Inducing Approximately Optimal Flow Using Truthful Mediators

Steven Wu
University of Pennsylvania

Joint work with Ryan Rogers, Aaron Roth, and Jonathan Ullman
Traffic is Everywhere

- Road Network
- Internet Network
- One of the reasons: Selfish Routing
Atomic Routing Game

- A graph $G = (V, E)$, $|E| = m$
- Convex latency function for each edge $\ell_e : \mathbb{R}_+ \rightarrow \mathbb{R}_+$
- n players with their source-destination pairs $t_i = (s_i, d_i) \in V \times V$
- Each player routes a 1-unit of flow from his source to destination $f^i = (f_e^i)_{e \in E} \in \{0, 1\}^m$
- Aggregate flow $f = \sum_{i=1}^{n} f^i$
- Cost on each edge $\ell_e(f_e)$
- Cost for each player $c_i(f) = \sum_{e \in E} f_e^i \cdot \ell_e(f_e)$
Equilibrium Flow

- Approximate Equilibrium Flow f satisfies:
 For any i and (s_i, d_i) flow f', $c_i(f^i, f^{-i}) \leq c_i(f', f^{-i}) + \eta$

- Equilibrium flow minimizes the potential function [MS’96]
 $$\Psi(f) = \sum_{e \in E} \sum_{i=1}^{f_e} \ell_e(i)$$

- Social cost objective
 $$C(f) = \sum_{e \in E} f_e \cdot \ell_e(f_e)$$
Inefficiency of Selfish Routing

- The price of anarchy is unboundedly large when the latencies can be arbitrary convex function
 [RoughgardenTardos’02]
Tolling to Rescue

Marginal-Cost Toll [BMW’56]

\[\tau_e^*(f_e) = (f_e - 1) (\ell_e(f_e) - \ell_e(f_e - 1)) \]

New Latency Function

\[\ell_e^*(f) = \ell_e(f) + \tau_e^*(f) \]

Lemma: Potential function of tolled game = Social cost function

\[\Psi^*(f) = \sum_{e \in E} \sum_{i=1}^{f_e} \ell_e^*(i) = C(f) \]

Full Efficiency!
Two Problems

❖ The agents’ source/destination pairs are unknown. The mechanism needs to elicit the demands of the agents.

❖ Marginal-cost tolls are *functional* tolls: difficult to charge agents tolls as a function of what others are doing. (Ideally, use *fixed* tolls)
Mediator

Submit Source-Destination

Post Tolls

Recommend Paths
Mediated Game

❖ Each player has private type \((s, d)\)

❖ Action set:
 ❖ *opt-out* from using the mediator, and take some \((s, d)\)-path
 ❖ *opt-in* to using the mediator, report some source-destination pair (not necessarily \((s, d)\))
 ❖ upon receiving the suggestion, follow the suggestion or deviate based on the suggestion
Good Behavior

- Good behavior:
 - *truthfully* report the source-destination and
 - *faithfully* follow the suggested action of the mediator

- Goal for the mediator:
 - incentives *good behavior* of the players
 - suggests approximately *min-cost* flow \(f \)
 - computes *fixed* tolls so that the flow \(f \) forms an approximate *equilibrium*
Largeness Assumption

For every edge e, the convex latency function ℓ_e is

- bounded by n ($\ell_e(n) \leq n$)
- γ-Lipschitz

Think of $\gamma = O(1)$

Each player only has bounded influence on the latency
Key: Algorithmic Stability

- High-level idea: design a mediator that is “insensitive” to the reported source-destination pair of each player i’s deviation does not substantially
 - change the tolls
 - change the paths suggested to other players
- Formulated as *Joint Differential Privacy (JDP)* [KPRU’14]

A (randomized) mechanism $\mathcal{M} : (V \times V)^n \rightarrow \mathbb{R}_+^m \times (2^E)^n$ satisfies ε-joint differential privacy if for every i, $t_i, t'_i \in V \times V$, $t_{-i} \in (V \times V)^{n-1}$ and $O \subseteq \mathbb{R}_+^m \times (2^E)^{n-1}$

$$\Pr[\mathcal{M}(t_i, t_{-i}) \in O] \leq \exp(\varepsilon) \cdot \Pr[\mathcal{M}(t'_i, t_{-i}) \in O]$$
Misreport!

Output distribution for other players

\[\text{ratio bounded} \]

\[\text{Pr} [r] \]
Suppose that a mediator

- is ϵ-jointly differentially private
- computes fixed tolls and path suggestions such that the resulting flow forms η-approximate equilibrium,

then good behavior forms a $O(\eta + n\epsilon)$-Nash equilibrium in the mediated game.

- Extension of [KPRU’14] and [RogersRoth’14]
Private Algorithm Layout

Input: source-destination pairs

Private Gradient Descent Method
(applicable for solving other convex programs)

Compute approximately optimal flow f^*

Compute fixed tolls

Private Best-Response (PBR)
let players deviate if not playing α-best response

Some players are not satisfied

$\Psi \hat{f}$ not minimized

Output: final flow and fixed tolls

1. perturb the aggregate flow f^*
2. plug in the marginal-cost toll function

$\hat{\tau} = \tau^*(\hat{f})$
Main Result

For large routing game with n players, there exists a mediator such that good behavior is an $O(n^{4/5})$-approximate Nash equilibrium, and the resulting flow has social cost at most

$$\text{OPT} - O(n^{4/5})$$

- For fixed network and latency of each edge growing faster than $n^{4/5}$
- Social cost is $(1 - o(1)) \cdot \text{OPT}$
- Each player playing $(1 - o(1))$-best response (multiplicative)
Inducing Approximately Optimal Flow Using Truthful Mediators

Steven Wu
University of Pennsylvania

Joint work with Ryan Rogers, Aaron Roth, and Jonathan Ullman