Bidirectional LTAG Dependency Parsing

Libin Shen Aravind K. Joshi
BBN Technologies University of Pennsylvania

We propose a novel algorithm for bi-directional parsing with linear computational complexity,
and apply this algorithm to LTAG dependency parsing, revealing deep relations which are
unavailable in other approaches and difficult to learn. We have evaluated the parser on the
LTAG-spinal Treebank. Experimental results show a significant improvement over the incremen-
tal parser described in (Shen and Joshi 2005b). This learning algorithm can be generalized as
graph-based incremental construction for other structure prediction problems in NLP.

Lexicalized Tree Adjoining Grammar (LTAG) is a grammar which has attractive properties both
from the points of view of linguistic description and Natural Language Processing (NLP). A
recent review of TAG is given in (Joshi and Schabes 1997), which provides a detailed description
of TAG with respect to linguistic, formal, and computational properties.

LTAG has appropriate generative capacities both weak and strong, the latter being more
important linguistically. Processing over deep structures in the LTAG representation correlates
well with natural language studies.

In LTAG, each word is associated with a set of elementary trees. Each elementary tree
represents a possible tree structure for the word. There are two kinds of elementary trees, initial
trees and auxiliary trees. Elementary trees can be combined through two operations, substitution
and adjunction. Substitution is used to attach an initial tree, and adjunction is used to attach an
auxiliary tree.

In this article, we are interested in the so called LTAG dependency parsing. By LTAG
dependency, we mean the dependency relation of the words encoded in an LTAG derivation
tree. Compared to the dependency relations defined over Context-Free Grammars (Magerman
1995), LTAG dependency reveals deeper relations which are more useful for NLP applications,
thanks to the extended domain of locality in LTAG. It should be noted that LTAG dependencies
could be non-projective dependencies due to wrapping adjunction.

For the purpose of building an efficient LTAG dependency parser, we will propose a novel
parsing strategy as well as a new learning algorithm which searches for the LTAG dependency
tree in a bidirectional style. We will first describe the idea of our approach in Section 1. In
Section 2, we will use a detailed example to illustrate our algorithm. The formal definition of
the algorithms will be given given in Section 3. In Section 4, we will illustrate the details of the
bidirectional LTAG dependency parsing. In Section 5, we will compare the novel algorithm to
other related works, and in Section 6, we will report the experiments of dependency parsing on
the LTAG-spinal Treebank.

© 2005 Association for Computational Linguistics

Computational Linguistics Volume xx, Number xx

1. Idea
1.1 Parsing Algorithms for Tree Adjoining Grammar

Vijay-Shanker and Joshi (1985) introduced the first TAG parser in a CYK-like algorithm.
Because of the adjoining operation, the time complexity of LTAG parsing is as large as O(n®),
compared with O(n3) of CFG parsing, where n is the length of the sentence to be parsed.

Schabes and Joshi (1988) introduced an Earley style TAG parser that utilized top-down
prediction to speed up parsing. Lavelli and Satta (1991) designed a bidirectional CYK-like parser
for LTAG, which used head-driven lexical information for prediction. van Noord (1994) proposed
a similar bidirectional algorithm, the head-corner parser, which handles both substitution and
adjunction.

However, the high time complexity prevents CYK-like LTAG parsing from real-time appli-
cations (Sarkar 2000).

Furthermore, the treatment of coordination structure was not incorporated in the original
definition of LTAG. Sarkar and Joshi (1996) proposed a method of generating coordination
structures dynamically in parsing. This further increases the complexity of LTAG parsing.

Variants of TAG have been proposed to decrease the computational complexity. A popular
simplification of TAG is the Tree Insertion Grammar (TIG) (Schabes and Waters 1995; Chiang
2000). Since TIG does not allow wrapping adjunction, its time complexity of parsing is just
0(n?). However, TIG has a much weaker generative power than TAG both in the strong and the
weak senses.

In (Shen and Joshi 2005a), we worked on LTAG-spinal, an interesting subset of LTAG, which
preserves almost all of the strong generative power of LTAG, and it is both weakly and strongly
more powerful than CFG. The LTAG-spinal formalism also makes it easy to incorporate the
coordination operation in parsing. In that paper, we presented a effective and efficient statistical
incremental parsing for LTAG-spinal. Since left-to-right beam search is used, its computational
complexity is proportional to the length of a sentence, or O(n).

We notice that the strong ambiguity of the LTAG operations makes it hard to maintain
different parses with a beam search from left to right. With a beam width of 10, we usually end
up with similar parses. Therefore, it is impossible to maintain in the beam the partial structures
which is undesirable with respect to a local context, but preferable according to long distance
relations.

This problem can be alleviated via introducing bidirectional search strategy in linear parsing.
We can effectively utilize all the strong indicator across the whole sentence to build partial
structures, so as to make the use of long distance relations possible.

A similar search strategy is employed in the chunking-attachment framework (Abney 1991;
Joshi and Hopely 1997) of parsing. A chunker first recognizes chunks in an input sentence, and
an attacher builds a parse tree with chunks. In this way, chunks can be viewed as the segments
that we are the most confident of in an input sentence. Chunks serve as the shared structure in
this two-step parser.

Here, we are going to employ bidirectional search strategy in linear parsing for LTAG, in the
context of statistical parsing. Furthermore, we are especially interested in dependency relation
encoded in LTAG derivation trees, which reveals deeper and non-projective relations which are
lack in previous works (Yamada and Matsumoto 2003; McDonald, Crammer, and Pereira 2005)
on English dependency parsing on the Penn Treebank (Marcus, Santorini, and Marcinkiewicz
1994). As the future work, we can expand an LTAG dependency tree to an LTAG derivation tree,
and further incorporate semantic parsing (Zettlemoyer and Collins 2005) into this LTAG based
platform.

Shen and Joshi Bidirectional LTAG Dependency Parsing

1.2 Parsing as Search

Parsing can be modeled as a search problem. Klein and Manning (2003) proposed an A* search
algorithm for PCFG parsing. The score of a partial parse is the sum of two part, a and b, where
a is the estimated score for the outside parse and b is the actual score for the inside parse. The
outside estimate is required to be admissible for A* search, which means it should be higher than
the actual score. Two methods were proposed to estimate the outside score, One is based on the
input information in a local context, e.g. POS tags of nearby words. The other is to utilize the
score (log-likelihood) given by a simplified grammar.

In fact, incremental parsing can also be viewed as a search problem, in which path selection
is to some extent fixed. The Perceptron like algorithm proposed in (Collins and Roark 2004)
is a learning algorithm specially designed for the problems of this class. They also improved
this learning algorithm by introducing early update, which makes the search in training stop
when the gold standard parse is not in the beam. This algorithm has been successfully applied to
incremental parsing for CFG.

Daumé 111 and Marcu (2005) generalized this Perceptron like learning algorithm to general
search problems. In their framework, the score of a path is also composed of two parts, g and
h. Here g is the score of the path component, computed as a linear function of features as
in Perceptron learning, and h is the estimate of the heuristic component, which is similar to
A* search 1. What makes it different from Perceptron with early update is that a set of gold-
standard compatible paths are introduced into the queue of candidate paths when there is no
gold-standard compatible path in the queue, instead of making the search stop. This algorithm
has been successfully employed in applications like chunking and POS tagging, but it has not
been used in parsing yet.

Here, we are going to explore the greedy search mechanism and the Perceptron learning
algorithm for the bidirectional parsing strategy in the context of LTAG parsing.

In our recent work (Shen, Satta, and Joshi 2007), we applied a bidirectional Perceptron
learning algorithm to POS tagging, and achieved an accuracy of 97.33% on the standard PTB
test set. The previous best result in literature on this data set is 97.24% (Toutanova et al. 2003).
We used fewer features than what were used in (Toutanova et al. 2003) to achieve our result?.
Here, we are going to extend the this bidirectional Perceptron learning algorithm from sequence
labeling to LTAG dependency parsing.

1.3 Our approach

In the algorithms previously used in left-to-right search, Hypotheses are always for the prefixes
of a sentences. Therefore, most of the competing hypotheses are always incompatible with
each other, and there is no good way to employ shared structures over hypotheses over partial
structures like in CYK parsing.

If we use bidirectional search to build hypotheses on non-overlapping segments over a
sentence, we can easily employ shared structures. Intuitively, we can take advantage of nearby
hypotheses for the estimation of the outside score, so that the overall score for each hypothesis
will be more accurate.

1 his not required to be admissible here.

2 In (Toutanova et al. 2003), one of the features was defined on the output of a simple named entity recognizer, and it
helped to obtain significant improvement on the accuracy. Since it is difficult to duplicate exactly the same feature
for comparison, we did not use this feature, although it is easy to for us to use complicated features like this in our
learning algorithm.

Computational Linguistics Volume xx, Number xx

In this way, we can find the global hypothesis more efficiently. This method will be espe-
cially useful for greedy search. However, this approach results in the difficulty of maintaining a
hypothesis with its context hypotheses, for which we will provide a solution later in this article
(Section 3). On the other hand, we still want to make the computational complexity linear to the
length of a sentence.

As far as LTAG dependency parsing is concerned, we need to design some data structures to
represent the partial result of an LTAG dependency tree, so that we can build partial dependency
trees step by step. As we have noted, LTAG dependency could be a non-projective relation. So
we will use the mechanism of visibility which we will explain in detail in Section 4.

In this article, we will use LTAG-spinal, a variant of traditional LTAG proposed in (Shen
and Joshi 2005a) for the purpose of statistical processing. In LTAG-spinal, substitution and non-
predicate adjunction are merged as attachment, so as to encode the ambiguity of argument-
adjunct distinction, while adjunction is reserved for adjunctions of raising verbs, i.e. seem, and
passive Exceptional Case Marking (ECM) verbs, i.e. expected, which may result in wrapping
structures. Therefore, LTAG-spinal allows non-projective dependencies to reveal deep relations,
which makes it different from other simplifications of LTAG, like Tree Insertion Grammar.

We will employ the LTAG-spinal Treebank reported in (Shen and Joshi 2005a) for training
and evaluation. The LTAG-spinal Treebank was extracted from the Penn Treebank reconciled
with Propbank annotations (Palmer, Gildea, and Kingsbury 2005). We simply use the dependency
relations defined on the LTAG-spinal derivation trees. It should be noted that, in the LTAG-
spinal Treebank, predicate coordination are explicitly represented. We will introduce a special
adjunction operation called conjunction to build predicate coordination incrementally.

For detailed description the LTAG-spinal formalism and the LTAG-spinal Treebank, see
(Shen and Joshi 2005a). In order to provide a quick reference, we attach an Appendix of LTAG
and LTAG-spinal to the end of the article.

2. An Example

In this section, we show the data structures and the bidirectional dependency parsing algorithm
with an example, and leave the formalization to the next section.

Initialization

Suppose the input sentence is as follows.

Example 1
graduate students were not expected to take ten courses previously

Each word is associated a set of hypothesis POS tags in the input, as shown in Figure 1.
For initialization, each word comprises a fragment, a continuous part of a sentence. A POS
tag with the lexical item is called a node in dependency parsing. A node is a unit structure of
analysis for further operations. For initialization, each node comprises a fragment hypothesis,
which represents a possible analysis for a fragment. Due to the limitation of space, we ignore the
lexical item in a node in Figure 1.

Step 1

We can combine the hypotheses for two nearby fragments with various operations like attachment
and adjunction. For example, we can attach JJ(graduate) to NNS(students), which is compatible
with the gold standard, or adjoin VB(take) to CD(ten), which is incompatible with the gold

Shen and Joshi Bidirectional LTAG Dependency Parsing

1 NNS VBD RB VBD IN NN CD NNS RB
»

VB VBN VB . / VBZ
~

hypotheses fragments

,// \\\\

Figurel
Initialization
attach
3 f(R)
Figure2

To attach JJ(graduate) to NNS(students)

standard. We can represent an operation Riypemain With a 4-tuple

Reypemain(fi, fr,ni,ne), 1)

where type € {ad junction,attachment,conjunction}, is the type of the operation. main = left or
right, representing whether the left or the right tree is the main tree. f; and f; stand for the left
and right fragment hypotheses involved in the operation. n; and n, stand for the left and right
nodes involved in the operation.

Suppose we have an operation R on fragment hypotheses R.f; and R.f,3, we generate a
new hypotheses f(R) for the new fragment which contains the fragments of both R.f, and R. f;.
For example, Figure 2 shows the result of attaching JJ(graduate) to NNS(students). The new
fragment hypothesis f(R) is for the new fragment graduate students.

We use a priority queue Q to store all the candidate operations that could be applied to the
current partial results. Operations in Q are ordered with the score of an operation, s(R). We have

S(R) = w- O(R))

score(f(R)) = s(R) + score(R.f;) +score(R.f;), 3

where s(R) is the score of the operation R, which is calculated as the dot product of a weight
vector w and ®(R), the feature vector of R. s(R) is used to order the operations in Q.

The feature vector ®(R) is defined on R.f; and R. f;, as well as the context hypotheses. If
®(R) only contains information in R.f; and R. f, we call this level-0 feature dependency “.

3 R.fj and R f; represent f| and f; of R respectively.

4 The dependency in feature dependency is different from the dependency in dependency parsing. For example, as
shown in Figure 3, the feature dependency is between the hypotheses, while the dependency of interest is between
the words with POS tags

Computational Linguistics Volume xx, Number xx

level-1 feature dependency

\
\

af‘c/h'\mslvso RB VBD IN NN CD NNS RB
NUSEEN €Y
VB_ ttach — VBD VBN VB VBZ
@ NNs
~ A
\\\c\heiins

Figure3
Step 1 : to combine graduate and students

However, we may want to use the information in nearby fragment hypotheses in some cases.
For example, for the operation of attaching JJ(graduate) to NN(student), we can check whether
the root node of the hypothesis for the fragment containing were is a verb. We can define a
feature for this, and this feature will be a strong indicator of the attachment operation. If features
contain information of nearby fragment hypotheses, we call this level-1 feature dependency.
By introducing level-1 feature dependencies, we actually calculate the score of a hypothesis by
exploiting the information of outside hypotheses, as we have proposed earlier. Throughout this
example, we will use level-1 feature dependency.

Suppose the operation of attaching JJ(graduate) to NNS(students) has the highest score,
which is conditioned on the context that the POS tag for were is VBD. were is a nearby fragment.
Therefore we need a data structure to maintain this relation. As shown in Figure 3, we introduce
a chain which consists of two fragments, graduate students and were. In general, we use a
chain to represent a set of fragments, such that hypotheses of each fragment always have feature
dependency relations with some other hypotheses of some fragments within the same chain.
Furthermore, each fragment can only belong to one chain. By default, each stand-alone fragment
also comprises a chain, as shown in Figure 3.

Intuitively, if we select one fragment hypothesis of a segment, we must select a chain of
other hypotheses by recursively using the feature dependency relation. The chain structure is
used to store the fragments where the related hypotheses come from. A set of related fragment
hypotheses is called a chain hypothesis. For a given chain, each fragment contributes a fragment
to build a chain hypothesis. Here, each two fragment hypotheses of nearby fragments have feature
dependency relation.

Suppose we use beam search and set beam width to two for each chain, which means that we
keep the top two chain hypotheses for each chain. Figure 3 shows two chain hypotheses for the
chain of graduate students - were. For the chain graduate student - were, each chain hypothesis
consists of two fragment hypotheses respectively.

The score of a chain hypothesis is the sum of the scores of the fragment hypotheses in this
chain hypothesis. For chain hypothesis ¢, we have

score(c) = score(f) 4)
fragment hypothesis f of ¢

Shen and Joshi Bidirectional LTAG Dependency Parsing

atacn MNS__ g g VBD IN VB atach o R
@ ng ®
Y — VBD VBN NN — attzi:szi RB
attach
@ NNS co @
o) (poion)

Figure4
Step 2 : to combine ten and courses

It is easy to see that

e hypotheses for the same chain are mutually exclusive, and

e hypotheses for different chains are compatible with each other

By saying that two partial hypotheses are compatible, we mean that there exists a global
hypothesis which contains these two hypotheses.

For ease of the description later in this section, we assign unique IDs, 1 and 2, to the two
fragment hypotheses for graduate students, as shown in Figure 3.

After building the new chain and its hypotheses, we update the queue of candidate operations

Q.

Step 2

Suppose the next operation with the highest score is to attach CD(ten) to NNS(courses) under
the context of VB(take) and RB(previously), generating hypothesis 3, as shown in Figure 4. So
we generate a new fragment, ten courses, and build a new chain containing take - ten courses -
previously. Now, both NP chunks have been recognized.

Step 3

Suppose the next operation with the highest score is to attach to to take under the context of
VBN(expected) and hypothesis 3, generating hypothesis 5, as shown in Figure 5. The chain take
- ten courses - previously grows leftwards. We still keep top two chain hypotheses. The second
best operation on the two fragments is to attach to to take under the context of VBD(expected)
and hypothesis 3, generating hypothesis 6.

Step 4

Suppose the next operation is to adjoin VBN(expected) to VB(take) in hypothesis 5, generating
hypothesis 7, as shown in Figure 6.

Computational Linguistics Volume xx, Number xx

NNS VB NNS
ai% TTVED RB VBN atlach” —atah- R
X @ n ® o ©@
Vv VBD VBD— tt}/h}B tt}/h/NNsi RB
attach — attaci — attacl
(2 NNS N © o ®
(om0 (ko) (i mrss) (priosy)
Figure5
Step 3 : to combine to and take
NNS djoi VB NNS
ai@ — VBD RB—aW —atach -~ —— RB
X @ ven m @ o @

VBN attach

VB NNS
VB\att\ach —VBD RB— attach~ — attach -~ RB

@ NNs IN (8 CD ®
ed to_take) (_ten courses) (previously)
Figure6
Step 4 : to combine expected and to take
attach
attach NNS adjoin VB~ N ns
tach =" —vep RB— @ attach~—— R8
X @ VBN N cD
VBN attach attach
Y% VBD RB tt}/rMVB/ttj/h\/NNs RB
B\att\ach — — attacl attacl
(2 NNs IN 10 cD
ed to_toke ten courses)(previously)

Figure?7
Step 5 : to combine expected to take and ten courses

Step 5

Suppose the next operation with the highest score is to attach NNS(courses) in hypothesis 3 to
VB(take) in hypothesis 7, generating hypothesis 9, as shown in Figure 7.

Shen and Joshi Bidirectional LTAG Dependency Parsing

attach
attach NNS adjoin VB~ N Nns
tach =" —vep RB— @ attacy~ RB
X @ VEN IN @ op
attacl
attach attach
v VED RB adjoin tt}/h/VB /;/h\/NNS RB
B\att\ach — — ,ﬁg attac
© cp
m %ed to take ten courses previously)
Figure8
Step 6 : to combine expected to take ten courses and previously
attach attach
- /\
NNS adjoin NNS
attach attach
/ m ﬁﬂ; attac RB
EW/
[graduate students were not expected to take ten courses previously)
Figure9
Final output
Step 6

Suppose the next operation with the highest score is to attach previously(RB) to VBN(expected)
in hypothesis 9, generating hypothesis 11. Here, the node VBN(expected) is visible to
ADV(previously).

It should be noted that, this operation results in a non-projective relation, because take is
between expected and previously. We will explain how wrapping structures like this are generated
in detail in Section 4.1, in which the spinal adjunction property of the LTAG-spinal Treebank will
be utilized.

Final Output

We repeat combining hypotheses until there is only one fragment which ranges over the whole
input sentence. Then we output the parse with the highest score, as shown in Figure 9.

3. Data Structures and Algorithms

Now we define the algorithm formally. Instead of giving an algorithm specially designed for
parsing, we generalize the problem for graphs. A sentence can be viewed as a linear graph
composed of a sequence of vertices such that adjacent vertices in the sequence are adjacent

Computational Linguistics Volume xx, Number xx

in the graph. We define the data structures in Section 3.1. In Sections 3.2 and 3.3, we present
Perceptron like search and training algorithms respectively.

3.1 Data Structures

We are given a connected graph G(V,E) whose hidden structure is U, where vertices V = {v;},
edges E CV xV is a symmetric relation, and U = {uy} is composed of a set of elements that
vary with applications. As far as dependency parsing is concerned, the input graph is simply a
linear graph, where E(vi_1,V;). As to the hidden structure, ux = (Vs,,Ve,,bk), Where vertex ve,
depends on vertex v with label by.

A graph-based incremental construction algorithm looks for the hidden structure with greedy
search in a bottom-up style.

Let x; and x; be two sets of connected vertices in V, where xjnxj = 0 and they are
directly connected via an edge in E. Let y¥ be a hypothesized hidden structure of x;, and y*I
a hypothesized hidden structure of x;j.

Suppose we choose to combine y*¥ and y*I with an operation R to build a hypothesized
hidden structure for xx = x; Ux;. We say the process of construction is incremental® if the output
of the operation, y* = R(xi,xj,y*,y*)) D y¥ Uy for all the possible x;,x;,y*,y*) and operation
R. As far as dependency parsing is concerned, incrementality means that we cannot remove any
links coming from the substructures.

Once y* is built, we can no longer use y¥ or y*I as a building block in the framework of
greedy search. It is easy to see that left to right incremental construction is a special case of
our approach. So the question is how to decide the order of construction as well as the type of
operation R. For example, in the very first step of dependency parsing, we need to decide which
two words are to be combined as well as the dependency label to be used.

This problem is solved statistically, based on the features defined on the substructures
involved in the operation and their context. Given the weights of these features, we will show in
the next section how these weights guide us to build a set of hypothesized hidden structures with
beam search. In Section 3.3, we will present a Perceptron like algorithm to obtain the weights.

Now we formally define the data structure to be used in our algorithms. Most of them were
previously introduced in an informal way.

A fragment is a connected sub-graph of G(V,E). Each fragment x is associated with a set
of hypothesized hidden structures, or fragment hypotheses for short: Y* = {y],...,yi}. Each y*
is a possible fragment hypothesis of x.

It is easy to see that an operation to combine two fragments may depend on the fragment
hypotheses in the context, i.e. hypotheses for fragments directly connected to one of the operands.
So we introduce the dependency relation over fragments®. Suppose there is a symmetric depen-
dency relation D C F x F, where F C 2V is the set of all fragments in graph G. D(xj,Xj) means
that any operation on a fragment hypothesis of x; / xj depends on the features in the fragment
hypothesis of x; / x;. So relation D is symmetric.

We are especially interested in the following two dependency relations.

. level-0 dependency: Do(x;,Xj) if and only if i = j.

e level-1dependency: D1(xj,x;) if and only if x; and x; are directly connected in G.

5 Incremental parsing is only a special case of the incremental construction defined here. In general, one can search
the graph in any order, including from left to right in a linear graph as in incremental parsing.
6 Dependency relation over fragments is different from the dependency in dependency parsing

10

Shen and Joshi Bidirectional LTAG Dependency Parsing

So, in the incremental construction, we need to introduce a data structure to maintain the
hypotheses with dependency relations among them.

A set of fragments, ¢ = {X1,X2, ...,Xn}, is called a chain of fragments depending on x;, i = 1..n,
or chain for x; for short, for a given symmetric dependency relation D, if

e For any two fragments x; and X; in ¢, xi N xj = 0.

° For any two fragments x; and X; in ¢, there exists Xk o, -.-, Xk, m, such that
Xk,0 = Xi; Xk m = Xj and D(Xk,j_l,ijj).

For a given chain ¢ = {X1,X2,....,Xn}, We use h® = {y*,...,y*"} to represent a set of fragment
hypotheses for the fragments in ¢, where y* is a fragment hypothesis for x; in c. h® is called a
chain hypothesis for chain c. We use H® = {h§, ...,h{ } to represent a set of chain hypotheses for
chain c.

Now we can divide a given graph G(V,E) with chains. A cut T of a given G, T =
{c1,C2,...,Cm}, is a set of chains satisfy

e exclusiveness: JcinUcj = 0,Vi, j, and
e completeness: J(UT) =V.

Furthermore, we use HT = {HC|c € T} to represent of sets of chain hypotheses for all the
chains in cut T. During the greedy search, we always maintain one cut over the whole graph. At
the beginning, we have n chains, where n is the number of vertices. We merge chains step by
step, and obtain a single chain for the whole graph.

As noted in the previous section, the idea behind the chain structure is that

e hypotheses for the same chain are mutually exclusive, and

e hypotheses for different chains are compatible with each other

In this way, we can generate hypotheses for different chains in parallel from different starting
points in a graph. Two chains merge into one after an operation on both of them.

3.2 Search Algorithm

Algorithm 1 describes the procedure of building hypotheses incrementally on a given graph
G(V,E). Parameter k is used to set the beam width of search. Weight vector w is used to compute
the score of an operation.

We first initiate the cut T by treating each vertex in V as a fragment and a chain. Then we
set the initial hypotheses for each vertex/fragment/chain. For example, in dependency parsing,
the initial value is a set of possible POS tags for each single word. Then we use a priority queue
Q to collect all the possible operations over the initial cut T and hypotheses HT.

Whenever Q is not empty, we search for the chain hypothesis with highest score on operation
according to a given weight vector w. Suppose we find a new (fragment, hypothesis) pair (X,y)
which is generated by the operation with the highest score. We first update the cut and the
hypotheses according to (x,y). Let c* be the chain for x. We remove from the cut T all the chains
that overlap with ¢, and add c* to T. Furthermore, we remove the chain hypotheses for those
removed chains, and add the top k chain hypotheses for ¢* to HT. Then, we update the candidate
queue Q by removing operations depending on the chain hypotheses that has been removed from
HT, and adding new operations depending on the chain hypotheses of c*.

11

Computational Linguistics Volume xx, Number xx

Algorithm 1 Incremental Construction
Require: graph G(V,E);
Require: beam width k;
Require: weight vector w;

1: cut T « initCut(V);
hypotheses HT <« initHypo(T);
candidate queue Q « initQueue(HT);
repeat

(X',¥') = argmax(x)cqscore(y);

T < updCut(T,x,y");

HT « updHypo(HT,X,y’,k);

Q + updQueue(Q,x,y’,HT);
until (Q = 0)

© oD ®N

Now we explain the functions in Algorithm 1 one by one.

e initCut(V) initiates a cut T with verticesV by setting T = {c;}, where ¢i = {xi},
and x; = {v;} for each v; € V. This means that we take each vertex as a fragment,
and each fragment constitutes a chain.

e initHypo(T) initiates hypothesis I—!T with the cut T described above. Here we set
the initial fragment hypotheses, Y* = {yY',...,ym}, where x; = {v;} contains only
one vertex, and m < beam width k.

e initQueue(HT) initiates the queue of candidate operations over the current cut T
and HT. Supposed there exist v; and vj which are directly connected in G. Let

C ={c¥,c¥}UN(D,x) UN(D,x;),

where N(D, xi) = {c*|D(xi,X),c* € T} is the set of chains one of whose fragments
depends on x;. For example, in Figure 1, let v1 = graduate, v, = students and vz =
were. We have

N(D,xz) = {CX17CX3} = {{Xl}a{x3}}7

since we have D(x1,x2) and D(x2,X3) in the initial cut T. Similarly, we have
N(D,x1) = {{x2}}. Therefore, if we consider the candidate operations that will
merger {x1} and {x2}, we have

C={c%, % u{c®u{c?,c®} = {{xa}, {xe}, {xs}}

Then, we apply all possible operations to all compatible fragment hypotheses of x;
and x; with respect to all possible chain hypotheses combinations for C, and put
them in Q. In the example described above, we need to enumerate all the possible
segment hypotheses combinations for x1,X2,x3 with all possible operations over x1
and Xo.

12

Shen and Joshi Bidirectional LTAG Dependency Parsing

Suppose we generate (Xp,y*P) with some operation, where X is equivalent to
Xi UXj, we have

P =JCU{xp}\ {xi,x;}-

In the previous example, we have X1 » = {v1,v2} and

C)(l’2 = {Xl,Xz,Xg} @] {Xl,z} \ {Xl,Xz} = {X1,2,X3} = {{Vl,Vz}, {Vg}}. It should be
noted that X is just a candidate here, and we do not update the cut T with respect
to any candidate at this step.

All the candidate operations are organized with respect to the chain that each
operation generates. For each chain ¢, we maintain the top k candidates according
to the score of the chain hypotheses. Scores of operations, fragments and chains
are calculated with formula (2), (3) and (4) respectively.

® updCut(T,x,y) is used to update cut T with respect to the candidate operation that
generates y* = R(xi,xj,y,y). LetC = {c*,c¥ } UN(D,x;) UN(D,x;) as
described above. We remove all the chains in C from T, and add c*to T.

T+ TU{c}\C
Suppose, we choose to merge graduate and students, now we have

T = {{{vs,vo}, {va}}, {{va}}, {{vs}},-..}-

Then we obtain the cut as shown if Figure 3.

e updHypo(HT,x,y,k) is used to update hypothesis HT. We remove from HT all
the chain hypotheses whose corresponding chain has been removed from T in
updCut(T,x,y). Furthermore, we add the top k chain hypotheses for chain c* to
HT.

e updQueue(Q,x,y,HT) is designed to complete two tasks. First it removes from Q
all the chain hypotheses which depend on one of the chains in C. Then it adds new
candidate chain hypotheses depending on chain hypotheses of ¢* in a way similar
to the initQueue(H) function. In Q, candidate chain hypotheses are organized
with respect to the chains. For each chain ¢, we maintain the top k candidates
according to the score of the chain hypotheses.

3.3 Learning Algorithm

In the previous section, we described a search algorithm for graph-based incremental construc-
tion for a given weight vector w. In Algorithm 2, we present a Perceptron like algorithm to obtain
the weight vector from the training data.

For each given training sample (G,H;), where H; is the gold standard hidden structure
of graph Gy, we first initiate cut T, hypotheses HT and candidate queue Q by calling initCut,
initHypo and initQueue as in Algorithm 1.

Then we use the gold standard H, to guide the search. We select candidate (x’,y’) which has
the highest operation score in Q. If y’ is compatible with H,, we update T, HT and Q by calling
updCut, updHypo and updQueue as in Algorithm 1. Ify’ is incompatible with H;, we treat y’ as
a negative sample, and look for a positive sample ¥ in Q with schPosi(Q,x’).

13

Computational Linguistics Volume xx, Number xx

Algorithm 2 Learning Algorithm
1: W 0;
2: for (roundr =0; r <R; r++) do

3. load graph G, (V,E), hidden structure H;;
4: initiate T,HT and Q;

5 repeat

6 (X',Y') = argmaxy)cqscore(y);
7: if (y is compatible with H;) then

8 update T,HT and Q with (x',y');
9 else

10: ¥ + schPosi(Q,X);

1L promote(w, ¥);

12: demote(w,y');

13: update Q with w;

14: end if

15 until (Q=10)

16: end for

If there exists a hypothesis y% for fragment x’ which is compatible with H;, then schPosi
returns 37"’ . Otherwise schPosi returns the candidate hypothesis which is compatible with H; and
has the highest score of operation in Q.

Then we update the weight vector w with ¥ and y’. At the end, we update the candidate Q by
using the new weights w to compute the score of operation.

We can use various methods to improve the performance of the Perceptron algorithm. In our
implementation, we use Perceptron with margin in the training (Krauth and Mezard 1987). The
margins are proportional to the loss of the hypotheses. Furthermore, we use voted Perceptron
(Freund and Schapire 1999; Collins 2002) for inference.

4. LTAG Dependency Parsing

In this section, we will illustrate the details for the LTAG dependency parser which is not covered
in the example in Section 2. In Section 4.1, we will describe how the hidden structure U in the
algorithms is implemented for LTAG dependency parsing. In Section 4.2, we will illustrate the
features used in our parser.

4.1 Incremental Construction

With the “incremental” construction algorithm described in the previous sections, we build the
LTAG dependency tree incrementally. A hypothesis of a fragment is represented with a sub
dependency tree. When the fragment hypotheses of two nearby fragments combine, the two sub
dependency trees are combined into one.

4.1.1 Adjunction. It seems trivial to combine two partial dependency (derivation) trees with
attachment. We can simply attach the root of tree A to some node on tree B which is visible to
tree A. However, if adjunction is involved, the operation becomes a little bit complicated. An
adjoined subtree may be visible from the other side of the dependency (derivation) tree. This is
usually called wrapping adjunction.

14

Shen and Joshi Bidirectional LTAG Dependency Parsing

adjoin

[stock | [continued _
attach
L amid |
Figure10

Wrapping adjunction with raising verbs

attach

Wrapping adjunction may occur with passive ECM verbs as shown in Figure 9, or raising
verbs as in the following example, shown in Figure 10.

Example 2

The stock of UAL Corp. continued to be pounded amid signs that British Airways ...

Here continued adjoins onto pounded 7, and amid attaches to continued from the other side of
the dependency (derivation) tree (pounded is between continued and amid).

In order to implement wrapping adjunction, we introduce the idea of visibility. We will
use a simple description and figures to define visibility. We define visibility with respect to the
direction of operations. Without loss of generality, we only illustrate visibility from right here.

We define visibility recursively, starting from the root of a partial dependency tree. The root
node is always visible. Assume that a node in a partial dependency tree is visible from right, or
visible for short here. We search for the child nodes which are visible also. Let the parent node
be NT.

. If there is no adjunction from the left side, then the rightmost child, Ng, is visible,
as in Figure 11.

. Otherwise, let N_ adjoin to Nt from the left side 8. Let N_x be the rightmost
descendant in the sub tree rooted on N, and let Nrx be the rightmost descendant
in the sub tree rooted on NRg.

- If N7 is to the right of N_x, then both Ni_ and Ng are visible, as in Figure
12.

- If NLx is to the right of Nt and Ngx is to the right of N_x, then Ngr is
visible, as in Figure 13.

- If NLx is to the right of Nrx, then N is visible, as in Figure 14.

In this way, we obtain all the visible nodes recursively, and all the rest are invisible from
right. If there are multiple adjunction from the left side, we need to compare among those
adjoined nodes in a similar way, although this rarely happens in the real data.

4.1.2 Predicate Coordination. As we have noted, predicate coordination is represented explic-
itly in the LTAG-spinal Treebank. In order to build predicate coordination incrementally, we need
to decompose coordination into a set of conjoin operations. Suppose a coordinated structure

7 In this case, the direction of LTAG dependency is opposite to the direction in traditional dependency analysis. This
treatment makes the LTAG dependency more close to the deep structure. In addition, by expanding an LTAG
dependency tree to a derivation trees, we could conveniently generate the an LTAG derived tree that represents the
phrasal structures.

8 For the sake of ease in description, we assume there is only one adjunction from the left side. However, the reader
can easily extend this to the case of multiple adjunctions.

15

Computational Linguistics Volume xx, Number xx

Figurell
Case 1: no adjunction from left

Figure12
Case 2: both N_ and Ng are visible

Figure 13
Case 3: NRr is visible

attaches to the parent node on the left side. We build this structure incrementally by attaching
the first conjunct to the parent and conjoining other conjuncts to first one. In this way, we do
not need to force the coordination to be built before the attachment. Either operation could be
executed first.

Figure 15 shows the incremental construction of predicate coordination of the following
sentence.

Example 3
I couldn’t resist rearing up on my soggy loafers and saluting.

4.2 Features

In this section, we will describe the features used in LTAG dependency parsing. As to feature
definition, an operation is represented by a 4-tuple

16

Shen and Joshi Bidirectional LTAG Dependency Parsing

Figurel4
Case 4: N_ is visible

attach conjoin

n [couldn’t]| [rearing| [saluting]

attach

Figure15
Partial dependency tree for the example of conjunction

Figure 16
Representation of the nodes

* op = (type,dir, posjeft, POSright)

where type € {attach,ad join,conjoin} and dir is used to represent the direction of the operation.
POos|eft and posyigr: are the POS tags of the two operands.

Features are defined on POS tags and lexical items of the nodes. In order to represent the
features, we use m for the main-node of the operation, s for the sub-node, m, for the parent of the
main-node, my..m; for the children of m, and s;..s;j for the children of s. The index always starts
from the side where the operation takes place. We use the Gorn address to represent the nodes in
the subtrees rooted on m and s.

17

Computational Linguistics

Volume xx, Number xx

Table 1

Features defined on the context of operation

category

description

templates

one operand

Features defined on only one operand. For
each template tp, [type,dir,tp] is used as a
feature.

(m.p), (mw), (m.p,mw), (s.p),
(sw), (s.p,s.w)

two operands

Features defined on both operands. For each
template tp, [op,tp] is used as a feature. In
addition, [op] is also used as a feature.

(m.w), (c.w), (m.w,c.w)

used as input, features are defined on the
POS tags of the context. For each template
tp, [op,tp] is used as a feature.

siblings Features defined on the children of | (my.p), (m.p,Mmp.p),
the main nodes. For each template tp, | (m.p,mp.p,..,m.p)
[op,tpl, [op,mwtp], [op,my.p,tp] and
[op,my.p,m.w,tp] are used as features.

POS context | In the case that gold standard POS tags are | (I>.p), (I1.p), (r1.p), (r2.p),

(I2.p,11-p), (I1.p,r1.p), (r1-p,r2.p)

tree context

In the case that level-1 dependency is em-
ployed, features are defined on the trees in
the context. For each template tp, [op,tp] is
used as a feature.

(hi.p), (hr.p)

X the parent of x. For any x =mq 1 _1 or
S1.1...1, template tp, [tp(x)] is used as a fea-
ture.

half check Suppose sy, ..., are all the children of s | (s.p,s1.p,%2.P, --;S-P),
which are between sand min the flat sen- | (m.p,s.p,s1.p,S2.P; -+, - P)
tence. For each template tp, [tp] is used as | and (SW,S.p,81-P,%2-P; -+, - P),
a feature. (sw,m.p,s.p,s1.p, - P, .-, k- P) if
swis a verb
full check Let X3, X2, .., X be the children of x, and | (X.p,X1.p,X2-P; -, X-P).

(er, X Py X1-Py X2 Py -1 Xk p)
and (x.vv,x.p,xl.p,xz.p,..,xk.p),
(XW, Xy . Py X Py X1- Py X2- P, -5 Xk-P) I

X.Wis a verb

Furthermore, we use lx and ry to represent the nodes in the left and right context of the flat
sentence. We use h; and h; to represent the head of the outside hypothesis trees on the left and
right context respectively.

Let x be a node. We use x.p to represent the POS tag of node x, and x.w to represent the
lexical item of node x.

Table 1 show the features used in LTAG dependency parsing. There are seven classes of
features. The first three classes of features are those defined on only one operand, on both
operands, and on the siblings respectively. If the gold standard POS tags are used as input, we
define features on the POS tags in the context. If level-1 dependency is used, we define features
on the root node of the hypothesis partial dependency trees in the neighborhood.

Half check features and full check features in Table 1 are designed for grammatical checks.
For example, in Figure 16, node s attaches onto node m. Then nothing can attach onto s from
the left side. The children of the left side of s are fixed, so we use the half check features to
check the completeness of the children of the left half for s. Furthermore, we notice that all
the left-edge descendants of s and the right-edge descendants of m become unavailable for any
further operation. So their children are fixed after this operation. All these nodes are in the form
of my1..1 or s1.1..1. We use full check features to check the children from both sides for these
nodes.

18

Shen and Joshi Bidirectional LTAG Dependency Parsing

5. Discussion
5.1 On Weight Update

Let us first have a close look at the function schPosi.

1. This function first tries to find a local correction to the wrong operation.

2. If it fails, which means that, in the gold standard, there is no direct operation over
the two fragments involved, the function returns a correct operation which the
current weight vector is the most confident of.

This learning strategy is designed to modify the current weight vector, or path preference, as
little as possible, so that the context information learned previously will still be useful.

In case 1, only the weights of the features directly related to the mistake are updated, and
unrelated features are kept unchanged.

In case 2, the feature vector of the operation with a higher score is closer to the direction of
the weight vector. Therefore, to use the one with highest score helps to keep the weight vector in
the previous direction.

5.2 On Path Selection

After the weight vector is updated, we re-compute the score of the candidate operations. The
new operation with the highest score could still be over the same two fragments as the last
round. However, it could be over other fragments as well. Intuitively, in this case, it means that
the operation over the previous fragments is hard to decide with the current context, and we’d
better work on other fragments first. This strategy is designed to learning a desirable order of
operations.

Actually, the training algorithm makes the score of all operations comparable, since they
always compete head to head in the queue of candidates. In this way, we can use the score to
select the path.

5.3 Related Works

Yamada and Matsumoto (2003) has proposed a deterministic dependency parser which
builds the parse tree incrementally via rounds of left-to-right scans. At each step, they check
whether an attachment should be built or not. Each local decision is determined by a local
classifier. This framework implements the bidirectional search mechanism via several rounds
of scans.

Compared to their work, our parser has real bidirectional capability. At each step, we always
compare all the possible operations. In addition, in our model, inference is incorporated in the
training.

Variants of the Perceptron learning algorithms (Collins 2002; Collins and Roark 2004;
Daumé 111 and Marcu 2005) have been successfully applied to left-to-right inference. However,
it it not easy to directly use these algorithm for bidirectional learning, because we do not know
the gold-standard direction of search. There are O(n) options at the beginning, where n is the
length of the input sentence. It does not sound good to update the weight vector with all these
gold-standard compatible hypotheses as in (Daumé 111 and Marcu 2005), which conflicts with
spirit with structure learning with Perceptron, what is used for training is what we will meet in

19

Computational Linguistics Volume xx, Number xx

Table2
Results of bidirectional dependency parsing on Section 22 of the LTAG-spinal Treebank, with different
training and test beam widths. level-1 dependency.
[test width [1] 2] 5] 10 |

training width =1 88.9 | 87.4 | 85.9 | 855
trainingwidth=2 | 88.1 | 88.8 | 88.4 | 88.3
training width =5 88.1 | 89.1 | 89.0 | 88.9
training width =10 | 88.2 | 89.1 | 89.2 | 89.2

inference. We need to find out which gold-standard compatible hypothesis is more probable to
be select in inference. Our learning algorithm has provided a very desirable solution.

In (Shen, Satta, and Joshi 2007), we reported a Perceptron learning algorithm for bidi-
rectional sequence labeling, and achieved state-of-the-art performance on POS tagging. Our
bidirectional parsing algorithm can be viewed as an extension of the labeling algorithm. However,
we cannot fully utilize shared structure as in (Shen, Satta, and Joshi 2007) due to the difficulty
of presenting non-projective dependency trees with simple states.

Similar to (Collins and Roark 2004) and (Daumé 111 and Marcu 2005), our training algorithm
learns the inference in a subset of all possible contexts. However, our algorithm is more aggres-
sive. In (Collins and Roark 2004), a search stops if there is no hypothesis compatible with the
gold standard in the queue of candidates. In (Daumé 111 and Marcu 2005), the search is resumed
after some gold-standard compatible hypotheses are inserted into a queue for future expansion,
and the weights are updated correspondingly. However, there is no guarantee that the updated
weights assign a higher score to those inserted gold-standard compatible hypotheses.

In our algorithm, the gold-standard compatible hypotheses are used for weight update only.
As a result, after each sentence is processed, the weight vector can usually successfully predict
the gold standard parse. As far as this aspect is concerned, our algorithm is similar to the MIRA
algorithm in (Crammer and Singer 2003).

In MIRA, one always knows the correct hypothesis. However, in our case, we do not know
the correct order of operations. So we have to use our form of weight update to implement
aggressive learning.

In general, the learning model described in Algorithm 2 is more complex than supervised
learning, because we do not know the correct order of operations. On the other hand, our
algorithm is not as difficult as reinforcement learning, due to the fact that we can check the
compatibility with the gold-standard for each candidate hypothesis.

The greedy search strategy used in inference algorithm for LTAG dependency parsing is
similar to the Kruskal’s minimal spanning tree algorithm (Kruskal 1956). However, in our case,
the search space is limited. We do not consider all the possible dependency relations as in
(McDonald et al. 2005). We only search the dependency structures that can be generated by
LTAG derivation trees.

6. Experiments and Analysis

We use the same data set of the LTAG-spinal Treebank as in the left-to-right parser described
in(Shen and Joshi 2005b). The LTAG-spinal Treebank (Shen and Joshi 2005a) was extracted from
the Penn Treebank (PTB) with Propbank annotations. We train our LTAG dependency parser on
section 2-21 of the LTAG-spinal Treebank. Section 22 is used as the development set for feature
hunting. Section 23 is used for test.

20

Shen and Joshi Bidirectional LTAG Dependency Parsing

Table3

Results of bidirectional dependency parsing on Section 23 of the LTAG-spinal Treebank .
| model | accuracy% |
| left-to-right, flex | 893 |

level-0 dependency 90.3
level-1 dependency 90.5

We first study the effect of beam widths used in training and test. Table 2 shows the accuracy
of dependency on the development data set with different beam settings on the level-1 model. The
numbers show that larger beam width gives rise to better performance. However, the difference is
little if we always use the same width for training and test. Even the deterministic model (beam
width = 1) shows rather good performance.

Then we compare the level-0 model and the level-1 model, as shown in Table 3. Beam
width is set to five for both training and test in both experiments. With level-0 dependency, our
system achieves an accuracy of 90.3% at the speed of 4.25 sentences a second on a Xeon 3G Hz
processor with JDK 1.5. With level-1 dependency, the parser achieves 90.5% at 3.59 sentences
a second. Level-1 dependency does not provide much improvement due to the fact that level-0
features provide most of the useful information for this specific application. But this is not always
true in other applications, e.g. POS tagging, in which level-1 features provide much more useful
information.

It is interesting to compare our system with other dependency parsers. The accuracy on
LTAG dependency is comparable to the numbers of the previous best systems on dependency
extracted from PTB with Magerman’s rules, for example, 90.3% in (Yamada and Matsumoto
2003) and 90.9% in (McDonald, Crammer, and Pereira 2005). However, their experiments are
on the PTB, which is different from ours. To learn the LTAG dependency is more difficult for the
following reasons.

Theoretically, the LTAG dependencies reveal deeper relations. Adjunction can lead to non-
projective dependencies, and the dependencies defined on predicate adjunction are linguistically
more motivated, as shown in the example in Figure 10. The explicit representation of predicate
coordination also provides deeper relations. For example, in Figure 15, the LTAG dependency
contains resist — rearing and resist — saluting, while the Magerman’s dependency only con-
tains resist — rearing. The explicit representation of predicate coordination helps to solve for
the dependencies for shared arguments. So the LTAG dependencies reveal deeper relations, and
is more difficult to learn at the syntax level.

For comparison, we also tried using Perceptron with early stop as described in (Collins
and Roark 2004) to train the bi-directional parser. If the top hypothesis is incompatible with the
gold-standard and there is no gold-standard compatible hypothesis for the same fragment in the
beam, we stop training on this sentence. However, this method converges very slowly. After 20
iterations, the accuracy on the test data is 74.24%, and after 50 iterations, the accuracy increases
to 75.96% only. Our learning algorithm takes less than 10 iterations to converge. It is also hard
to apply the algorithm in (Daumé Il and Marcu 2005) to our learning problem. As we have
described before, there are O(n) gold-standard compatible hypotheses at the beginning, where
n is the length of the input sentence. Our aggressive learning algorithm clearly shows desirable
performance for the learning of bi-directional inference.

21

Computational Linguistics Volume xx, Number xx

7. Conclusions and Future Work

In this article, we have first introduced bidirectional incremental parsing, a new architecture
of parsing for LTAG. We have proposed a novel algorithm for graph-based incremental con-
struction, and applied this algorithm to LTAG dependency parsing, revealing deep relations,
which are unavailable in other approaches and difficult to learn. We have evaluated the parser
on the LTAG-spinal Treebank. Experimental results show a significant improvement over the
incremental parser described in (Shen and Joshi 2005b). Graph-based incremental construction
could be applied to other structure prediction problems in NLP.

As to the future work, we will explore in two different directions. We will extend our work
to semantic role labeling and semantic parsing thanks to the extended domain of locality of
LTAG. We are also interested in the methods of incorporating POS tagging and chunking into
this discriminative learning framework. We hope to build an end-to-end system centering on
LTAG derivation trees.

References

Abney, S. 1991. Parsing by chunks. In Principle-Based Parsing. Kluwer Academic Publishers.

Chiang, D. 2000. Statistical Parsing with an Automatically-Extracted Tree Adjoining Grammar. In
Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (ACL).

Collins, M. 2002. Discriminative training methods for hidden markov models: Theory and experiments
with perceptron algorithms. In Proceedings of the 2002 Conference of Empirical Methods in Natural
Language Processing.

Collins, M. and B. Roark. 2004. Incremental parsing with the perceptron algorithm. In Proceedings of the
42nd Annual Meeting of the Association for Computational Linguistics (ACL).

Crammer, K. and Y. Singer. 2003. Ultraconservative online algorithms for multiclass problems. Journal of
Machine Learning Research, 3:951-991.

Daumé 111, H. and D. Marcu. 2005. Learning as search optimization: Approximate large margin methods
for structured prediction. In Proceedings of the 22nd International Conference on Machine Learning.

Frank, R. 2002. Phrase Sructure Composition and Syntactic Dependencies. The MIT Press.

Freund, Y. and R. E. Schapire. 1999. Large margin classification using the perceptron algorithm. Machine
Learning, 37(3):277-296.

Joshi, A. K. 1985. Tree adjoining grammars: How much context sensitivity is required to provide a
reasonable structural description. In I. Karttunen, D. Dowty, and A. Zwicky, editors, Natural Language
Parsing. Cambridge University Press, pages 206—250.

Joshi, A. K. and P. Hopely, 1997. Extended Finite State Models of Language, chapter A parser from
Antiquity. Cambridge University Press.

Joshi, A. K. and Y. Schabes. 1997. Tree-adjoining grammars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3. Springer-Verlag, pages 69 — 124.

Krauth, W. and M. Mezard. 1987. Learning algorithms with optimal stability in neural networks. Journal
of Physics A, 20:745-752.

Kroch, A. and A. K. Joshi. 1985. The linguistic relevance of tree adjoining grammar. Report
MS-CIS-85-16. CIS Department, University of Pennsylvania.

Kruskal, J. 1956. On the shortest spanning subtree and the traveling salesman problem. Proceedings of the
American Mathematical Society, 7:48-50.

Lavelli, A. and G. Satta. 1991. Bidirectional parsing of lexicalized tree adjoining grammars. In EACL
1991.

Magerman, D. 1995. Statistical decision-tree models for parsing. In Proceedings of the 33rd Annual
Meeting of the Association for Computational Linguistics.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz. 1994. Building a large annotated corpus of
English: The Penn Treebank. Computational Linguistics, 19(2):313-330.

McDonald, R., K. Crammer, and F. Pereira. 2005. Online large-margin training of dependency parsers. In
Proceedings of the 43th Annual Meeting of the Association for Computational Linguistics (ACL).

McDonald, R., F. Pereira, K. Ribarov, and J. Hajic. 2005. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of Human Language Technology Conference and Conference
on Empirical Methods in Natural Language Processing.

22

Shen and Joshi Bidirectional LTAG Dependency Parsing

Palmer, M., D. Gildea, and P. Kingshury. 2005. The proposition bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1).

Rambow, O., D. Weir, and K. Vijay-Shanker. 2001. D-tree substitution grammars. Computational
Linguistics, 27(1):89-121.

Sarkar, A. 2000. Practical experiments in parsing using tree adjoining grammars. In Proceedings of the
Fifth Workshop on Tree Adjoining Grammars and Related Formalisms: TAG+5, Paris, France, May.

Sarkar, A. and A. K. Joshi. 1996. Coordination in tree adjoining grammars: Formalization and
implementation. In Proceedings of COLING '96: The 16th Int. Conf. on Computational Linguistics.

Schabes, Y. and R. C. Waters. 1995. A cubic-time, parsable formalism that lexicalizes context-free
grammar without changing the trees produced. Computational Linguistics, 21(4).

Schabes, Yves and Aravind K. Joshi. 1988. An earley-type parsing algorithm for tree adjoining grammars.
In COLING-ACL '98: Proceedings of 36th Annual Meeting of the Association for Computational
Linguistics and 17th Int. Conf. on Computational Linguistics.

Shen, L. and A. K. Joshi. 2005a. Building an LTAG Treebank. Technical Report MS-CIS-05-15, CIS
Dept., Univ. of Pennsylvania. (submitted for publication).

Shen, L. and A. K. Joshi. 2005h. Incremental LTAG Parsing. In Proceedings of Human Language
Technology Conference and Conference on Empirical Methods in Natural Language Processing.

Shen, L., G. Satta, and A. K. Joshi. 2007. Guided Learning for Bidirectional Sequence Classification. In
(submitted for publication).

Toutanova, K., D. Klein, C. Manning, and Y. Singer. 2003. Feature-rich part-of-speech tagging with a
cyclic dependency network. In Proceedings of the 2003 Human Language Technology Conference of the
North American Chapter of the Association for Computational Linguistics.

van Noord, G. 1994. Head corner parsing for TAG. Computational Intelligence, 10(4).

Vijay-Shanker, K. 1987. A study of Tree Adjoining Grammar. Ph.D. thesis, University of Pennsylvania.

Vijay-Shanker, K. and A. K. Joshi. 1985. Some computational properties of tree adjoining grammars. In
ACL 1985.

Yamada, H. and Y. Matsumoto. 2003. Statistical dependency analysis with Support Vector Machines. In
IWPT 2003.

Zettlemoyer, L. and M. Collins. 2005. Learning to map sentences to logical form: Structured classification
with probabilistic categorial grammars.

Appendix
A. Lexicalized Tree Adjoining Grammar

In LTAG, each word is associated with a set of elementary trees. Each elementary tree represents
a possible tree structure for the word °.

There are two kinds of elementary trees, initial trees and auxiliary trees. Elementary trees
can be combined through two operations, substitution and adjunction.

Substitution is used to attach an initial tree, and adjunction is used to attach an auxiliary
tree. In addition to standard adjunction, we also use sister adjunction as defined in the statistical
LTAG parser described in (Rambow, Weir, and Vijay-Shanker 2001; Chiang 2000) 1°.

The tree resulting from the combination of elementary trees is is called a derived tree. The
tree that records the history of how a derived tree is built from the elementary trees is called a
derivation tree 1.

We illustrate the LTAG formalism with an example.

Example 4
Pierre Vinken will join the board as a non-executive director.

9 An elementary tree may have more than one lexical items.
10 Adjunction is used in the case where both the root node and the foot node appear in the parse tree. Sister adjunction
is used in generating modifier sub-trees as sisters to the head, e.g in base NPs.
11 Each node n(n) in the derivation tree is an elementary tree name n along with the location n in the parent
elementary tree where n is inserted. The location n is the Gorn tree address (see Figure 20).

23

Computational Linguistics Volume xx, Number xx

S

NNP NNP MD VP
Pierre Vinken will VP/\PP
/\
VB NP IN NP
join DT NN a‘s DmN
the board 'l\ non-echutive director
Figure 17
Derived tree (parse tree)
Bii NP a2l NP Byt VP ol S
Nl‘\lP Nl‘\IP M{\VP* N{\VP
Pierre Vinken will VB/\NI%

Bs: NP 03. NP B4 VP Bs: NP Bs: NP ast NP

DT NN VPx PP DT Ny NN
the board IN NP/ a non-executive director
!
Figure 18
Elementary trees.
ay(join)()
ap(Vinken)(00) By (will)(01) a(board)(011) Ba(25)(01)
\ \ \
Bi(Pierre)(0) Bs(the) (0) u(director)(011)

Bs(non-executive)(0)

\
B5(2)(0)

Figure19
Derivation tree: shows how the elementary trees shown in Figure 18 can be combined to provide an

analysis for the sentence.
g
PN
NPR VP

inin010 11
join NP}

Figure20
Example of how each node in an elementary tree has a unique node address using the Gorn notation. 0 is

the root with daughters 00, 01, and so on recursively, e.g. first daughter 01 is 010.

The derived tree for the example is shown in Figure 17. Figure 18 shows the elementary
trees for each word in the sentence. Figure 19 is the derivation tree. a stands for an initial trees,

and [stands for an auxiliary tree.
One of the properties of LTAG is that it factors recursion from the domain of dependencies,
thus making all dependencies local in a sense. They can become long distance due to the

24

Shen and Joshi Bidirectional LTAG Dependency Parsing

adjunctions of auxiliary trees. For example, in the derivation tree, a1(join) and az(Vinken) are
directly connected no matter if there is an auxiliary tree Bo(will) or not.

Compared with Context-Free Grammar (CFG), TAG is mildly context-sensitive (Joshi
1985), which means

e TAG can be parsed in polynomial time O(n®).
e TAG has constant growth property.

e TAG captures nested dependencies and limited kinds of crossing dependencies.

There exist non-context-free languages that can be generated by a TAG. For example, it can
be shown that L, = {a"b"c"d"} can be generated by a TAG, but it is not a context-free language.
On the other hand, it can be shown that Ls = {a”z} is not a tree adjoining language (Vijay-
Shanker 1987), but it is a context-sensitive language. It follows that £ (CFG) C £(TAG) C
£(CSG).

Because TAG has a stronger generative capacity (both week generative capability and strong
generative capability) than CFG, we can use TAG to represent many structures that cannot
be represented with CFG, mainly due to the adjunction operation. There follow the two key
properties of LTAG:

e Extended Domain of Locality (EDL), which allows

e Factoring Recursion from the domain of Dependencies (FRD), thus making all
dependencies local (Joshi and Schabes 1997).

These two properties reflect the fundamental TAG hypothesis: Every syntactic dependency
is expressed locally within a single elementary tree (Frank 2002).

It is shown in (Kroch and Joshi 1985) and (Frank 2002) that a variety of constraints
on transformational derivations can be nicely represented with TAG derivation without any
stipulation on the TAG operations. This property is related to the fact that TAGs are not as strong
as context sensitive grammars, which allow too much flexibility for natural language description.

B. LTAG-spinal

LTAG-spinal was introduced in (Shen and Joshi 2005a). It was mainly designed for statistical
processing in the LTAG framework.

In LTAG-spinal, we have two kinds of elementary trees, initial trees and auxiliary trees, as
shown in Figure 21. What makes LTAG-spinal different is that elementary trees are in the spinal
form. A spinal initial tree is composed of a lexical spine from the root to the anchor, and nothing
else. A spinal auxiliary tree is composed of a lexical spine and a recursive spine from the root
to the foot node. The common part of a lexical spine and a recursive spine is called the shared
spine of an auxiliary tree. For example, in Figure 21, the lexical spine for the auxiliary tree is
B1,.-,Bi, .., Bn, the recursive spine is By, .., Bj, .., B}, and the shared spine is By, .., B;.

There are two operations in LTAG-spinal, which are adjunction and attachment. Adjunction
in LTAG-spinal is the same as adjunction in the traditional LTAG. Attachment stems from sister
adjunction in (Rambow, Weir, and Vijay-Shanker 2001; Chiang 2000). By attachment, we take
the root of an initial tree as a child of a node of another spinal elementary tree.

An example of LTAG-spinal derivation tree is shown in Figure 22. In Figure 22, each arc is
associated with a label which represents the type of operation. We use A for adjunction and T
for attachment.

25

Computational Linguistics Volume xx, Number xx

initial: auxiliary:

Al B1

| |

| |

1 1

| Bi

! A

I /N

: // \\

| / \
An Bn B1*

Figure2l
Spinal elementary trees

a parser which seems new to me

Figure22
An example of LTAG-spinal derivation tree

It should be noted that the adjunction operation can effectively do wrapping, which distin-
guishes it from sister adjunction. In Figure 22, seems adjoins to new as a wrapping adjunction,
which means that the leaf nodes of the adjunct subtree appear on both sides of the anchor of the
main elementary tree in the resulting derived tree. Here, seems is to the left of new and to me is
to the right of new. So the dependency relation for them is non-projective.

In (Shen and Joshi 2005a), an LTAG-spinal treebank was extracted from the Penn Treebank
reconciled with Propbank annotation. Compared to the PTB, the LTAG-spinal treebank shows
superior compatibility with the Propbank, which means it reveals deeper linguistic relation.

26

