
ADAPTIVE STREAM PROCESSING

Zachary Ives
Computer and Information Science Department

University of Pennsylvania
Philadelphia, PA 19104-6389

zives@cis.upenn.edu

SYNONYMS
Adaptive query processing

DEFINITION
When querying long-lived data streams, the characteristics of the data may change over time or data may arrive
in bursts — hence, the traditional model of optimizing a query prior to executing it is insufficient. As a result,
most data stream management systems employ feedback-driven adaptive stream processing, which continuously
re-optimizes the query execution plan based on data and stream properties, in order to meet certain performance
or resource consumption goals. Adaptive stream processing is a special case of the more general problem of
adaptive query processing, with the special property that intermediate results are bounded in size (by stream
windows), but where query processing may have quality-of-service constraints.

HISTORICAL BACKGROUND
The field of adaptive stream processing emerged in the early 2000s, as two separate developments converged.
Adaptive techniques for database query processing had become an area of increasing interest as Web and
integration applications exceeded the capabilities of conventional static query processing [10]. Simultaneously, a
number of data stream management systems [1, 6, 12, 8] were emerging, and each of these needed capabilities for
query optimization. This led to a common approach of developing feedback-based re-optimization strategies for
stream query computation. In contrast to Web-based adaptive query processing techniques, the focus in adaptive
stream processing has especially been on maintaining quality of service under overload conditions.

SCIENTIFIC FUNDAMENTALS
Data stream management systems (DSMSs) typically face two challenges in query processing. First, the data
to be processed comes from remote feeds that may be subject to significant variations in distribution or arrival
rates over the lifetime of the query, meaning that no single query evaluation strategy may be appropriate over the
entirety of execution. Second, DSMSs may be underprovisioned in terms of their ability to handle bursty input
at its maximum rate, and yet may still need to meet certain quality-of-service or resource constraints (e.g., they
may need to ensure data is processed within some latency bound). These two challenges have led to two classes of
adaptive stream processing techniques: those that attempt to minimize the cost of computing query results from
the input data (the problem traditionally faced by query optimization), and those that attempt to manage query
processing, possibly at reduced accuracy, in the presence of limited resources. This article provides an overview
of significant work in each area.

Minimizing Computation Cost
The problem of adaptive query processing to minimize computation cost has been well-studied in a variety of
settings [10]. What makes the adaptive stream processing setting unique (and unusually tractable) is the fact
that joins are performed over sliding windows with size bounds: As the data stream exceeds the window size, old
data values are expired. This means intermediate state within a query plan operator has constant maximum size;
as opposed to being bounded by the size of the input data. Thus a windowed join operator can be modeled as a
pair of filter operators, each of which joins its input with the bounded intermediate state produced from the other

1



Figure 1: Illustration of eddy with SteMs.

input. Optimization of joins in data stream management systems becomes a minor variation on the problem of
optimizing selection or filtering operators; hence certain theoretical optimality guarantees can actually be made.

Eddies
Eddies [2, 14, 11] are composite dataflow operators that model select-project-join expressions. An eddy consists
of a tuple router, plus a set of primitive query operators that run concurrently and each have input queues.
Eddies come in several variations; the one proposed for distributed stream management uses state modules
(SteMs) [14, 11]. Figure 1 shows an example of such an eddy for a simplified stream SQL query, which joins
three streams and applies a selection predicate over them.

Eddy creation. The eddy is created prior to execution by an optimizer: every selection operation (σP in the
example) is converted to a corresponding operator; additionally, each base relation to be joined is given a state
module, keyed on the join attribute, to hold the intermediate state for each base relation [14] (1R, 1S , 1T )1

In general, the state module can be thought of as one of the hash tables within a symmetric or pipelined hash
join. The optimizer also determines whether the semantics of the query force certain operators to execute before
others. Such constraints are expressed in an internal routing table, illustrated on the right side of the figure. As
a tuple is processed, it is annotated with a tuple signature specifying what input streams’ data it contains and
what operator may have last modified it. The routing table is a map from the tuple signature to a set of valid
routing destinations, those operators that can successfully process a tuple with that particular signature.

Query execution / tuple routing. Initially, a tuple from an input data stream (R, S, or T) flows into the
eddy router. The eddy (1) adds the data to the associated SteM or SteMs, and (2) consults the routing table to
determine the set of possible destination operators. It then chooses a destination (using a policy to be described
later) and sends the tuple to the operator. The operator then either filters the tuple, or produces one or more
output tuples, as a result of applying selection conditions or joining with the data within a SteM. Output tuples
are marked as having been processed by the operator that produced them. If they have been processed by all
operators, they will be sent to the query output, and if not, they will be sent back to the eddy’s router and to
one of the remaining operators.

Routing policies. The problem of choosing among alternate routing destinations has been addressed with a
variety of strategies.
Tickets and lottery scheduling [2]. In this scheme, each operator receives a ticket for each tuple it receives from
the router, and it returns the ticket each time it outputs a tuple to the router. Over time, each operator is
expected to have a number of tickets proportional to (1−p) where p is the operator’s selectivity. The router holds
a lottery among valid routing destinations, where each operator’s chance of winning is proportional to its number
of tickets. Additionally, as a flow control mechanism, each operator has an input queue, and if this queue fills,
then the operator may not participate in the lottery.
Deterministic with Batching [9]. A later scheme was developed to reduce the per-tuple overhead of eddies by
choosing destinations for batches of tuples. Here, each operator’s selectivity is explicitly monitored and each
predicate is assumed to be independent. Periodically, a rank ordering algorithm is used to choose a destination
for a batch of tuples: the rank ordering algorithm sorts predicates in decreasing order of ci/(1 − pi), where ci is
the cost of the applying predicate σi and pi is its selectivity.
Content-based Routing [7] (CBR) attempts to learn correlations between attribute values and selectivities. Using
sampling, the system determines for each operator the attribute most strongly correlated with its selectivity — this

1If a base relation appears with multiple different join attributes, then it may require multiple SteMs.

2



is termed the classifier attribute. CBR then builds a table characterizing all operators’ selectivities for different
values of each classifier attribute. Under this policy, when the eddy needs to route a tuple, it first looks up the
tuple’s classifier attribute values in the table and determines the destination operators’ selectivities. It routes the
tuple probabilistically, choosing a next operator with probability inversely proportional to its selectivity.

Other Optimization Strategies
An alternative strategy that does not use the eddies framework is the adaptive greedy [5] (A-greedy) algorithm.
A-greedy continuously monitors the selectivities of query predicates using a sliding window profile, a table with
one Boolean attribute for each predicate in the query, and sampling. As a tuple is processed by the query, it
may be chosen for sampling into the sliding window profile — if so, it is tested against every query predicate.
The vector of Boolean results is added as a row to the sliding window profile. Then the sliding window profile
is then used to create a matrix view V [i, j] containing, for each predicate σi, the number of tuples in the profile
that satisfy σ1 . . . σi−1 but not σj . From this matrix view, the reoptimizer seeks to maintain the constraint that
the ith operation over an input tuple must have the lowest cost / selectivity ratio ci/(1 − p(Si|S1, . . . , Si−1)).
The overall strategy has one of the few performance guarantees in the adaptive query processing space: if data
properties were to converge, then performance would be within a factor of 4 of optimal [5].

Managing Resource Consumption
A common challenge in data stream management systems is limiting the use of resources — or accommodating
limited resources while maintaining quality of service, in the case of bursty data. We discuss three different
problems that have been studied: load shedding to ensure input data is processed by the CPU as fast as it arrives,
minimizing buffering and memory consumption during data bursts, and minimizing network communication with
remote streaming sites.

Load shedding allows the system to selectively drop data items to ensure it can process data as it arrives. Both
the Aurora and STREAM DSMSs focused heavily on adaptive load shedding.

Aurora. In the Aurora DSMS [15], load shedding for a variety of query types are supported: the main requirement
is that the user has a utility function describing the value of output data relative to how much of it has been
dropped. The system seeks to place load shedding operators in the query plan in a way that maximizes the user’s
utility function while the system achieves sufficient throughput. Aurora precomputes conditional load shedding
plans, in the form of a load shedding road map (LRSM) containing a sequence of plans that shed progressively
more load; this enables the runtime system to rapidly move to strategies that shed more or less load.

LRSMs are created using the following heuristics: first, load shedding points are only inserted at data input points
or at points in which data is split to two or more operators. Second, for each load shedding point, a loss/gain
ratio is computed: this is the reduction in output utility divided by the gain in cycles, R(p · L − D), where R is
the input rate into the drop point, p is the ratio of tuples to be dropped, L is the amount of system load flowing
from the drop point, and D is the cost of the drop operator. Drop operators are injected at load shedding points
in decreasing order of loss/gain ratio. Two different types of drops are considered using the same framework:
random drop, in which an operator is placed in the query plan to randomly drop some fraction p of tuples; and
semantic drop, which drops the p tuples of lowest utility. Aurora assumes for the latter case that there exists a
utility function describing the relative worth of different attribute values.

Stanford STREAM. The Stanford STREAM system [4] focuses on aggregate (particularly SUM) queries. Again
the goal is to process data at the rate it arrives, while minimizing the inaccuracy in query answers: specifically,
the goal is to minimize the maximum relative error across all queries, where the relative error of a query is the
difference between actual and approximate value, divided by the actual value.

A Statistics Manager monitors computation and provides estimates of each operator’s selectivity and its running
time, as well as the mean value and standard deviation of each query qi’s aggregate operator. For each qi,
STREAM computes an error threshold Ci, based on the mean, standard deviation, and number of values. (The
results are highly technical so the reader is referred to [4] for more details.) A sampling rate Pi is chosen for query
qi that satisfies Pi ≥ Ci/εi, where εi is the allowable relative error for the query.

As in Aurora’s load shedding scheme, STREAM only inserts load shedding operators at the inputs or at the start
of shared segments. Moreover, if a node has a set of children who all need to shed load, then a portion of the load

3



shedding can be “pulled up” to the parent node, and all other nodes can be set to shed some amount of additional
load relative to this. Based on this observation, STREAM creates a query dataflow graph in which each path
from source to sink initially traverses through a load shedding operator whose sampling rate is determined by
the desired error rate, followed by additional load shedding operators whose sampling rate is expressed relative
to that first operator. STREAM iterates over each path, determines a sampling rate for the initial load shedding
operator to satisfy the load constraint, and then computes the maximum relative error for any query. From this,
it can set the load shedding rates for individual operators.

Memory minimization. STREAM also addresses the problem of minimizing the amount of space required to
buffer data in the presence of burstiness [3]. The Chain algorithm begins by defining a progress chart for each
operator in the query plan: this chart plots the relative size of the operator output versus the time it takes to
compute. A point is plotted at time 0 with the full size of the input, representing the start of the query; then each
operator is given a point according to its cost and relative output size. Now a lower envelope is plotted on the
progress chart: starting with the initial point at time 0, the steepest line is plotted to any operator to the right
of this point; from the point at the end of the first line, the next steepest line is plotted to a successor operator;
etc. Each line segment (and the operators whose points are plotted beside it) represents a chain, and operators
within a chain are scheduled together. During query processing, at each time “tick,” the scheduler considers all
tuples that have been output by any chain. The tuple that lies on the segment with steepest slope is the one that
is scheduled next; as a tie-breaker, the earliest such tuple is scheduled. This Chain algorithm is proven to be
near-optimal (differing by at most one unit of memory per operator path for queries where selectivity is at most
1).

Minimizing communication. In some cases, the constrained resource is the network rather than CPU or
memory. Olston et al. [13] develop a scheme for reducing network I/O for AVERAGE queries, by using accuracy
bounds. Each remote object O is given a bound width wO: the remote site will only notify the central query
processor if O’s value V falls outside this bound. Meanwhile, the central site maintains a bound cache with the
last value and the bound width for every object.
If given a precision constraint δj for each query Qj , then if the query processor is to provide query answers within
δj , the sum of the bound widths for the data objects of Qj must not exceed δj times the number of objects. The
challenge lies in the selection of widths for the objects.
Periodically, the system tries to tighten all bounds, in case values have become more stable; objects whose values
fall outside the new bounds get reported back to the central site. Now some of those objects’ bounds must be
loosened in a way that maintains the precision constraints over all queries. Each object O is given a burden score
equal to cO/(pOwO), where cO is the cost of sending the object, wO is its bound width, and pO is the frequency
of updates since the previous width adjustment. Using an approximation method based on an iterative linear
equation solver, Olston et al. compute a burden target for each query, i.e., the lowest overall burden score required
to always meet the query’s precision constraint. Next, each object is assigned a deviation, which is the maximum
difference between the object’s burden score and any query’s burden target. Finally, a queried objects’ bounds
are adjusted in decreasing order of deviation, and each object’s bound is increased by the largest amount that
still conforms to the precision constraint for every query.

KEY APPLICATIONS
Data stream management systems have seen significant adoption in areas such as sensor monitoring and processing
of financial information. When there are associated quality-of-service constraints that might require load shedding,
or when the properties of the data are subject to significant change, adaptive stream processing becomes vitally
important.

FUTURE DIRECTIONS
One of the most promising directions of future study is how to best use a combination of offline modeling, selective
probing (in parallel with normal query execution), and feedback from query execution to find optimal strategies
quickly. Algorithms with certain optimality guarantees are being explored in the online learning and theory
communities (e.g., the k -armed bandit problem), and such work may lead to new improvements in adaptive

4



stream processing.

CROSS REFERENCE
Stream processing.
Distributed stream.
Query processor or query execution engine.

RECOMMENDED READING

[1] Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christain Convey, Sangdon Lee, Michael
Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a new model and architecture for data stream management.
VLDB J., 12(2), August 2003.

[2] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query processing. In SIGMOD, 2000.
[3] Brian Babcock, Shivnath Babu, Mayur Datar, and Rajeev Motwani. Chain: Operator scheduling for memory

minimization in data stream systems. In SIGMOD, 2003.
[4] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding for aggregation queries over data streams. In

ICDE, 2004.
[5] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jennifer Widom. Adaptive ordering of

pipelined stream filters. In SIGMOD, 2004.
[6] Magdalena Balazinska, Hari Balakrishnan, and Michael Stonebraker. Demonstration: Load management and high

availability in the medusa distributed stream processing system. In SIGMOD, 2004.
[7] Pedro Bizarro, Shivnath Babu, David J. DeWitt, and Jennifer Widom. Content-based routing: Different plans for

different data. In VLDB, 2005.
[8] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh

Krishnamurthy, Samuel Madden, Vijayshankar Raman, Fred Reiss, and Mehul A. Shah. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR, 2003.

[9] Amol Deshpande. An initial study of overheads of eddies. SIGMOD Rec., 33(1), 2004.
[10] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. Adaptive query processing. Foundations and Trends in

Databases, 2007.
[11] Sam Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar Raman. Continuously adaptive continuous

queries over streams. In SIGMOD, 2002.
[12] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.

Query processing, resource management, and approximation in a data stream management system. In CIDR, 2003.
[13] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous queries over distributed data streams.

In SIGMOD, 2003.
[14] Vijayshankar Raman, Amol Deshpande, and Joseph M. Hellerstein. Using state modules for adaptive query

processing. In ICDE, 2003.
[15] Nesime Tatbul, Ugur Cetintemel, Stanley B. Zdonik, Mitch Cherniack, and Michael Stonebraker. Load shedding in

a data stream manager. In VLDB, 2003.

5


