes that have it in its finger table. We present
our experimental evaluation of this example in Section 7.3.



6. IMPLEMENTATION
The MOSAIC platform builds on the P2 [16] declarative

networking system and adds significant new functionality.
The P2 planner and dataflow engine have been revised to
generate execution plans that accommodate new language
features of Mozlog: specifically, those related to runtime
support for dynamic location specifier, data plane forward-
ing, and interactions with legacy applications.

MOSAIC takes a Mozlog program, compiles it into dis-
tributed P2 dataflows [16], and deploys it to all nodes that
participate in the overlay. A single node may host multiple
overlay networks at the same time. P2 dataflows resemble
the execution model of the Click modular router [14], which
consists of elements that are connected together to imple-
ment a variety of network and flow control components. In
addition, P2 elements include database operators (such as
joins, aggregation, selections, and projections) that are di-
rectly generated from queries. Each local dataflow partic-
ipates in a global, distributed dataflow across the network,
with messages flowing among elements at different nodes,
resulting in updates to local tables. The local tables store the
state of intermediate and computed query results, including
structures such as routing tables, the state of various network
protocols, and data related to their resulting compositions.
The distributed dataflows implement the operations of vari-
ous network protocols. The flow of messages entering and
leaving the dataflow constitute the network packets gener-
ated during query execution.

6.1 Dataflow Execution
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Figure 5: System dataflow & dynamic location specifiers.

Figure 5 shows a typical execution plan generated by com-
piling Mozlog rules. Similar to P2 dataflows, there are sev-
eral network processing elements (Network In and Network

Out) that connect to individual rule strands (inside the gray
box) that correspond to compiled database operators. Here,
we focus on our modifications, and the interested reader is
referred to [16] for details on the dataflow framework.

To implement dynamic location specifiers and overlay for-
warding on the data plane, we modify the planner to auto-
matically generate three additional MOSAIC elements shown
in bold in the dataflow: OverlayRecvUnwrap, OverlaySendWrap,
and LocSpecDemux. The elements OverlayRecvUnwrap and
OverlaySendWrap are used for de-encapsulation and encap-

sulation of tuples from overlay traffic.
At the top of the figure, the Mux multiplexes incoming tu-

ples received locally or from the network. These tuples are
processed by the OverlayRecvUnwrap element that will ex-
tract the overlay payload for all tuples of the form overlay.

recv(Packet), where Packet is the payload with type tuple.
Since the payload may be encapsulated by multiple headers
(for layered overlays), this element needs to “unwrap” until
the payload is retrieved. The Packet payload is then used
as input to the dataflow via the ReceiveDemux element, and
used as input to various rule strands for execution.

Executing the rule strands results in the generation of out-
put tuples that are sent to a LocSpecDemux element. This el-
ement checks the runtime type of the location specifier, and
then demultiplexes as follows:
• Tuples tuplename(F1, F2, ..., Fn) are local tuples and

sent to the Mux.
• Tuples tuplename@IPAddr(F1, F2, ..., Fn) are treated

as regular IP-based tuples and sent to the network directly.
• Tuples tuplename@oid::ovaddr(F1, F2, ..., Fn) are

designated for overlay network oid with address ovaddr.
A new event tuple oid.send(ovaddr, tuplename(F1, F2,

..., Fn)) which denotes the send primitive of the over-
lay network oid is generated (see Section 4.2). This new
tuple is reinserted back to the same dataflow to be for-
warded based on the overlay specification.

6.2 Legacy Support
We use the tun device to provide overlay tunnels between

legacy applications at the network layer. The tun special
predicates for legacy support are treated differently from or-
dinary tuples in the dataflow. Each special predicate has a
rule strand in the dataflow, between the ReceiveDemux ele-
ment and the RoundRobin element (see Figure 5). Two el-
ements Tun::Tx and Tun::Rx are inserted in the tun rule
strand right after ReceiveDemux. Tun::Rx reads IP packets
from the tun device, generates the tun tuple, and sends to
the next element in the rule strand; Tun::Tx receives a tun

tuple, formats it as an IP packet and writes to the tun device.
For each end host, it takes a private IP address from 1.0.0.0/8

to avoid conflict from other public IP networks. After a
legacy application sends a packet to an address in the tun net-
work, the kernel redirects it to MOSAIC, where the Tun::Rx

element generates a tun tuple. Currently there is an address
translation rule to use a special mapping table to translate
the private IP address to the overlay address. This can be
extended to use any name resolution service in the future by
combining DNS request hijacking [11]. After address trans-
lation, the packet tunneling rules such as rule i3 tun we de-
scribed in Section 4.3 deliver the IP packet to the destination
via the corresponding overlays. After the tun tuple is deliv-
ered to the remote node, it is redirected to the tun device
by the element Tun::Tx, and finally the tunneled packet is
received by the legacy application.

To support a legacy overlay that is not implemented in
MOSAIC, we build an adapter for the overlay to interact with
MOSAIC via the send and recv primitives. The adapter redi-
rects legacy.send tuple from the dataflow to the overlay,
and inject legacy.recv tuple upon overlay’s packet recep-
tion. Because the legacy overlays are built on IP, they can



test latency(ms) throughput (KByte/s)
DirectIP 0.10 97994

OpenVPN 0.30 13951
MozTun 0.50 8353

RON 0.71 5796
i3 1.31 3299
Table 3: Overhead comparison in LAN

only be bridged with other overlays or used as substrates
underneath other networks, but cannot be layered on top of
another overlay for either the control or the data plane.

7. EVALUATION
In this section, we present the evaluation of MOSAIC on a

local cluster and on PlanetLab. First, we validate that Mo-
zlog specifications for declarative networks, compositions,
tunneling and packet forwarding are comparable in perfor-
mance to native implementations. Second, we use our im-
plementation to demonstrate feasibility and functionality, us-
ing actual legacy applications that run unmodified on various
composed overlays using MOSAIC. Third, we evaluate the
dynamic composition capabilities of MOSAIC.

In all our experiments, we make use of a declarative Chord
implementation which consists of 35 rules. Our i3 imple-
mentation uses Chord and adds 16 further rules. We also
implement the RON overlay in 11 rules. Both i3 and RON
can be used by legacy applications via the tun device, as
described in Section 4.3.

7.1 LAN Experiments
To study the overhead of MOSAIC, we measured the la-

tency and TCP throughput between two overlay clients within
the same LAN. The experiment setup was on a local cluster
with eight Pentium IV 2.8GHz PCs with 2GB RAM run-
ning Fedora Core 6 with kernel version 2.6.20, which are
interconnected by high-speed Gigabit Ethernet. While the
local LAN setup and workload is not typical of MOSAIC’s
usage, it allows us to eliminate wide-area dynamic artifacts
that may affect the measurements. We measured the latency
using ping and TCP throughput using iperf.

In the experiments, we use the tun device to provide legacy
application support for network layer overlays. MTU was
reduced to 1250 bytes to avoid fragmentation when headers
were added. The measurement results are shown in Table 3
for the following test configurations:
DirectIP: Two nodes communicate via direct IP, where iperf
can fully utilize the bandwidth of the Gigabit network. This
serves as an indication of the best latency and throughput
achievable in our LAN.
OpenVPN: OpenVPN [32] 2.0.9 is a widely used tunneling
software. We set up a point-to-point tunnel via UDP be-
tween two cluster nodes and disabled encryption and com-
pression. The performance results provide a baseline for
the overhead using the tun device virtualization. Compared
to DirectIP, the latency increases by around 0.2ms, and the
TCP throughput drops by a factor of more than 6. This over-
head is inevitable for all overlay networks supporting legacy
applications using the tun device, including those hosted on
MOSAIC.
MozTun: We set up a static point-to-point tunnel in MO-
SAIC between two cluster nodes. MozTun and OpenVPN

essentially have the same functionality except that MozTun
is implemented in MOSAIC. The additional overheads in
throughput and latency are solely attributed to the MOSAIC
dataflow processing overhead bounded by CPU capacity. In
MozTun, the latency increased 0.20ms over OpenVPN, which
is negligible when executed over wide-area networks.
RON: We ran the RON network using MOSAIC and utilize
two nodes to run the measurements. Since RON does not
provide any benefit in our LAN setting with no failures, the
comparison to MozTun is used to show the extra overhead
for rule processing in our implementation.
i3: Six nodes were set up as i3 servers, using Chord to pro-
vide lookup functionality. The remaining two nodes were
selected as i3 clients. A packet sent by the source i3 client
to the destination i3 client went through the public trigger
of the destination, which was hosted on the i3 server of an-
other cluster node. Since it introduced a level of indirection
plus extra rule processing overhead, i3 added the most cost
among the 5 configurations studied.

In summary, the overhead of MOSAIC is respectable: the
throughput of MOSAIC’s point-to-point tunneling (MozTun)
is comparable to that obtained by using well-known tunnel-
ing software (OpenVPN). In the extreme case (level of indi-
rection of i3 with tunneling), the additional latency (1.2ms)
incurred is negligible for an application running on wide-
area networks. Later, in Section 7.2, we will validate the
performance of a composed overlay on the Planetlab testbed.

7.2 Wide-area Composition Evaluation
We deployed MOSAIC on PlanetLab to understand the wide-

area performance effects of using the system. We purposely
chose a composed overlay including i3, RON, source rout-
ing, and tunneling for legacy applications (all implemented
within MOSAIC in 69 Mozlog rules) to bring the Alice ex-
ample from the introduction and Section 5.4 to a resolution.

Our experimental setup is as follows. As our end-host,
we used a Linux PC in New Jersey with a high speed cable
modem connection as the gateway node, which performed
NAT for a Thinkpad X31 laptop. The laptop functioned as
our server, using Apache to serve a 21MB file. The file was
downloaded from a machine in Utah with a modified version
of wget that records the download throughput.

These two nodes in New Jersey and Utah, plus three ad-
ditional nodes (two in the east coast, and one in the west
coast), were used to form a private RON network. We fur-
ther selected 44 PlanetLab nodes, mostly in the US, to run
i3. During the experiment, we validated the functionality
of resilient routing provided by RON by manually injected
network failures via changing the firewall rules on the gate-
way to block the downloader’s traffic 30 seconds after wget
was started; then we unblocked the traffic after another 30
seconds. For the purposes of comparison with the best case
scenario, we repeated the same test using direct IP commu-
nication. Note that direct IP loses all the benefits of our com-
posed overlay (no resilience, NAT, or mobility support), but
achieves the best possible performance. Since our server was
behind a NAT, in the direct IP experiment, we had to manu-
ally set up a TCP port forwarding rule on the gateway node
to reach the Apache server. We repeated multiple runs of the
experiments and observed no significant differences.



Figure 6 shows the throughput of the download over time
for MOSAIC and DirectIP. Network failures were injected 30
seconds after experiment start, and removed after 30 addi-
tional seconds. We make the following observations. First,
MOSAIC’s performance over the wide area is respectable:
Despite implementing the entire composed overlay (includ-
ing legacy support for applications using MOSAIC) in Mo-
zlog, we incurred only 20% additional overhead compared
to using direct IP, while achieving the benefits of mobility,
NAT support and resilient routing. The majority of the over-
head comes from the extra packet headers for the composed
overlay protocols—an overhead that is repaid with signifi-
cant functionality. Second, with respect to the functionality
of our composed overlay, we were able to achieve successful
downloads from a server behind a NAT using MOSAIC. In
addition, resilient routing was achieved: Our RON network
periodically monitored the link status and recovered from
routing failures. Hence, during the period where we injected
the routing failures, MOSAIC was able to make a quick re-
covery from failure, as is shown by the sustained throughput.
On the other hand, DirectIP suffered a failure (and hence a
drop of throughput to zero) during the 30-60 second period.
Overall, MOSAIC finished the download in a shorter time
despite lower throughput, due to the resiliency of RON.

7.3 Dynamic Overlay Composition
In our final experiment, we evaluate the dynamic composi-

tion capabilities of MOSAIC. Our setup consists of an 8-node
cluster, where each node has a similar hardware configura-
tion to the setup in Section 7.1.

As a baseline prior to the dynamic switching experiment,
we made static comparisons between two composed networks:
we executed Chord-over-IP and Chord-over-RON on our clus-
ter, which consists of the Chord overlay on top of IP and
RON respectively. Our network size is 16, where each ma-
chine executed two instances of the composed overlay nodes.
In the steady state, each node periodically issues a lookup re-
quest. A lookup is accurate if the results of the lookup are
correct, i.e., the results point to the node whose key is the
closest successor of the lookup key. Based on this definition,
we compute the lookup accuracy rate, which is the fraction
of accurate lookups over the duration of each experimental
run at every 1 minute interval. Network link failures are em-
ulated by changing the firewall settings in the cluster to drop
packets between the selected nodes.

Figure 7 shows our evaluation results over a period of 20
minutes, with the first link failure at the 7th minute, then
the second link failure at the 10th minute, and the failures
recovered at the 16th minute. When the first link failure
occurred, we observed that lookup accuracy of Chord-over-
IP dropped to 93%. The accuracy further dropped to 86%
when the second link failure occurred, only to recover when
network connectivity was reestablished. On the other hand,
Chord-over-RON continued to sustain high lookup accuracy
(>99%) even in the face of network failures, due to its ability
to find alternative routes quickly.

Having compared the composed overlays separately, we
next evaluate MOSAIC’s dynamic switching capability, where
we started with Chord-over-IP, and then switched our com-
position to Chord-over-RON after 7 minutes. This dynamic

switching is achieved by merely changing the underlay ad-
dress of Chord from IP to RON, as described in Section 5.4.
Figure 8 shows the resulting lookup accuracy over a period
of 15 minutes. We observe that during the process of switch-
ing its underlay from IP to RON, Chord continued to sustain
high lookup accuracy, demonstrating that MOSAIC is able to
performing dynamic switching seamlessly.

8. RELATED WORK
Composing a plurality of heterogeneous networks was pro-

posed in Metanet [31], and also examined in Plutarch [6].
Oasis [19] and OCALA [11] provide legacy support for mul-
tiple overlays. Oasis picks the best single overlay for per-
formance. OCALA proposes a mechanism to stitch (simi-
lar to MOSAIC’s bridge functionality) multiple overlay net-
works at designated gateway nodes to leverage functionali-
ties from different overlays. In contrast, MOSAIC’s primary
focus is on overlay specification and composition within a
single framework. Compared to OCALA, MOSAIC’s declar-
ative framework for composing overlays dynamically is a
major step forward compared to the hand-coded approach
of OCALA. In addition, MOSAIC also provides support for
layering in addition to bridging.MOSAIC is not limited to IP-
based networks, supports dynamic composition, and routing
primitives such as unicast and multicast. These benefits re-
sult in better extensibility and evolvability of MOSAIC over
existing composition systems.

MOSAIC aims to reduce the complexity of building and
deploying network protocols, through declarative high-level
specifications. In a similar spirit, overlay network specifica-
tions (e.g. P2 [16] and MACEDON [27]), and network con-
figuration frameworks (e.g. CONMan [4]) aims to achieve
similar goals in complementary domains. CONMan uses
a protocol independent configuration framework based on
modules and pipes. An interesting area of future research is
to work towards a unified declarative framework for imple-
menting and configuring networks across all levels.

9. CONCLUSIONS AND FUTURE WORK
MOSAIC is an extensible infrastructure that enables the

specification of new overlay networks, and also dynamic
composition of such overlays. MOSAIC provides declarative
networking: it uses a unified declarative language (Mozlog)
to specify new overlay networks, and a novel runtime to en-
able composition in both the control and data planes. We
demonstrated MOSAIC’s composition capabilities via deploy-
ment and measurement on both a local cluster and the Plan-
etLab testbed, and showed that the performance overhead of
MOSAIC is respectable compared to native implementations,
while achieving the benefits of overlay composition.

Several new directions appear promising. First, we are ex-
ploring techniques for automatic overlay composition, given
application requirements, overlay properties and constraints.
Second, we are further investigating the use of our declara-
tive framework for correctness checks and for making infer-
ences about the compositions and their attributes, particu-
larly for reasoning about feature interactions among differ-
ent overlays. Third, we are exploring adding mechanisms
for extensible transport and session layer overlays [20, 15,
33]. Such extensibility will be useful in the context of mo-
bile computing, and in environments where there is a high
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Figure 8: Chord lookup perfor-
mance during dynamic underlay
network switching from IP to RON.

degree of network and device heterogeneity during an appli-
cation session. Finally, we are also exploring better ways to
compose and share at finer granularity, by combining indi-
vidual feature sets from multiple overlays to meet applica-
tion needs.
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