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ABSTRACT
As XML has developed over the past few years, its role has
expanded beyond its original domain as a semantics-preserving
markup language for online documents, and it is now also the de
facto format for interchanging data between heterogeneous sys-
tems. Data sources export XML “views” over their data, and
other systems can directly import or query these views. As a re-
sult, there has been great interest in languages and systems for
expressing queries over XML data, whether the XML is stored in
a repository or generated as a view over some other data storage
format.

Clearly, in order to fully evolve XML into a universal data rep-
resentation and sharing format, we must allow users to specify
updates to XML documents and must develop techniques to pro-
cess them efficiently. Update capabilities are important not only
for modifying XML documents, but also for propagating changes
through XML views and for expressing and transmitting changes
to documents. This paper begins by proposing a set of basic up-
date operations for both ordered and unordered XML data. We
next describe extensions to the proposed standard XML query
language, XQuery, to incorporate the update operations. We
then consider alternative methods for implementing update oper-
ations when the XML data is mapped into a relational database.
Finally, we describe an experimental evaluation of the alternative
techniques for implementing our extensions.

1. INTRODUCTION
Over the past several years, there has been a tremendous

surge of interest in XML as a universal, queryable represen-
tation for data. This has in part been stimulated by the
growth of the Web and e-commerce, where XML has almost
instantly emerged as the de facto standard for information
interchange. Nearly every vendor of data management tools
has added support for exporting, viewing, and in some cases
even importing, XML-formatted data. Tools for querying
and integrating XML are still largely in their infancy, but
are beginning to emerge. XML document repositories like
ObjectDesign’s eXcelon [18] and Software AG’s Tamino [16]
are now available, and XML publishing capabilities have
been added to the latest relational database systems from
Oracle, IBM, and Microsoft.

Ultimately, it is expected that these relational database
engines will provide standardized, integrated support for
querying and publishing XML views of databases. This
will allow the sharing of data from both XML repositories
and traditional relational databases using a single, unified,
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queryable model — namely, XML views with an XML query
language. The World Wide Web Consortium is in the pro-
cess of developing a standard for this XML query language,
called XQuery [2]. Meanwhile, the database research com-
munity has been hard at work in addressing the challenges of
providing XML views of relational databases, with systems
such as SilkRoute [9] and XPERANTO [3].

The next step in making XML into a full-featured data ex-
change format is to support not only queries, but updates,
over XML content. It should be possible to modify content
within XML documents and to express updates to XML
views, which are percolated back to the original data. The
ability to encapsulate an update operation is also necessary
for expressing incremental changes (“deltas”) over content,
which is important for Continuous Queries [4], XML docu-
ment mirroring, caching, and replication.

In this paper we propose a set of constructs for express-
ing such updates in both an ordered and unordered XML
data model, we map these constructs into the syntax of
the XQuery language, and we describe implementation tech-
niques over a relational database system. In particular, we
make the following contributions:

• We propose a set of primitive operations for modifying the
structure and content of an XML document.

• We present update extensions to the World Wide Web Con-
sortium’s proposed XQuery standard query language.

• We provide algorithms for implementing XML update ca-
pabilities within an XML repository based on a relational
database system, and describe how these techniques can also
be applied to the problem of updating relational databases
through XML views. Most frequently-updated data tends
to reside in relational systems, and we feel it is important
to have well-studied techniques for updating complex XML
structure mapped to a relational system.

• We provide an analysis of the performance of our different
update strategies using a number of workloads and docu-
ment structures.

This paper is structured as follows. We begin with a de-
scription of related work in Section 2. In Section 3, we
provide an overview of the XML data model and describe
a set of primitive operations for updating both ordered and
unordered XML data. Section 4 describes how these op-
erations can be added to the XQuery language. Section 5
reviews key concepts in mapping between XML and rela-
tional databases, and Section 6 presents our implementa-
tion strategies. We evaluate these techniques in Section 7
and present conclusions and future directions in Section 8.



2. RELATED WORK
The topic of updating XML data has received little atten-

tion thus far, as the XML community has primarily focused
on development of query languages such as XML-QL [6] and
XQuery [2] and their semantics. The eXcelon XML repos-
itory [17] is one of the few XML systems that support up-
dates, and it expresses simple insertions and deletions using
an extension to the XPath [5] language. The Lorel [1] query
language from Stanford’s Lore semistructured database sys-
tem supports simple insertions and deletions of nodes into
the Lore data graph. Recent extensions to Lorel [11] have
migrated the query language to the XML data model, but
the update features were not ported in the process. Object-
oriented systems also support updates, but they tend to use
a more programming-language-like set of operations: assign-
ments from one object to another, or insertions or deletions
from collection types. Our language extensions allow inser-
tions, deletions, and assignments at multiple levels within a
hierarchy, in order to support updates to complex structure
— including derived XML Schema [19] types.

The problem of storing XML in relational database sys-
tems has been extensively studied [10, 7, 14]; the problem
of extracting an XML view of relational tables has been ad-
dressed by [9, 15, 3]. Our techniques leverage these works,
supplementing them with Access Support Relations [12],
and our implementation focuses on the problem of support-
ing updates. While the problem of updating hierarchical
data stored across multiple tables is not a new one — hav-
ing arisen in the context of object-relational systems [13] —
we believe we are the first to address it at the SQL level,
and for storage of XML data.

3. XML UPDATE FUNDAMENTALS
Numerous XML query languages have been proposed by

both the document and database communities. We have
chosen to focus our paper on the emerging XQuery [2] stan-
dard, which attempts to combine the best features of the
leading XML query languages and is expected to become
the “SQL of XML.”

In this section, we present our basic data model and up-
date operations in a language-independent way in order to
carefully define our semantics. The next section maps our
basic set of operations into the XQuery language.

3.1 Data Model
XQuery uses the World Wide Web Consortium’s XML

Query Data Model [8], which views an XML document as
a node-labeled tree with references. We use a simplified
version of the model for purposes of illustration here.

Figure 1 shows an example XML document and Figure 2
illustrates its tree-structured representation. We draw the
tree such that a left-to-right, depth-first traversal describes
the order of the XML content within our document. Note
that in this representation, we model all attributes uni-
formly, including those with special meaning, such as IDREFs.
Attributes are unordered with respect to one another; how-
ever, it is important to note that a given IDREFS attribute
is itself an ordered list of references. In XQuery, all IDREF
attributes are explicitly dereferenced in path expressions by
using the -> operator.

In our discussion we need to refer to different kinds of
XML content. We use the term object to refer to any com-
ponent of XML, which can be any of the following:

• An attribute is a pair, with an name and a string value.

• An IDREFS is a named ordered list of IDs. For simplicity of
presentation, we assume that IDREF and IDREFS types are
equivalent, i.e., an IDREF is a singleton list.

• An element is a tuple with a name, set of attributes, set of
references, and list of child elements or PCDATA.

• PCDATA (scalar) content is a string value that exists within
an element.

3.2 Update Operations
We now describe a set of update operations on XML doc-

uments. Our goal is to provide a uniform and clean seman-
tics for updating not simply scalar or leaf-node values (as in
Lorel), but also complex, structured, and irregular types (in
particular, complex XML Schema [19] types and their de-
rived subtypes). Here we distinguish between IDREF types
and attribute content, as IDREFs encode structural informa-
tion as opposed to data values, and they may appear within
ordered IDREFS lists.

Following the style of XQuery, we assume the presence of a
path-expression-matching operation that binds variables to
objects within the input XML document and returns tuples
of references to the selected objects. One of these bind-
ings will be the target of the sequence of operations, and
is assumed implicit in the specification below. The update
operations also take a set of parameters (content and name

below). An update is a sequence of primitive operations of
the following types:

• Delete(child): if the child is a member of the target ob-
ject, it is removed. Valid types for child include PCDATA,
attribute, IDREF within an IDREFS list, and element. If the
child is a reference within an IDREFS, only the single entry
is removed — the remainder of the IDREFS is preserved.

• Rename(child, name): if the child is a non-PCDATA member
of the target object, it is given a new name. Note that we
cannot rename an individual IDREF within an IDREFS; such
a rename operation will rename the entire IDREFS.

• Insert(content): inserts new content (which can be PCDATA,
element, attribute, or reference) into target. An attempt
to insert an attribute with the same name as an existing
attribute fails. An attempt to insert a reference with the
same name as an existing IDREFS adds an extra entry into
the IDREFS.

In an ordered execution model, all non-attribute insertions
are defined to occur at the end, i.e., the new content is
appended.

• InsertBefore(ref , content): (defined only for ordered ex-
ecution). If ref is a child element of target or PCDATA, then
content must be an element or PCDATA, and it will be in-
serted directly before ref in target’s list of children. If
ref is an entry in an IDREFS, then content must be an
ID and it is inserted directly ahead of ref in the IDREFS.
InsertAfter(ref , content) is defined analogously.

• Replace(child, content): atomic replace operation, equiva-
lent to InsertBefore(child,content) followed by Delete(child)
in the ordered model, or (Insert(content), Delete(child)) un-
der unordered execution.



<db lab="lalab">
<university ID="ucla">
<lab ID="lalab" managers="smith1 jones1">
<name>UCLA Bio Lab</name>
<city>Los Angeles</city>
</lab>
</university>
<lab ID="baselab" managers="smith1">
<name>Seattle Bio Lab</name>
<location>
<city>Seattle</city>
<country>USA</country>

</location>
</lab>
<lab ID="lab2">

<name>PMBL</name>
<city>Philadelphia</city>
<country>USA</country>
</lab>
<paper ID="Smith991231" source="lab2"

category="spectral" biologist="smith1">
<title>Autocatalysis of Spectral...</title>
</paper>
<biologist ID="smith1">

<lastname>Smith</lastname>
</biologist>
<biologist ID="jones1" age="32">

<lastname>Jones</lastname>
</biologist>
</db>

Figure 1: Sample XML document representing biology labs and publications

db

lab
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name location
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Jones
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Figure 2: Data model representation for Figure 1.

• Sub-Update(patternMatch, predicates, updateOp): start-
ing at the target element, invokes a new pattern-matching
operation over the input, returning bindings that are filtered
by the predicates. For each valid combination of bindings,
recursively invokes the update operation. This allows us to
express updates at multiple levels within a complex XML
structure.

A full update-operation may consist of several of these sub-
operations that execute in sequence. Therefore, we add sev-
eral additional restrictions to the semantics of our opera-
tions in order to prevent ill-defined semantics. All bindings
within Sub-Update operations are made over the input be-

fore any updates take place. Likewise, content is evaluated
for each target before the sequence of updates is executed.
Finally, a binding that has been deleted cannot be used by
any operations later in the sequence (except as content).

4. XQUERY EXTENSIONS FOR UPDATES
The basic set of operations presented in Section 3 express

XML updates logically; the next step is to take these opera-
tions and map them into the XQuery language syntax. We
begin by describing the general form of our update exten-
sions, and then elaborate upon specific operations.

4.1 Basic Form of Updates
We extend XQuery with a FOR. . .LET. . . WHERE. . .UPDATE

structure for updates. Within the UPDATE clause, a sequence
of sub-operations (following the same semantics as our log-
ical update-ops) are specified:
FOR $binding1 IN XPath-expr, . . .

LET $binding := XPath-expr, . . .

WHERE predicate1, . . .

updateOp, . . .

where updateOp is defined in EBNF as:

UPDATE $binding { subOp {, subOp}* }
and subOp is:
DELETE $child |
RENAME $child TO name |
INSERT content [BEFORE | AFTER $child ] |
REPLACE $child WITH $content |
FOR $binding’ IN XPath-subexpr, . . .

WHERE predicate1, . . .updateOp
The nested FOR. . .WHERE clause allows one to specify an XPath
expression to be matched beginning at $binding, as well as
a set of predicates that may restrict its bindings. A nested
update operation may be performed over any of the bindings
from the outer scope or the FOR clause. If multiple upda-
teOps are specified, they are performed consecutively for
each iteration of variable bindings, following the semantics
described in the previous section.

4.2 Language Extensions in Detail
The previous section makes the assumption that the XPath

expressions are sufficiently expressive that one can select the
XML objects one wishes to manipulate. While this is cer-
tainly true of elements, XQuery does not actually define how
to select an attribute as a whole (only its value), nor an in-
dividual IDREF out of an IDREFS list. Thus we introduce
conventions for binding to attributes and IDREFs.

Specifically, we assume that a variable bound to an at-
tribute (e.g., FOR $x IN tag/@attr) represents a reference
to that attribute (and not simply the value) within the doc-
ument. Thus one can modify the attribute by updating the
object $x. However, an expression over the value of $x will
get its string content.

To bind a variable to a specific reference within an IDREF

or IDREFS, we introduce a function ref(label, target)

that can be bound to a variable. An example that binds
$l to the reference to lalab in the document of Figure 1



follows:
FOR $l IN document("bio.xml")/ref(lab, "lalab")

Now we examine each of the basic operations individually,
providing an XQuery example in each case.

4.2.1 Deletion
Deletion is in many ways the simplest operation, as it sim-

ply requires a binding to a parent and a child. The following
query illustrates an operation in which we select the paper

element to update, and remove its category attribute, its
biologist reference to smith1, and its title subelement.
FOR $p IN document("bio.xml")/paper,

$cat IN $p/@category,
$bio IN $p/ref(biologist,"smith1"),
$ti IN $p/title

UPDATE $p {
DELETE $cat,
DELETE $bio,
DELETE $ti

}

Example 1: Deleting an attribute, IDREF, and subelement

Deleting a subelement node will typically remove all of
its content. However, there may be references to deleted
subelements. XQuery allows “dangling” references to data
that is not present in the results, so we support these same
semantics in a delete operation — a reference is allowed to
dangle.

4.2.2 Insertion
With insertion, we must introduce a constructor for new

attributes or references to be inserted. We illustrate this
with the example below, which inserts an age attribute, two
worksAt references, and a firstname subelement into biol-
ogist smith’s entry:
FOR $bio in document("bio.xml")/db/

biologist[@ID="smith1"]
UPDATE $bio {

INSERT new_attribute(age,"29"),
INSERT new_ref(worksAt,"ucla"),
INSERT new_ref(worksAt,"baselab"),
INSERT <firstname>Jeff</firstname>

}

Example 2: Inserting an attribute, two references, and a
subelement

In an unordered execution model, the child elements within
the biologist entry would appear in any arbitrary order as a
result of this update. For the ordered model, each successive
reference would be inserted at the end of the worksAt list,
and the firstname subelement would appear after any ex-
isting subelements. We can also specify positional insertion
— in this case, adding a street after the name element in a
lab and adding "jones1" as a first managers reference:
FOR $lab in document("bio.xml")/db/

lab[@ID="baselab"],
$n IN $lab/name,
$sref IN ref(managers,"smith1")

UPDATE $lab {
INSERT "jones1" BEFORE $sref,
INSERT <street>Oak</street> AFTER $n

}

Example 3: Inserting a subelement and a reference relative
to existing content

Note that the new ref() constructor is not necessary here,
because the insertion is relative to an IDREFS binding.

4.2.3 Replacement
Replacing an item has the same effect as inserting a new

item before it and deleting it, but it is often convenient to be
able to express it as a single, atomic operation. The simple
example below replaces lab baselab’s manager and name:
FOR $lab in document("bio.xml")/db/lab,

$name IN $lab/name,
$mgr IN $lab/ref(managers, *)

UPDATE $lab {
REPLACE $name WITH <appellation>Fancy Lab</>,
REPLACE $mgr WITH new_attribute(managers,"jones1")

}

Example 4: Replacing elements, references, and attributes

Note the use of the wildcard character,“*”, within the ref()
function to match against any references. A reference bind-
ing can only be replaced with another reference of the same
label, i.e., a manager can only be replaced with other man-
agers.

4.2.4 Combining Operations with Nested Updates
The nested FOR clause enables us to express updates at

multiple levels in an XML document, selecting the desired
nodes at each level. We illustrate these with an example that
updates the university ucla by adding a labs attribute on
the number of labs, creating a new lab, and modifying the
existing one:
FOR $u in document("bio.xml")/db/university

[@ID="ucla"],
$lab IN $u/name

WHERE $lab.index() = 0
UPDATE $u {

INSERT new_attribute(labs,"2"),
INSERT <lab ID="newlab">

<name>UCLA Secondary Lab</name>
</lab> BEFORE $lab,

FOR $l1 IN $u/lab,
$labname IN $l1/name,
$ci IN $l1/city

UPDATE $l1 {
REPLACE $labname WITH <name>UCLA Primary Lab</>,
DELETE $ci

}
}

Example 5: Multi-level nested update

Our outermost UPDATE operation works on the university

tag, and a nested pattern match is performed inside the
operation so the lab can also be modified. See Figure 3 for
the output document.

5. STORING XML IN RELATIONS
Although XML repository systems have been built over

object-oriented [18] and hierarchical [16] databases, they
are most commonly constructed over a relational database
system, using a middleware layer that translates queries
from an XML query language into SQL queries over the
database [10, 14, 7]. Another similar source of queryable
XML data is an XML mediator placed over an existing re-
lational database [3, 9]. The mediator takes a user-provided
mapping and generates a hierarchical XML view of the ex-
isting relational tables; XML-based queries made over this
view are translated to SQL. There is a key difference between
an XML repository with a relational core and an XML view
manager over a relational database: in the former case, the
relational schema and the relationships between tables are



<db lab="lalab">
<university ID="ucla" labs="2">
<lab ID="newlab">
<name>UCLA Secondary Lab</name>

</lab>
<lab ID="lalab" managers="smith1 jones1">
<name>UCLA Primary Lab</name>
</lab>
</university>
<lab ID="baselab" managers="smith1">
...
</lab>

<lab ID="lab2">...</lab>
<paper ID="Smith991231" source="lab2"

category="spectral" biologist="smith1">
...
</paper>
<biologist ID="smith1">

...
</biologist>
<biologist ID="jones1" age="32">

...
</biologist>
</db>

Figure 3: Results of multi-level update to university and its labs, Example 5

automatically generated from the XML input; in the latter,
the relations are provided along with a view definition for
the XML mapping. As a result, the query translation al-
gorithms are somewhat different. However, both types of
systems can make use of the same techniques for translation
from hierarchical XML queries to generated SQL queries,
and in transforming from relational output to XML.

Likewise, the same basic XML update techniques can be
applied to both repository and mediator contexts. Since
XML-relational techniques cover such a wide portion of the
XML query spectrum, we have selected this domain for im-
plementing our XQuery extensions. In this section, we re-
view and summarize the basic techniques used for represent-
ing XML in relational tables and for converting relational
query results back into XML. Then we present a number
of alternatives for executing our XQuery update extensions
over relational tables.

The first issue in mapping between XML and a set of re-
lations is the correspondence between a relation and some
portion of the XML document’s hierarchy. With an XML
mediator, this is provided by the XML view definition; in an
XML repository, the system must determine the mapping.
Once a mapping to tables has been established, a means
of converting from tabular output to XML must be deter-
mined. Finally, queries across multiple tables can be sped
up with the use of Access Support Relations, an indexing
technique from object-oriented databases. We now examine
each of these topics in turn.

5.1 Mapping XML into Relations
Several methods have been proposed for mapping XML

documents into relations [10, 14, 7]. In [10] the authors de-
scribe the Edge and Attribute approaches. In the former,
each element or attribute is stored as a tuple in a single
“edge” relation, while in the latter we create a similar binary
table for each tag or attribute name in the document. The
main drawback of these two approaches is that they cause
excessive fragmentation of XML elements across multiple
tuples and relations, and therefore traversing XML struc-
ture or outputting XML content requires many joins, which
can be very expensive. The Edge approach does have one
advantage over most other techniques, which is that it works
with input documents that do not have DTDs.

The Shared Inlining method [14] exploits a DTD to better
cluster parent and child elements. Informally, the method
tries to store child elements and attributes in the same tuple
as their parents, thus reducing the number of joins required.
The DTD provides the information necessary to determine
where inlining is possible. For an example of the inlining

<!ELEMENT CustDB (Customer*)>
<!ELEMENT Customer (Name, Address, Order*)>
<!ELEMENT Address (City, State)>
<!ELEMENT Order (Date, OrderLine*)>
<!ELEMENT OrderLine (ItemName, Qty)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT State (#PCDATA)>
<!ELEMENT Date (#PCDATA)>
<!ELEMENT ItemName (#PCDATA)>
<!ELEMENT Qty (#PCDATA)>

Figure 4: DTD of the example customer database.

method, we begin with the DTD in Figure 4, which is a
simplified version of the TPC/W web benchmark’s schema.

According to the DTD, some of the child elements appear
exactly once for each occurrence of their parents, e.g., every
customer has a name. These elements will be “inlined” as at-
tributes within their parent elements’ tuples (the Customer

table will contain an attribute for Name). Conversely, all
subelements with 1 : n relationships to their parents cannot
be inlined and must be stored in separate tables. Shared
Inlining will create 4 relations for our example: CustDB,

Customer, Order, and OrderLine. In addition to the corre-
sponding PCDATA attributes, each relation will also have
an id and a parentId attribute. These attributes will be
used to link tuples corresponding to parent/child element
pairs in the stored XML document.

In our work we experimented with several storage schemes.
In the rest of the paper we focus on the inlining approach
both because of its flexibility and because the other storage
schemes did not yield any different results or insights. We do
not consider the issue of document order in our discussion.

5.2 XML Results as Outer Unions
When an XML structure is stored across multiple tables,

there are a number of possible ways of returning the results.
One approach might be to open a series of nested cursors
across each table, but this would require modification to the
underlying RDBMS. Another approach could be to create
a “wide” tuple containing all possible attributes within the
XML subtree, then joining the constituent relational tables
and returning the results, but this produces large amounts of
redundant data. An alternate approach essentially simulates
the nested cursor approach: different levels in the XML hi-
erarchy (i.e., different relational tables being returned in the
results) are returned in separate tuples in the same stream.
Since each of these tuples comes from a different table and
schema, we must create a “wide” tuple with all possible at-
tributes, and pad any given table’s tuples with NULLs so it



WITH Q1(C1, C2, C3, C4, C5, C6, C7, C8, C9) AS (

-- Customer subquery

SELECT id, Name, Address_City, Address_State,

NULL, NULL, NULL, NULL, NULL

FROM Customer

WHERE Name = ’John’

), Q2(C1, C2, C3, C4, C5, C6, C7, C8, C9) AS (

-- Order subquery

SELECT C1, NULL, NULL, NULL,

id, Status, NULL, NULL, NULL

FROM Q1, Order O

WHERE O.parentId = Q.C1

), Q3(C1, C2, C3, C4, C5, C6, C7, C8, C9) AS (

-- OrderLine subquery

SELECT C1, NULL, NULL, NULL,

C5, NULL, id, ItemName, Qty

FROM Q2, OrderLine OL

WHERE OL.parentId = Q.C5

) (

SELECT *

FROM Q1

) UNION ALL (

SELECT *

FROM Q2

) UNION ALL (

SELECT *

FROM Q3

)

ORDER BY C1, C5, C7

Figure 5: Outer Union query for Example 6

fits into the wide tuple. This technique was first proposed
in [15] and is called the “outer union” method. To simplify
the job of reconstructing the XML document at the client,
output tuples are sorted so that child element data comes
after parent data and child elements of different parents are
not intermixed.

Consider the following simple XQuery expression that re-
trieves data for customers named John:
FOR $c IN document("custdb.xml")/

CustDb/Customer[Name="John"]

RETURN $c

Example 6: Returning customer “John” in XQuery

Instead of separately joining the relations Customer, Order
and OrderLine, the outer-union approach would produce the
query of Figure 51, which employs the IBM DB2 WITH clause
for reusable subexpressions. Note that child tuples include
the key attributes, but not the content, of their parents, so
the appropriate association between parent and child can
be maintained. This also facilitates the use of ORDER BY to
sort the tuple stream such that child elements follow their
parents. If the WHERE clause of an XQuery expression
contains conditions on elements’ values, all such conditions
have to be tested in the first, base subquery of the WITH
clause, since the other “branches” of the Outer Union can-
not remove tuples. A fix-point query can be used to evaluate
regular path expressions as described in [14].

1For readability, this Figure is a simplification, omitting the
required typecasting of NULLs to match attribute types.

5.3 Access Support Relations for Path Expres-
sion Evaluation

Access support relations (ASRs) are an effective method
of speeding up the evaluation of path expressions in object-
oriented and semi-structured databases [12]. An ASR in-
dexes a specific path, and it contains an attribute for each
object along the path. This principle extends naturally to
the XML mapping described in this paper: each object along
the path is a tuple within a table at a particular depth in
the element hierarchy. Each tuple has an XML element ID,
corresponding to an Object ID in a traditional ASR. Hence,
an ASR tuple encodes a path from an XML element to one
of its descendants. XML queries are generally expressed
“downwards” from a specified node in the XML tree, and
certain children may or may not exist within the semistruc-
tured data, so we use a left-complete extension (i.e., NULLs
are allowed only at the bottom of the tree).

To see how ASRs speed path expression evaluation, sup-
pose the customer XML document has been extended with
part information stored in a separate Parts table, and con-
sider the following query that returns the names of cus-
tomers who have ordered an item built with part 123:
FOR $c IN document("custdb.xml")/CustDb.Customer

[Order.OrderLine.Item.Part.Number=123]

$n IN $c/Name

RETURN $n

Example 7: Customers Ordering Items with Part 123

This query can be evaluated with three joins: select Part
tuples with number 123, then join with the Item, Order

and Customer relations to retrieve corresponding customer
names. However, if we have an ASR that contains paths
from the root element to leaf (Part) elements, then the above
query can be evaluated using only two joins: first, Part and
ASR relations are joined, and then the result is joined with
Customer to obtain customer names. (These queries can be
further sped up by also indexing the various tables and the
ASR by the required IDs.)

Clearly, ASRs are especially effective for long paths. How-
ever, even for short paths (e.g., Customer.Order.OrderLine),
joining with the ASR can be faster than joining with the in-
termediate relation, because the ASR can be more compact
since it does not contain data values.

6. UPDATING STORED XML
The challenges of translating XML updates into SQL go

beyond those of translating queries. Clearly we would like
to generate efficient SQL update statements; ideally, as with
the case of XML queries, we would translate each XML up-
date into a single SQL command, because issuing multiple
separate SQL statements incurs overhead and prevents the
RDBMS from performing large-scale optimizations. Unfor-
tunately, a SQL update statement can only modify a single
relation, so we must issue multiple queries to update an
XML document at several levels of hierarchy. For exam-
ple, an XML INSERT of a new item of customer data into
our sample XML database may easily require three SQL
INSERT statements to modify the Customer, Order, and
OrderLine relations. However, certain approaches to inser-
tion may require more statements than others; we examine
a number of alternatives in detail.

Another difficulty is the creation and maintenance of the



element ID-parent ID foreign-key relationship that encodes
XML structure. When an XML subtree is being copied from
one location to another, all tuples must be replicated and
given new IDs that have the same connectivity.

There are also subtle issues to be considered to ensure
correctness of the translation. Consider the following exam-
ple query, which selects customer orders that are ready and
contain an order line for tires. The status of the selected or-
ders is set to “suspended” and a comment is added to each
tire order line.
FOR $o IN document("custdb.xml")//Order

[status="ready" and

OrderLine/ItemName="tire"]

UPDATE $o {

INSERT <Status>suspended</Status>

FOR $i IN $o/OrderLine[ItemName="tire"]

UPDATE $i {

INSERT <comment>recalled</>} }

Example 8: Suspending Orders of Tires in XQuery

Suppose this XML update statement is translated into
two SQL updates to update the Order and OrderLine base
relations. Clearly, if the first update is executed before
the second, the second update will not apply to any tuples
because the status of all relevant orders has been changed
to “suspended.” For this pair of updates, the second state-
ment must be executed first. The example also illustrates a
potential performance problem: the second update performs
the same joins and selection operations as the first. Later in
this section, we present methods for avoiding this redundant
work.

Yet another issue, one which we do not address in this
paper, is validation of operations against a DTD. In this
section, we present a number of algorithms that all assume
a valid operation is being performed.

6.1 XML Deletion Techniques
Certain “simple” deletion operations may involve the re-

moval of an item from a single table — generally this occurs
during deletion of an XML element that has been inlined
with its parent (or ancestor). The major expense of such an
operation lies in the query that finds the specific element;
the actual operation can be performed by a simple SQL
UPDATE that sets the element’s attribute(s) to NULL. A
possible caveat arises when a non-leaf element and its chil-
dren have all been inlined together with a parent, and are
deleted: the non-leaf element does not have a data value
of its own, so if we set its children to NULL, this results
in ambiguity as to whether the non-leaf element has been
deleted or it exists with empty content. In this case, we add
a flag specifying whether the non-leaf element is present or
absent.

The operation that is of greater interest to us is a deletion
of a subtree that is stored across multiple relations — in this
case, tuples must be removed from subsidiary tables as well
as from the target of the deletion. In the remainder of this
section we describe several possible translations of such a
“complex” XML delete to SQL. As our example, we will be
using the following delete statement, which deletes customer
data for all customers whose name is “John”.

FOR $d IN document("custdb.xml"),
$c IN $d/Customer[Name="John"]

UPDATE $d {
DELETE $c }

Example 9: Deleting customers named “John” in XQuery

6.1.1 Trigger-Based Delete
SQL triggers are perhaps the most natural mechanism

for initiating successive deletes of subsidiary tuples based
on a single delete. Triggers, which are supported by most
commercial RDBMSes today, are event-initiated rules that
can be attached to specific relations. Whenever a relation is
updated, the trigger is fired and its SQL code is executed.
Triggers can be fired either individually for each affected
tuple, or once for an entire delete statement.

Triggers greatly simplify the implementation of the multi-
level delete operation that we need. For each relation that
has child relations, we define a post-delete trigger that is
fired whenever a parent tuple is deleted. The body of the
trigger contains SQL code to delete relevant tuples from the
child relations. To delete an element that is mapped into a
relation, one only needs to delete the element’s root tuple.
For example, our “delete Johns” query can be translated
into the following simple SQL statement:
DELETE FROM Customer WHERE Name=’John’

The relevant Order and OrderLine tuples will be auto-
matically deleted by triggers set up during the creation of
the relational schema. Since only a single SQL statement
needs to be issued and the entire delete operation is han-
dled inside the RDBMS, we expect trigger-based deletes to
be very efficient.

6.1.1.1 Per-Tuple vs. Per-Statement Triggers.
As we mentioned above, triggers can be fired on either

a per-tuple or per-statement basis. Accordingly, there are
two ways to propagate deletes through an XML tree. In a
per-tuple trigger, the deleted tuple is still accessible, as is
its id. Therefore, the trigger should delete all tuples from
child relations that link to that tuple through their parentId
attribute. That, in turn, will cause the triggers on the child
relations to be fired, and so on. In contrast, a per-statement
trigger is fired after all relevant tuples have been deleted
from the relation. To propagate the delete, it is necessary
to delete orphaned tuples from the child relations.

6.1.2 Cascading Delete
When a DBMS does not support triggers, it is possible to

simulate the effect of per-statement triggers by first delet-
ing relevant tuples from parent relations and then deleting
orphaned tuples from their children. We stop as soon as a
delete operation does not remove any tuples. Note that we
can apply this method even if the schema is recursive.

To delete a Customer element for John, the following three
statements can be executed in sequence:

DELETE FROM Customer WHERE Name = ’John’
DELETE FROM Order

WHERE parentId NOT IN (SELECT id FROM Customer)
DELETE FROM OrderLine

WHERE parentId NOT IN (SELECT id FROM Order)

Intuitively, the Cascading Delete method should have simi-
lar performance characteristics to the per-statement trigger
method, except that it has slightly more overhead since it



requires more SQL statements. As discussed in Section 7,
this is indeed the case.

6.1.3 ASR-Based Delete
Access support relations can be used not only to improve

query response time (as discussed in Section 5), but also to
speed up deletions. Specifically, once the internal tuple id of
an element to be deleted is known, the ids of its descendants
can be obtained from the ASR. A single join of the deleted
tuple with the ASR yields the ids of child tuples below the
delete point. To perform the delete, we mark each ASR
tuple containing the deleted object. Then, for each child
table, we delete all tuples whose IDs match a deleted row
in the ASR. Finally, we must update the ASR to reflect the
current state of the data.

We expect that the ASR method will not perform as well
as the trigger based delete methods because of the larger
number of SQL statements that needs to be executed and
the extra overhead of updating the ASR.

6.2 XML Insertion Techniques
As with deletions, we can divide insertions into “simple”

(flat) and “complex” (hierarchical) operations. Simple in-
sertions, in which the element to be inserted is completely
inlined, can be performed using a single SQL UPDATE op-
eration. However, if we want to generate a warning on any
attempt to insert “over” an item that may only occur once
in the DTD, we must initially query the table to ensure
that every tuple we wish to update has NULL values in the
appropriate attributes.

A complex insertion contains an XML subtree and re-
quires updates to tuples across multiple tables. This opera-
tion may insert literal content and/or copy data from within
an existing XML document, and it may even impose a cor-
relation between the destination and source data. Insertion
of data from within an existing document is more challeng-
ing, so we provide an example. Suppose we want to copy
Customer elements describing Californians into a different
document (with an appropriate DTD):
FOR $source IN document("custDB.xml")/CustDB/

Customer[Address/State="CA"],
$target IN document("CA-customers.xml")/CustDB

UPDATE $target {
INSERT $source }

Example 10: Inserting Californian Customers in XQuery

There are two particularly challenging aspects to executing
this insertion. The first is in minimizing the number of SQL
insertions or updates required. The second and more diffi-
cult problem lies in generating new ids for the duplicate data
while maintaining its structure. The insertion operation has
copy semantics, so we cannot simply link to the existing tu-
ples; moreover, ids must be unique within a document, so
we cannot simply copy the tuples.

One solution to the id assignment problem would be to
provide an id mapping function similar to a Skolem function
in XML-QL: given a particular source and destination id, it
would return a unique new id as a “perfect hash.” Unfor-
tunately, no RDBMS provides this capability, so we would
have to perform the operation ourselves (and maintain some
sort of mapping state). We prefer to avoid the overhead of
this method, so in the following two sections, we discuss two
approaches of the complex insert operation that do not use
an id mapping function.

6.2.1 Tuple-Based Insert
The tuple-based insertion method begins by querying for

the source subtree using the Sorted Outer Union method
and reading a tuple at a time. Then every source element
within the tuple is given a new and unique id (parent el-
ements shared across tuples will, of course, share the same
new id, so a mapping structure must be maintained dur-
ing execution). Finally, the Sorted Outer Union tuple is
partitioned back into components matching the underlying
tables, and these are inserted.

The memory requirements of this method are very low,
since they are bounded by the size of the Outer Union tuple.
However, there is a large penalty in terms of the number of
SQL INSERT statements required – one must be generated
for each table within each tuple. One advantage of the tuple
method is that it allocates tuple ids without gaps, unlike the
table and ASR methods described below.

6.2.2 Table-Based Insert
A logical way to reduce the number of statements required

by the tuple-based insert is to remap all source tuples in a
single operation, and then insert the remapped tuples en

masse within each underlying table. Often, this operation
will simply require buffering of the source data within mem-
ory, but in the worst case, there might be too much data and
a temporary table will be required. In the table-based insert
method, we always make use of the temporary table as our
work area, and assume that the database’s buffer manager
will keep the results in memory when possible.

In order to quickly remap ids across a large number of
tuples, we employ the following heuristic. If we find the
minimum and maximum tuple id values (minId and maxId,
respectively) in the source tree (the temporary table), we
know the upper bound on the number of used ids is given
by maxId−minId+1. Given a systemwide “next available
id” counter nextId, we can add an offset of nextId−minId

to each id in the temporary table, and can advance nextId

by maxId− minId + 1.
For even moderately sized subtrees, the table-based in-

sert method should perform better than the tuple-based ap-
proach because it executes a single SQL insertion per data
relation.

6.2.3 ASR-Based Insert
The main reason for the temporary table in the insert

method described above was to find the source subtree data
and its ids. This is the primary role of Access Support
Relations, so it is not surprising that ASRs can be used to
enhance insert performance. Instead of creating a temporary
table, an ASR-based insertion operation can scan the ASR
for all child tuple ids and compute the remapping offset (as
described above for table-based inserts). Then the ASR can
be used to retrieve and replicate the source tuple data. Our
ASR-based insert uses a marking scheme (similar to the ASR
delete approach described previously) to identify ASR paths
through the source; thus it requires SQL update statements
to mark and unmark the ASR, to add new paths to the ASR
for the inserted data, and to update each source table. This
is actually a higher number of operations than the table-
based insert, but does not require excess duplication of data,
nor does it require the join-intensive generation of Outer
Union results.



6.3 Other Update Operations
We can leverage the basic algorithms for querying, insert-

ing, and deleting to form the remaining operations. Thus,
because of space constraints, in this section we only briefly
highlight the algorithms and their potential optimizations.

The replace operation removes an existing subtree and
adds a new one in its place. Clearly, this can be implemented
as a deletion followed by an insertion. Note, however, that
it is possible to replace a tree with the value of one of its
subtrees. In such cases, a special-case operation can be per-
formed: the new subtree is linked to its new parent, and the
remainder of the “old” subtree is deleted.

The rename operation logically changes the element or
attribute name around content; in our relational mapping,
this involves moving the data from one attribute or table
to another. This can be simulated by an insertion to copy
a subtree to its new place, followed by a deletion of the
original. However, the process can be greatly optimized by
two observations: a rename only affects the outermost level
of a subtree, so only the top-level table needs updating; and
since renaming involves movement but not creation of data,
no new ids need to be generated.

One unique aspect of our update extensions is their use of
nested update expressions. In order to prevent interaction
between different levels, language semantics define that all
bindings are made prior to updates. This actually simplifies
the mapping to SQL.

Our approach to implementing a multilevel update is as
follows. First, we perform a Sorted Outer Union query (po-
tentially making use of an ASR) to compute all of the vari-
ous source and target bindings within the update statement,
including all sub-operations. Then we sequentially execute
the sub-operations over the appropriate bindings.

7. EXPERIMENTAL RESULTS
In order to determine which update methods work best

and under what conditions, we ran a comprehensive series
of experiments. Since space limits preclude presentation of
all of our results, this section reports the highlights.

Our code was written in Java; it translated update queries
into SQL, and used JDBC to communicate with IBM DB2
UDB 7.1. To avoid network delays, all processing was done
on the same computer, an 866 MHz Pentium III with 1GB
of main memory, running Windows 2000. Since we are in-
terested primarily in optimal performance of a relational
database for XML updates, our experiments focused on the
case when all data could fit within memory.

In order to ensure consistency, each experiment consisted
of set of 5 runs with the results of the first run discarded.
Thus, each graph point represents the average time for five
runs; since variance was small (10-15%), we do not show
confidence intervals.

To avoid reloading the database after each run, we did not
commit our transactions. We have run several experiments
with commits and did not notice any significant increase in
running time. This is because DB2, like most other commer-
cial databases, commits transactions very efficiently – a log
flush is the only I/O operation that is performed at commit
time.

7.1 Workloads and Test Data
We compared the update methods on both bulk and ran-

dom workloads. With a bulk workload, an update operation

was applied to every subtree element of the synthetic input
document. Thus, a bulk delete would leave only the root
element deleting everything else.

To simulate a random workload, we applied an update
operation to 10 randomly chosen subtrees. Clearly, the per-
formance of an efficient update operation on a random work-
load should not depend significantly on the size of the input
document.

As described below, we used three sets of test data for our
experiments. In the first set, the data is synthesized and the
document structure is fixed. In the second set, the data is
still synthetic but the document structure is randomized.
For the third set of experiments, we used real-life data from
the DBLP bibliography database.

7.1.1 Fixed Synthetic Data
As a first step, we compared the performance of the up-

date methods on a set of relatively simple synthetic doc-
uments. Each test document was generated based on the
following three parameters:

• Scaling factor specifies the number of subelements (sub-
trees) at the root level. Intuitively, scaling factor denotes
the length of an XML document.

• Depth determines the number of levels in each subtree, and
affects the complexity of a synthetic XML document.

• Fanout specifies the number of child nodes (subelements) in
the internal nodes of a subtree, also a measure of document
complexity.

Since the space of possible parameter combinations is huge,
we explored the space by alternately holding one parameter
constant while varying the other two, using the values sum-
marized in Table 1. To simulate content, each element in the
synthetic XML documents contains two data subelements:
a 50 character string and an integer.

7.1.2 Randomized Synthetic Data
In this set of experiments, the input document’s subtrees

do not have a fixed structure, and this necessitates changes
to the document parameters. As before, scaling factor mea-
sures the number of subtrees at the root level. Depth now
specifies the maximum depth of a subtree, so the actual
depth of each subtree is a random number between the min-
imum depth, two, and this maximum depth. Similarly, the
fanout at each node is a random number between one and
the specified maximum fanout.

7.1.3 Real-Life Data
In order to verify our results, we augmented our synthetic

data with the conference publications portion of the DBLP
bibliography. The data was organized as an XML document
in which upper-most elements correspond to conferences.
Each conference element has publication subelements which
contain author and citation subelements, among other data.
The size of the resulting document is 40MB, which produced
more than 400,000 database tuples.

7.2 Effect of Access Support Relations on Path-
Expression Evaluation

Although pure query evaluation is not the focus of this
study, ASRs affect both query and update performance so



Experiment fixed param variable params max data size data size growth
fixed fanout (f) fanout=1 d=2,4,8 sf=100,200,400,800 6400 tuples (0.8MB) linear in depth and sf
fixed depth (d) depth=2 f=1,2,4,8 sf=100,200,400,800 7200 tuples (0.7MB) linear in fanout and sf
fixed scaling factor (sf) sf=100 d=2,3,4,5 f=2,4,8 58500 tuples (7MB) exponential in depth

Table 1: Parameter values which were evaluated using synthetic data

we started by testing the effectiveness of ASRs for path-
expression evaluation. Surprisingly, we found that ASRs
improve performance only on documents with small fanout.
For example, on a synthetic document with a fanout of 4,
a query containing a path expression of length 3 ran two
times slower when an ASR was used. If the path length
is increased to 4, the conventional method (4 data relation
joins) has the same performance as the ASR method, which
does only two joins. If the path expressions are even longer,
then ASRs do help.

We believe that our ASR implementation failed to im-
prove path-expression performance for the following reasons.
First, the DBMS which we used does not expose internal row
identifiers that could serve as physical addresses. With no
physical row ids, we had to rely on generated tuple ids to
link ASRs and data relations and resort to index joins in-
stead of physical references. Second, with larger fanouts, the
ASR relation quickly becomes very large, since it contains
a tuple for each full path in the XML tree. As a result, it
is often more efficient to perform a multi-way join on the
original data relations than to join the path’s start and end
relations with the ASR. Third, in many cases it appears that
the DBMS optimizer made poor choices, which exacerbated
the first two issues.

7.3 Performance of Delete Methods
Our next experiment compares four methods of perform-

ing deletes: per-tuple trigger, per-statement trigger, cascad-
ing delete, and ASR-based delete. In general, the trigger-
based delete methods performed best. As we expected,
the cascading delete method performed much like the per-
statement trigger-based delete; the former simulates the lat-
ter, but does it at the application level rather than inside the
DBMS. Since the difference in performance of these meth-
ods was almost negligible, less than 5%, we omit cascading
delete from our graphs.

Figures 6 and 7 compare the performance of the delete
methods on a bulk and random workloads. We show data
for the case where fanout was fixed at one and depth set
to eight. Note that running time on the bulk workload is
frequently less than that for the random workload, because
only one SQL statement is issued for a bulk delete, while 10
SQL statements are necessary for the random workload, one
per deleted subtree.

On the bulk workload, per-statement triggers perform no-
ticeably better than per-tuple triggers. Since the entire con-
tents of relations are deleted, executing deletes on a per-
statement (or equivalently per-relation) basis is more effi-
cient than doing that on a per-tuple basis.

On the random workload however, per-tuple triggers per-
form much better than per-statement triggers. More im-
portantly, with per-tuple triggers, performance does not de-
grade as the data set increases — the per-tuple line is virtu-
ally flat, which is appropriate since we are not varying the
amount of deleted content. Per-statement triggers, on the
other hand, slow significantly as the document size (scaling
factor) is increased.

A quick review of the trigger mechanism (Section 6) yields
an explanation for this phenomenon. When a tuple from a
parent relation is deleted, a per-tuple trigger uses the id of
the deleted tuple to look up newly orphaned tuples in child
relations. The number of such lookups equals the number of
deleted tuples. The size of the document does not directly
impact per-tuple triggers. A per-statement trigger, on the
other hand, gets invoked when all relevant tuples from a
parent relation have been deleted. The trigger then deletes
all orphan tuples from child relations, i.e., those tuples for
which a parent tuple cannot be found. Since this delete
operation involves a scan of entire child relations (or their
indexes on the id attribute), the time required increases
with the overall size of the data.

Figures 8 and 9 show the running times of the delete meth-
ods on documents with scaling factor fixed at 100 and fanout
equal to four. Since linear growth in the independent vari-
able, depth, results in exponentially larger documents, we
use a logarithmic y axis. On the bulk workload, the trigger-
based methods clearly outperform the ASR-based approach.
As before, the per-tuple trigger method performs best on the
random workload. Per-statement trigger delete is slow be-
cause it involves a full index scan for each relation involved.

The results on randomized synthetic data are similar to
those shown above, and are omitted. The per-tuple trigger-
based delete was again a clear winner on random workloads,
and it performed slightly below per-statement trigger delete
on bulk workloads.

DBLP results are shown in Table 7.2. For our experi-
ments, we used a query that deletes publications that ap-
peared in the year 2000. Once again, the per-tuple trigger
delete method performed better than the other methods.
The per-statement trigger and cascading delete methods did
not perform well because DBLP data is very “bushy” and
only a small portion of the document was deleted; as dis-
cussed above, these methods do not perform well on random
workloads.

7.4 Inserts
To measure insert performance, we sought to simulate a

query that copies complex XML elements from within a sin-
gle document.2 To this effect, we used a simple query that
replicates ten (random workload) or all (bulk workload) sub-
trees of the root element. The results of our experiments are
shown in Figures 10 and 11.

Clearly, the table method outperforms the other methods
for bulk inserts. With random inserts, if the amount of of
copied data is small, the tuple method is preferable since it
does not have the overhead of the other methods. If many
tuples need to be copied, i.e. the source elements are deeper,
the tuple method does not perform as well and the table
method performs better. This can be explained by the large
number of SQL operations (one per source tuple), that the
tuple method has to execute.

2Copying data into a different document with the same DTD
is similar.



operation / method: per-tuple trigger per-stm trigger cascade ASR table tuple
delete running time 1.6 4.6 4.8 2.2 - -
insert running time - - - 4.2 1.7 15.4

Table 2: Experimental results on DBLP data.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

tim
e,

 s
ec

scaling factor

asr
per-stm trigger

per-tuple trigger

Figure 6: Delete performance on bulk workload, fixed
fanout=1, depth=8.
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Figure 7: Delete performance on random workload,
fixed fanout=1, depth=8.
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Figure 8: Delete performance on bulk workload, fixed
scaling factor=100, fanout=4.
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Figure 9: Delete performance on random workload,
fixed scaling factor=100, fanout=4.
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Figure 10: Insert performance, bulk workload, fixed
scaling factor=100, fanout=4.
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Figure 11: Insert performance, random workload,
fixed scaling factor=100, fanout=4.



7.5 Other Update Operations
As explained in Section 6.3, our other update operations

can be generally implemented using sequences of inserts,
deletes, and queries. Thus we do not separately show the
performance of different strategies for these operations; their
best implementations make use of the fastest delete method
(a per-tuple trigger-based delete) and the fastest insert method
(a table-based insert).

8. CONCLUSIONS AND FUTURE WORK
Though the XML data management community has re-

cently been focused on issues related to querying XML, it is
clear that the problem of expressing updates over XML data
will become prominent in the near future. An XML update
language provides a general-purpose way to express changes
to any data that can be represented as XML — whether
the data is actually stored within an XML repository or a
relational database with an XML view. We have proposed
a set of primitive XML update operations that can be com-
posed to express modifications at multiple levels within an
XML document — reflecting the hierarchical structure of
XML and its query languages — and have incorporated our
operations as a set of language extensions to XQuery.

Furthermore, we have taken our language extensions and
implemented them in the most widely researched means of
storing data presented as XML — the relational database.
We have compared numerous approaches for implementing
the core operations (insert and delete), and have determined
which work best. For the most part, per-tuple trigger-based
deletes dominated other methods and that table-based in-
sert method was the fastest.

While we feel we have made a fairly comprehensive study
of XML updates, there are several potential areas for future
work. The topic of typechecking updates is an important
one, and we plan to investigate whether it is possible to
directly use the techniques developed for queries. For our
update language and its implementation, we would like to
be able to efficiently provide a deterministic result if a par-
ticular XML update target is reachable more than once in a
path expression (e.g., it is the target of more than one ref-
erence). In terms of our XML repository implementation,
we would like to extend our relational techniques to sup-
port the preservation of order within the XML document.
In a query-only repository, this is traditionally done by stor-
ing each element along with its child index or position; the
results can then be sorted into their original order. Since
updates can insert new content between existing data, we
encounter a problem of “pushing” the position of the old
data forward to accommodate the insertion.

Our final assessment is that updates to an XML document
can be expressed in a concise and natural way, even with
support for ordering. We have shown that our set of basic
constructs can be efficiently implemented over a relational
database, with a number of challenges not encountered by
a query-only XML storage manager.
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