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ABSTRACT
We consider a private variant of the classical allocation problem:
given k goods and n agents with individual, private valuation func-
tions over bundles of goods, how can we partition the goods amongst
the agents to maximize social welfare? An important special case
is when each agent desires at most one good, and specifies her (pri-
vate) value for each good: in this case, the problem is exactly the
maximum-weight matching problem in a bipartite graph.

Private matching and allocation problems have not been consid-
ered in the differential privacy literature, and for good reason: they
are plainly impossible to solve under differential privacy. Infor-
mally, the allocation must match agents to their preferred goods
in order to maximize social welfare, but this preference is exactly
what agents wish to hide! Therefore, we consider the problem un-
der the relaxed constraint of joint differential privacy: for any agent
i, no coalition of agents excluding i should be able to learn about
the valuation function of agent i. In this setting, the full allocation is
no longer published—instead, each agent is told what good to get.
We first show that with a small number of identical copies of each
good, it is possible to efficiently and accurately solve the maximum
weight matching problem while guaranteeing joint differential pri-
vacy. We then consider the more general allocation problem, when
bidder valuations satisfy the gross substitutes condition. Finally,
we prove that the allocation problem cannot be solved to non-trivial
accuracy under joint differential privacy without requiring multiple
copies of each type of good.

∗A full version of this paper can be found at http://arxiv.
org/abs/1311.2828
†Supported in part by NSF Grant CNS-1065060.
‡Supported in part by an NSF CAREER award, NSF Grants
CCF-1101389 and CNS-1065060, and a Google Focused Research
Award.
§This research was supported in part by NSF Awards CCF-1016885
and CCF-1215965 and an ONR PECASE Award.
¶Supported in part by NSF Grant CCF-1101389.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
STOC ’14, May 31–June 03 2014, New York, NY, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2710-7/14/05 ...$15.00.
http://dx.doi.org/10.1145/2591796.2591826.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms]: General

Keywords
Differential Privacy, Matching, Ascending Auction, Gross Substi-
tutes

1. INTRODUCTION
The classic maximum-weight matching problem in bipartite graphs

can be viewed as follows: there are k goods j ∈ {1, . . . , k} and n
buyers i ∈ {1, . . . , n}. Each buyer i has a value vij ∈ [0, 1] for
each good j, and the goal is to find a matching µ between goods and
buyers which maximizes the social welfare: SW =

∑n
i=1 vi,µ(i).

When the goods are sensitive,1 it is natural to ask for a matching
that hides the reported values of each of the players.

It is not hard to see that this is impossible under the standard
notion of differential privacy, which insists that the allocation must
be insensitive to the reported valuations of each player. We formal-
ize this in Section 5, but the intuition is simple: consider the case
with two types of goods with n identical copies each, and suppose
that each buyer has a private preference for one of the two types:
value 1 for the good that he likes, and value 0 for the other good.
There is no contention since the supply of each good is larger than
the total number of buyers, so any allocation achieving social wel-
fare OPT−αn can be used to reconstruct a (1 − α) fraction of
the preferences; this is impossible for non-trivial values of α under
differential privacy.

In light of this observation, is there any hope for privately solving
maximum-weight matching problems? In this paper, we show that
the answer is yes: it is possible to solve matching problems (and
more general allocation problems) to high accuracy assuming at
least a small number of identical copies of each good, while still
satisfying an extremely strong variant of differential privacy. We
observe that the matching problem has the following two features:

1. Both the input and solution are naturally partitioned amongst
the same n people: in our case, each buyer i receives the item
µ(i) she is matched to in the solution.

2. The problem is not solvable privately because the item given
to a buyer must reflect her private data, but this need not (nec-
essarily) be the case for items given to other buyers.

By utilizing these two features, we show that the matching prob-
lem can be accurately solved under the constraint of joint differ-
1For instance, the goods might be related to the treatment of dis-
ease, or might be indicative of a particular business strategy, or
might be embarrassing in nature.
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ential privacy [12]. Informally speaking, this requires that for ev-
ery buyer i, the joint distribution on items µ(j) for j 6= i must
be differentially private in the reported valuation of buyer i. As a
consequence, buyer i’s privacy is protected even if all other buyers
collude against him, potentially sharing the identities of the items
they receive. As long as buyer i does not reveal her own item, her
privacy is protected.

We then show that our techniques generalize well beyond the
max-matching problem, to the more general allocation problem—
in this setting, each buyer i has a valuation function defined over
subsets of goods vi : 2[k] → [0, 1] from some class of valuations,
and the goal is to find a partition of the goods S1, . . . , Sn maximiz-
ing social welfare. (Note that the maximum-weight matching prob-
lem is the special case when agents are unit demand, i.e., only want
bundles of size 1.) We generalize our algorithm to solve the alloca-
tion problem when bidders’ valuations satisfy the gross substitutes
condition. This is an economically meaningful class of valuation
functions that is a strict subclass of submodular functions, and (as
we will explain) are the most general class of valuation functions
for which our techniques could possibly apply.

1.1 Our Techniques and Results
Our approach makes a novel connection between market clear-

ing prices and differential privacy. Prices have long been consid-
ered as a low information way to coordinate markets; conceptu-
ally, our paper formalizes this intuition in the context of differen-
tially private allocation. Our algorithm is a differentially private
implementation of m simultaneous ascending price auctions, one
for each type of good. Following the classic analysis of Kelso and
Crawford [13], the prices in these auctions converge to Walrasian
equilibrium prices: prices under which each buyer is simultane-
ously able to buy his most preferred bundle of goods. We show
that although the allocation itself cannot be computed under stan-
dard differential privacy, the Walrasian equilibrium prices can be,
and that the computation of these prices can be used to coordinate
a high welfare allocation while satisfying joint differential privacy.

The classical ascending price auction works as follows. Each
good begins with a price of 0, and each agent is initially unmatched
to any good. Unmatched agents i take turns bidding on the good
j∗ that maximizes their utility at the current prices: i.e., j∗ ∈
arg max(vij − pj). When a bidder bids on a good j∗, he becomes
the new high bidder and the price of j∗ is incremented. Bidders
are tentatively matched to a good as long as they are the high bid-
der. The auction continues until there are no unmatched bidders
who would prefer to be matched to any of the goods at the current
prices. The algorithm necessarily converges because each bid in-
creases the sum of the prices of the goods, and prices are bounded
by some finite value.2 Moreover, by construction, every bidder
ends up matched to their most preferred good given the prices. Fi-
nally, by the “First Welfare Theorem” of Warlasian equilibria, any
matching that corresponds to these equilibrium prices maximizes
social welfare. We emphasize that it is this final implication that is
the key: “prices” play no role in our problem description, nor do we
ever actually charge “prices” to the agents—the prices are purely a
device to coordinate the matching.

We give an approximate, private version of this algorithm based
on several observations. First, in order to implement this algorithm,
it is sufficient to maintain the sequence of prices of the goods pri-
vately: given a record of the price trajectory, each agent can figure
out for himself what good he is matched to. Second, in order to
privately maintain the prices, it suffices to maintain a private count
2Bidders do not bid on goods for which they have negative utility;
in our case, vij ∈ [0, 1]

of the number of bids each good has received over the course of the
auction. Finally, it turns out that it is possible to halt the algorithm
early without significantly harming the quality of the final match-
ing. This guarantees that no bidder ever makes more than a small
number (independent of both n and k) of total bids, which allows
us to bound the sensitivity of the bid-counters. Together, these ob-
servations allow us to implement the auction privately using work
by Dwork et al. [5] and Chan et al. [2], who introduce counters
with the privacy properties we need. The result is an algorithm that
converges to a matching together with prices that form an approxi-
mate Walrasian equilibrium. We complete our analysis by proving
an approximate version of the first welfare theorem, which shows
that the matching has high weight.

Our algorithm actually works in a stronger privacy model, which
we call the billboard model. The algorithm posts the prices pub-
licly on a billboard as a differentially private signal such that every
player can deduce what object she should be matched to just from
her own private information and the contents of the billboard. As
we show, algorithms in the billboard model automatically satisfy
joint differential privacy.

Forthermore, we view implementations in the billboard model
as preferable to arbitrary jointly differentially private implementa-
tions. This is because algorithms in the billboard model only need
the ability to publish sanitized messages to all players, and do not
need a secure channel to communicate the mechanisms’ output to
each player (though of course, there still needs to be a secure chan-
nel from the player to the mechanism). The work of McSherry and
Mironov [14] and some of the results of Gupta et al. [9] can be
viewed as previous algorithms implemented in this mold.

The algorithm of Kelso and Crawford [13] extends to the general
allocation problem when players have gross substitute preferences,
and our private algorithm does as well. We note that this class of
preferences is the natural limit of our approach, which makes cru-
cial use of equilibrium prices as a coordinating device: in general,
when agents have valuations over bundles of goods that do not sat-
isfy the gross substitutes condition, Walrasian equilibrium prices
may not exist.

Finally, we give lower bounds showing that our results are quali-
tatively tight: not only is the problem impossible to solve under the
standard differential privacy, to get any non-trivial solution even
under joint differential privacy, it is necessary to assume that there
are multiple copies of each type of good. Our lower bounds are all
fundamentally reductions to database reconstruction attacks. Our
lower bound for joint-differentially private algorithms may be of
general interest, as we believe it forms a good template for other
lower bounds for joint differential privacy.

We first state our main result informally in the special case of
max-matchings, which we prove in Section 3. We prove our more
general theorem for allocation problems with gross substitutes pref-
erences in Section 4. Here, privacy is protected with respect to a
single agent i changing her valuations vij for possibly all goods j.

Theorem (Informal). There is a computationally efficient ε-joint
differentially private algorithm which computes a matching of weight
OPT − αn in settings in which there are n agents and k types of
goods, with s copies of each good when:

s ≥ O
(

1

α3ε
· polylog

(
n, k,

1

α

))
.

In certain settings, the welfare guarantee can be improved to (1−
α) OPT.

We complement this result with several lower bounds in Sec-
tion 5. We show that no algorithm can solve the private max-



matchings problem to non-trivial accuracy under the standard con-
straint of differential privacy. We also show that even under joint
differential privacy, it is necessary to assume that there are multiple
copies of each item.

Theorem (Informal). No joint differentially private algorithm can
compute matchings of weight greater than OPT−αn on instances
in which there are n agents and s copies of each good, when s ≤
O (1/

√
α) .

In particular, no algorithm can compute matchings of weight
OPT − o(n) on instances for which the supply s = O(1). In
addition, we show that when goods have supply only s = O(1),
it is not even possible to compute the equilibrium prices privately
under standard differential privacy.

1.2 Related Work
Differential privacy, first defined by Dwork et al. [4], has become

a standard “privacy solution concept” in the theoretical computer
science literature. There is far too much work to survey compre-
hensively; for a textbook introduction, see Dwork and Roth [7].

The privacy of our algorithms relies on work by Dwork et al. [5]
and Chan et al. [2], who show how to release a running count of a
stream of bits under continual observation—i.e., report the count
as the stream is revealed, provide high accuracy at every point in
time, while keeping the transcript differentially private.

Beginning with Dinur and Nissim [3], much work in differen-
tial privacy has focused on answering numeric valued queries on a
private dataset (e.g., Blum et al. [1], Dwork et al. [4], Hardt and
Rothblum [10], among many others). In contrast, work on pri-
vate combinatorial optimization problems has been sporadic (but
not non-existant, e.g., Gupta et al. [9], Nissim et al. [15]). Part of
the reason is that many combinatorial optimization problems are
impossible to solve under differential privacy (including the allo-
cation problems we consider in this paper). To sidestep this prob-
lem, we employ the solution concept of joint differential privacy.
First formalized by Kearns et al. [12], similar ideas are present in
the vertex and set-cover algorithms of Gupta et al. [9], the private
recommendation system of McSherry and Mironov [14], and the
analyst private data analysis algorithms of Dwork et al. [6], Hsu
et al. [11].

The utility of our algorithm relies on analysis due to Kelso and
Crawford [13], who study the problem of matching firms to workers
when the firms have preferences that satisfy the gross substitutes
condition. They give an algorithm based on simulating simulta-
neous ascending auctions that converge to Walrasian equilibrium
prices, together with a corresponding matching. In this respect, our
approach is complete: Gul and Stacchetti [8] show that gross sub-
stitutes preferences are precisely the set of preferences for which
Walrasian equilibrium prices are guaranteed to exist.

While our approximate equilibrium achieves good approxima-
tion to the optimal welfare at the expense of certain incentive prop-
erties, our work is closely related to recent work on privately com-
puting various kinds of equilibrium in games (e.g., correlated equi-
librium [12], Nash equilibrium [17], and minmax equilibrium [11]).
These works belong to a growing literature studying the interface
of game theory and differential privacy; for a recent survey, see Pai
and Roth [16].

2. PRELIMINARIES

2.1 The Allocation Problem
We consider allocation problems defined by a set of goods G,

and a set of n agents [n]. Each agent i ∈ [n] has a valuation func-

tion vi : 2G → [0, 1] mapping bundles of goods to values. A
feasible allocation is a collection of sets S1, . . . , Sn ⊆ G such that
Si ∩ Sj = ∅ for each i 6= j: i.e., a partition of goods among the
agents. The social welfare of an allocation S1, . . . , Sn is defined
to be

∑n
i=1 vi(Si), the sum of the agent’s valuations for the al-

location; we are interested in finding allocations which maximize
this quantity. Given an instance of an allocation problem, we write
OPT = maxS1,...,Sn

∑n
i=1 vi(Si) to denote the social welfare of

the optimal feasible allocation.
A particularly simple valuation function is a unit demand valua-

tion, where bidders demand at most one item. Such valuation func-
tions take the form vi(S) = maxj∈S vi({j}), and can be specified
by numbers vi,j = vi({j}) ∈ [0, 1], which represent the value that
bidder i places on good j. When bidders have unit demand valua-
tions, the allocation problem corresponds to computing a maximum
weight matching in a bipartite graph.

Our results will also hold for gross substitute valuations, which
include unit demand valuations as a special case. Informally, for
gross substitute valuations, any set of goods S′ that are in a most-
demanded bundle at some set of prices p remain in a most-demanded
bundle if the prices of other goods are raised, keeping the prices of
goods in S′ fixed. Gross substitute valuations are a standard class of
valuation functions: they are a strict subclass of submodular func-
tions, and they are precisely the valuation functions with Walrasian
equilibria in markets with indivisible goods [8].

Before giving the formal definition, we first introduce some no-
tation. Given a vector of prices {pg}g∈G, the (quasi-linear) util-
ity that player i has for a bundle of goods Si is defined to be
ui(Si, p) = vi(Si) −

∑
j∈Si

pj .3 Given a vector of prices p,
for each agent i, we can define his set of most demanded bundles:
ω(p) = arg maxS⊆G ui(S, p). Given two price vectors p, p′, we
write p � p′ if pg ≤ p′g for all g.

Definition 1. A valuation function vi : 2G → [0, 1] satisfies the
gross substitutes condition if for every pair of price vectors p � p′,
and for every set of goods S ∈ ω(p), if S′ ⊆ S satisfies p′g = pg
for every g ∈ S′, then there is a set S∗ ∈ ω(p′) with S′ ⊆ S∗.

Finally, we will always consider markets with multiple copies of
each type of good. Two goods g1, g2 ∈ G are identical if for every
bidder i and for every bundle S ⊆ G, vi(S∪{g1}) = vi(S∪{g2}):
i.e., the two goods are indistinguishable according to every valua-
tion function. Formally, we say that a set of goods G consists of
k types of goods with s supply if there are k representative goods
g1, . . . , gk ∈ G such that every good g′ ∈ G is identical to one of
g1, . . . , gk, and for each representative good gi, there are s goods
identical to gi in G. For simplicity of presentation we assume
throughout the paper that the supply of each good is the same, but
this is not necessary; all of our results continue to hold when the
supply s denotes the minimum supply of any type of good.

2.2 Differential Privacy Preliminaries
Although it is impossible to solve the allocation problem under

standard differential privacy (see Section 5), standard differential
privacy plays an essential role in our analysis; let us begin here.

Suppose agents have valuation functions vi from a class of func-
tionsC. A databaseD ∈ Cn is a vector of valuation functions, one
for each of the n bidders. Two databases D,D′ are i-neighbors if
they differ in only their i’th index: that is, ifDj = D′j for all j 6= i.
3This is a natural definition of utility if agents must pay for the bun-
dles they buy at the given prices. In this paper we are concerned
with the purely algorithmic allocation problem, so our algorithm
will not actually charge prices. However, prices will be a conve-
nient abstraction throughout our work.



If two databasesD,D′ are i-neighbors for some i, we say that they
are neighboring databases. We will be interested in randomized al-
gorithms that take a database as input, and output an element from
some rangeR. Our final mechanisms will output sets of n bundles
(so R = (2G)n), but intermediate components of our algorithms
will have different ranges.

Definition 2 (Dwork et al. [4]). An algorithm M : Cn → R is
(ε, δ)-differentially private if for every pair of neighboring databases
D,D′ ∈ Cn and for every set of subset of outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ.

If δ = 0, we say thatM is ε-differentially private.

When the range of a mechanism is also a vector with n com-
ponents (e.g., R = (2G)n), we can define joint differential pri-
vacy: this requires that simultaneously for all i, the joint distribu-
tion on outputs given to players j 6= i is differentially private in
the input of agent i. Given a vector x = (x1, . . . , xn), we write
x−i = (x1, . . . , xi−1, xi+1, . . . , xn) to denote the vector of length
n−1 which contains all coordinates of x except the i’th coordinate.

Definition 3 (Kearns et al. [12]). An algorithmM : Cn → (2G)n

is (ε, δ)-joint differentially private if for every i, for every pair of
i-neighbors D,D′ ∈ Cn, and for every subset of outputs S ⊆
(2G)n−1,

Pr[M(D)−i ∈ S] ≤ exp(ε) Pr[M(D′)−i ∈ S] + δ.

If δ = 0, we say thatM is ε-joint differentially private.

Note that this is still an extremely strong definition that protects i
from arbitrary coalitions of adversaries—it weakens the constraint
of differential privacy only in that the output given specifically to
agent i is allowed to be sensitive in the input of agent i.

2.3 Differentially Private Counters
The central tool in our matching algorithm is the private stream-

ing counter proposed by Chan et al. [2] and Dwork et al. [5]. Given
a bit stream σ = (σ1, . . . , σT ) ∈ {0, 1}T , a streaming counter
M(σ) releases an approximation to cσ(t) =

∑t
i=1 σi at every

time step t. We can define what it means for a streaming counter to
be accurate.

Definition 4. A streaming counterM is (α, β)-useful if with prob-
ability at least 1− β, for each time t ∈ [T ],

|M(σ)(t)− cσ(t)| ≤ α.

For the rest of this paper, let Counter(ε, T ) denote the Binary
Mechanism of Chan et al. [2], instantiated with parameters ε and
T . The mechanism produces a monotonically increasing count, and
satisfies the following accuracy guarantee. (Further details may be
found in the full version.)

Theorem 1 (Chan et al. [2]). For β > 0, Counter(ε, T ) is
ε-differentially private with respect to a single bit change in the
stream, and (α, β)-useful for

α =
2
√

2

ε
ln

(
2

β

)(√
log(T )

)5

.

3. PRIVATE MAX-WEIGHT MATCHING
In this section, we study the special case of unit demand valua-

tions. Though our later algorithm for gross substitutes valuations

generalizes this case, we first present our algorithm in this simpler
setting to highlight the key features of our approach.

Consider a matching market with n bidders and k different types
of goods, where each good has supply s and bidder i has valuation
vij ∈ [0, 1] for good j. Some agents may not end up being matched
to a good: to simplify notation, we will say that unmatched agents
are matched to ⊥, a special dummy good.

To reach a maximum weight matching, we first formulate an in-
termediate goal: we want to privately compute prices p ∈ [0, 1]k

and an allocation of the goods µ : [n]→ [k] ∪ {⊥} such that most
bidders are matched with their approximately favorite goods given
the prices and each over-demanded good almost clears, where a
good is over-demanded if its price is strictly positive.4 We will
show that if this intermediate goal is met, then in fact we have com-
puted an approximate maximum weight matching.

Definition 5. A price vector p ∈ [0, 1]k and an assignment µ : [n]→
[k]∪{⊥} of bidders to goods is an (α, β, ρ)-approximate matching
equilibrium if

1. All but a ρ fraction of bidders i are matched to an
α-approximate favorite good: i.e.,viµ(i)−pµ(i) ≥ vij−pj−
α for every good j, for at least (1 − ρ)n bidders i (we call
these bidders satisfied);

2. the number of bidders assigned to any type of good does not
exceed its supply; and

3. each over-demanded good clears except for at most β supply.

3.1 Overview of the Algorithm
Our algorithm takes in the valuations as input, and outputs a tra-

jectory of prices that can be used by the agents to figure out what
they are matched to. Throughout, we will sometimes talk of the
bidders performing some action, but this actually means that our
algorithm simulates the actions of the bidders internally—the ac-
tual agents do not interact with our algorithm.

Algorithm 1 (PMatch) is a variant of a deferred acceptance al-
gorithm first proposed and analyzed by Kelso and Crawford [13],
which runs k simultaneous ascending price auctions: one for each
type of good. At any given moment, each type of good has a pro-
posal price pj . In rounds (passing through each bidder once in
some fixed, publicly known order), unsatisfied bidders bid on a
good that maximizes their utility at the current prices: that is, a
good j that maximizes vij − pj . (This is the Propose function.)

The s most recent bidders for a type of good are tentatively
matched to that type of good (these are the current high bidders).
A bidder tentatively matched to a good with supply s becomes un-
matched to that good once the good he is matched to receives s sub-
sequent bids (he has been outbid). Every s bids on a good increases
its price by a fixed increment α. Bidders keep track of which good
they are matched to (in the variable µ), if any, and can determine
whether they are currently matched or unmatched by looking at a
count of the number of bids received by the last good they bid on.

To implement this algorithm privately, we count the number of
bids each good has received using private counters. Unsatisfied
bidders can infer the prices of all goods based on the number of
bids each has received, and from this information, they determine
which good to bid on (their favorite good at the given prices). Their
bid is recorded by sending a “1” to the appropriate counter. (This is
the Bid function.) Matched bidders remember the reading of the
bid counter on the good they are matched to at the time that they last
4This is the notion of approximate Walrasian equilibrium we will
use.



bid (in the variable di); when the counter ticks s bids past this initial
count, the bidder concludes that he has been outbid, and becomes
unmatched. The final matching is communicated implicitly: the
real agents observe the full published price trajectory, and simulate
what good they would have been matched to had they bid according
to the published prices.

Since the private counters are noisy, the more than s bidders may
be matched to a good. To maintain feasibility, the auction is run
with some supply m withheld: i.e., it is run as if the supply of each
good were s − m, rather than s. The reserved supply m is used
to satisfy the demand of all bidders who believe themselves to be
matched to each type of good; the number of such bidders is at
most s, with high probability.

Our algorithm stops as soon as fewer than ρn bidders place bids
in a round. We show that this early stopping condition does not
significantly harm the welfare guarantee of the matching, while it
substantially reduces the sensitivity of the counters: no bidder ever
bids more than O(1/(αρ)) times in total. Crucially, this is inde-
pendent of both the number of types of goods k, and the number
of bidders n. This greatly improves the accuracy of the prices: the
degree to which we have to perturb the bid counts to protect privacy
is proportional to the sensitivity of the counters.

To privately implement this stopping condition, we maintain a
separate counter (counter(0)) which counts the number of unsatis-
fied bidders throughout the run of the algorithm. At the end of each
proposal round, bidders who are unsatisfied will send “1” to this
counter, and bidders who are matched will send “0”. If this counter
increases by less than roughly ρn in any round, we conclude the
algorithm. (This is the CountUnsatisfied function.)

3.2 Privacy Analysis
In this section, we show that the allocation (implicitly) output

by our algorithm satisfies joint differential privacy with respect to a
single bidder changing all of her valuations. We first show a basic
but useful lemma: to show joint differential privacy, it is sufficient
to show that the output sent to each agent i is an arbitrary function
only of some global signal that is computed under the standard con-
straint of differential privacy, together with agent i’s private data.
We call this the billboard model: some message is viewable by all
agents, as if placed on a public billboard, and this message is dif-
ferentially private. In our case, the price history over the course of
the auction is the differentially private message posted on the bill-
board. Combined with their personal private valuation, each agent
can compute their personal allocation.

Lemma 1 (Billboard Lemma). Suppose M : D → R is (ε, δ)-
differentially private. Consider any set of functions fi : Di×R →
R′, where Di is the portion of the database containing i’s data.
The composition {fi(ΠiD,M(D))} is (ε, δ)-joint differentially
private, where Πi is the projection to i’s data.

PROOF. We need to show that for any agent i, the view of the
other agents is (ε, δ)-differentially private when i’s private data is
changed. Suppose databases D,D′ are i-neighbors, so ΠjD =
ΠjD

′ for j 6= i. Let R−i be a set of views of the bidders besides
i. LetR∗ = {r ∈ R | {fj(ΠjD, r)}−i ∈ R−i}. Then, we need

Pr[{fj(ΠjD,M(D))}−i ∈ R−i]
≤ eε Pr[{fj(ΠjD

′,M(D′))}−i ∈ R−i] + δ

= eε Pr[{fj(ΠjD,M(D′))}−i ∈ R−i] + δ

and so Pr[M(D) ∈ R∗] ≤ eε Pr[M(D′) ∈ R∗] + δ,

but this is true sinceM is (ε, δ)-differentially private.

Algorithm 1 PMatch(α, ρ, ε)

Input: Bidders’ valuations ({v1j}mj=1, . . . , {vnj}mj=1)
Initialize: for bidder i and good j,

T =
8

αρ
, ε′ =

ε

2T
,

E =
2
√

2

ε′
(lognT )5/2 log

(
4k

γ

)
, m = 2E + 1

counter(j) = Counter(ε′, nT ) pj = cj = 0,

µ(i) = ∅, di = 0, counter(0) = Counter(ε′, nT )

Propose T times; Output: prices p and allocation µ.

Propose:
for all bidders i do

if µ(i) = ∅ then
Let µ(i) ∈ argmaxj vij − pj , breaking ties arbitrarily
if viµ(i) − pµ(i) ≤ 0 then

Let µ(i) :=⊥ and Bid(0).
else Save di := cµ(i) and Bid(eµ(i)).

else Bid(0)
CountUnsatisfied

Bid: On input bid vector b
for all goods j do

Feed bj to counter(j).
Update count cj := counter(j).
if cj ≥ (pj/α+ 1)(s−m) then

Update pj := pj + α.

CountUnsatisfied:
for all bidders i do

if µ(i) 6=⊥ and cµ(i) − di ≥ s−m then
Feed 1 to counter(0); Let µ(i) := ∅

else Feed 0 to counter(0).
if counter(0) increases by less than ρn− 2E then

Halt; For each i with µ(i) = ∅, let µ(i) =⊥

With this lemma, the privacy proof is largely routine. We defer
the details to the full version.

Theorem 2. PMatch(α, ρ, ε) is ε-joint differentially private.

PROOF SKETCH. Note that given the sequence of prices, counts
of unsatisfied bidders, and the private valuation of any bidder i, the
final allocation to that bidder can be computed by simulating the
sequence of bids that bidder i would make: these are determined
by the price when bidder i is slotted to bid, and by whether the
halting condition has been met. Bidder i’s final allocation is simply
the final item that he bids on. The prices and halting condition are
computed as a deterministic function of the noisy counts, which are
ε-differentially private. So, Lemma 1 shows that PMatch is ε-joint
differentially private.

3.3 Utility Analysis
In this section, we compare the weight of the matching pro-

duced by PMatch with OPT. As an intermediate step, we first
show that the resulting matching paired with the prices output by
the algorithm forms an approximate matching equilibrium. We
next show that any such matching must be an approximately max-
weight matching.



The so-called “first welfare theorem” from general equilibrium
theory guarantees that an exact (i.e., a (0, 0, 0)-) matching equi-
librium gives an exact maximum weight matching. Compared to
this ideal, PMatch loses welfare in three ways. First, a ρ fraction
of bidders may end up unsatisfied. Second, the matched bidders
are not necessarily matched to goods that maximize their utility
given the prices, but only to goods that do so approximately (up
to additive α). Finally, the auction sets aside part of the supply to
handle over-allocation from the noisy counters, which may not end
up being sold (say, if the counters are accurate or actually under-
allocate). That is, we compute an equilibrium of a market with
reduced supply, so our welfare guarantee requires that the supply s
be significantly larger than the necessary reserved supply m.

The key performance metric is how much supply is needed to
achieve a given welfare approximation in the final matching. On the
one hand, we will show later that the problem is impossible to solve
privately if s = O(1) (Section 5). On the other hand, the problem
is trivial if s ≥ n: every agent can be simultaneously matched to
her favorite good with no coordination; this is trivially both optimal
and private. Our algorithm will achieve positive results when s ≥
polylog(n).

Theorem 3. Let α > 0, and µ be the matching computed by
PMatch(α/3, α/3, ε). Let OPT denote the weight of the op-
timal (max weight) matching. Then, if the supply satisfies

s ≥ 16E′ + 4

α
= O

(
1

α3ε
· polylog

(
n, k,

1

α
,

1

γ

))
,

and n > s, the matching µ has social welfare at least OPT−αn
with probability ≥ 1− γ, where

E′ =
288
√

2

α2ε

(
log

(
72n

α2

))5/2

log

(
4k

γ

)
.

Remark 1. Our approximation guarantee here is additive. In Sec-
tion 4, we show that if we are in the unweighted case where vij ∈
{0, 1}, the above guarantee can be made multiplicative, unusual in
the context of differential privacy. That is, we can find a matching
µ with welfare at least (1− α)OPT. Also, the second assumption
n > s is minimal, as the problem is trivially solvable for s ≥ n.

The proof follows from the following lemmas. (We defer some
proofs to the full version.)

Lemma 2. We call a bidder who wants to continue bidding unsat-
isfied; otherwise bidder i is satisfied. At termination of
PMatch(α, ρ, ε), all satisfied bidders i are matched to a good
µ(i) such that

vi,µ(i) − pµ(i) ≥ max
j

(vi,j − pj)− α.

Lemma 3. Assume all counters have error at most E throughout
the run of PMatch(α, ρ, ε). Then the number of bidders assigned
to any good is at most s, and each over-demanded good clears
except for at most β supply, where

β = 4E + 1 = O

(
1

αρε
· polylog

(
1

α
,

1

ρ
,

1

γ
, k, n

))
.

PROOF. Since the counter for each under-demanded good never
exceeds s−m, we know that each under-demanded good is matched
to no more than s−m+ E < s bidders.

Consider any counter c for an over-demanded good. Let t be a
time step in counter c such that c(nT ) − c(t + 1) ≤ s − m <
c(nT ) − c(t). Note that the bidders who bid after time t are the
only bidders matched to this good at time nT . Let σ be the true

bid stream for this good, so the total number of bidders allocated to
this good at time nT is

cσ(nT )− cσ(t) ≤ cσ(nT )− cσ(t+ 1) + 1

≤ (c(nT ) + E)− (c(t+ 1)− E) + 1

≤ s−m+ 2E + 1 = s.

Similarly, we can lower bound the number of bidders allocated to
this good:

cσ(nT )− cσ(t)

= (cσ(nT )− c(nT )) + (c(nT )− c(t)) + (c(t)− cσ(t))

> s−m− 2E > s− 4E − 1.

Therefore, every over-demanded good clears except for at most
β = 4E + 1 supply, which gives the dependence

β =
16
√

2

αρε

(
log

(
6n

αρ

))5/2

log

(
4k

γ

)
+ 1

= O

(
1

αρε
· polylog

(
1

α
,

1

ρ
,

1

γ
, k, n

))
.

Lemma 4. Assume all counters have error at most E throughout
the run of PMatch(α, ρ, ε). Then at termination, all but a ρ frac-
tion of bidders are satisfied, so long as s ≥ 8E+1 and n ≥ 8E/ρ.

PROOF. First, we claim that the total number of bids made over
the course of the algorithm is bounded by 3n/α. We account sepa-
rately for the under-demanded goods (those with price 0 at the end
of the auction) and the over-demanded goods (those with positive
price). For the under-demanded goods, since their prices remain 0
throughout the algorithm, their corresponding noisy counters never
exceeded (s − m). Since no bidder is ever unmatched after hav-
ing been matched to an under-demanded good, the set of under-
demanded goods can receive at most one bid from each agent; to-
gether the under-demanded goods can receive at most n bids.

Next, we account for the over-demanded goods. Note the bidders
matched to these goods are precisely the bidders who bid within
s−m ticks of the final counter reading. Since the counter has error
bounded by E at each time step, this means at least s −m − 2E
bidders end up matched to each over-demanded good. Since no
agent can be matched to more than one good there can be at most
n/(s−m− 2E) over-demanded goods in total.

Likewise, we can account for the number of price increases per
over-demanded good. Prices never rise above 1 (because any bidder
would prefer to be unmatched than to be matched to a good with
price larger than 1). Therefore, since prices are raised in increments
of α, each over-demanded good can have its price incremented at
most 1/α times. Since there can be at most (s − m + 2E) bids
between each price update (again, corresponding to s−m ticks of
the counter), the total number of bids received by all of the over-
demanded goods in total is at most

n

s−m− 2E
· 1

α
· (s−m+ 2E).

Since each bid is either on an under or over-demanded good, we
can upper bound the total number of bids B by

B ≤ n+
n

α

(
s−m+ 2E

s−m− 2E

)
=
n

α

(
α+

s−m+ 2E

s−m− 2E

)
.

We set the reserved supply to be m = 2E + 1 and by assumption,
we have s ≥ 8E + 1. Since we are only interested in cases where



α < 1, we conclude

B ≤ n+
n

α

(
s−m+ α2

s−m− α2

)
≤ 3n

α
. (1)

Now, consider the halting condition. There are two cases: either
the algorithm halts early, or it does not. We claim that at termina-
tion, at most ρn bidders are unsatisfied. The algorithm halts early
if at any round of CountUnsatisfied, counter(0) (which counts the
number of unsatisfied bidders) increases by less than ρn−2E. So if
the algorithm halts early, there must be at most ρn−2E+2E = ρn
unsatisfied bidders.

Otherwise, suppose the algorithm does not halt early. At the
start of each round there must be at least ρn − 4E unsatisfied
bidders. Not all of these bidders must bid during the Propose
round since price increases while they are waiting to bid might
cause them to no longer demand any item, but this only happens
if bidders prefer to be unmatched at the new prices. Since prices
only increase, these bidders remain satisfied for the rest of the al-
gorithm. If the algorithm runs for R rounds and there are B true
bids, B ≥ R(ρn − 4E) − n. Combined with our upper bound on
the number of bids (Equation (1)) and our assumption ρn ≥ 8E,
we can upper bound the number of rounds R:

R ≤
(

3n

α
+ n

)
·
(

1

ρn− 2E

)
≤
(

4n

α

)(
2

ρn

)
=

8

αρ
:= T

Thus, running the algorithm for T rounds leads to all but ρn bidders
satisfied.

Lemma 5. With probability at least 1−γ, PMatch(α, ρ, ε) com-
putes an (α, β, ρ)-matching equilibrium, where

β = 4E + 1 = O

(
1

αρε
· polylog

(
1

α
,

1

ρ
,

1

γ
, k, n

))
so long as s ≥ 8E + 1 and n ≥ 8E/ρ.

With these lemmas im place, it is straightforward to prove the
welfare theorem (Theorem 3).

PROOF OF THEOREM 3. By Lemma 5, PMatch(α/3, α/3, ε)
calculates a matching µ that is an (α/3, β, α/3)-approximate match-
ing equilibrium with probability at least 1−γ, where β = 4E′+1.
Let p be the prices at the end of the algorithm, and S be the set of
satisfied bidders. Let µ∗ be the optimal matching achieving welfare∑n
i=1 vi,µ∗(i) = OPT. We know that |S| ≥ (1− α/3)n and∑
i∈S

(viµ(i) − pµ(i)) ≥
∑
i∈S

(viµ∗(i) − pµ∗(i))− α|S|/3.

LetN∗j andNj be the number of goods of type j matched in match-
ings µ∗ and µ respectively, and let G be the set of over-demanded
goods at prices p.

Since each over-demanded good clears except for at most β sup-
ply, and since each of the n agents can be matched to at most 1
good, we know that |G| ≤ n/(s − β). Since the true supply in
OPT is at most s, we also know N∗j − Nj ≤ β for each over-
demanded good j. Finally, by definition, under-demanded goods j
have price pj = 0. So,∑
i∈S

viµ∗(i) −
∑
i∈S

viµ(i) ≤
∑
i∈S

pµ∗(i) −
∑
i∈S

pµ(i) + α|S|/3

=
∑
j∈G

pj(N
∗
j −Nj) + α|S|/3

≤
∑
j∈G

β + α|S|/3 ≤ nβ

s− β + α|S|/3.

If s ≥ 4β/α, the first term is at most αn/3. Finally, since all
but αn/3 of the bidders are matched with goods in S, and their
valuations are upper bounded by 1, we can conclude:∑

i

viµ(i) −
∑
i

viµ∗(i) ≤ αn/3 + α|S|/3 + αn/3 ≤ αn.

Unpacking β from Lemma 5, we get the stated bound on supply.

4. EXTENSIONS
In this section, we extend our algorithm in two ways. First, we

show how to compute approximately max-welfare allocations un-
der general gross substitutes valuations. We also show how to mod-
ify and analyze the algorithm for computing max-weight matchings
in the unweighted case when vij ∈ {0, 1} to get multiplicative
rather than additive approximation, which can be substantially bet-
ter in the case when OPT is small. (More generally, the approxi-
mation depends on the minimum nonzero valuation.)

4.1 Gross Substitute Valuations
Let us first introduce some notation. Let Ω = 2G denote the

space of bundles (i.e., subsets of goods). Like previous sections, let
k be number of types of goods, and let s be the supply of each type
of good. Let d denote the market size—the total number of goods,
including identical goods, so d = ks. (We remark that we assume
each good has the same supply s only for convenience. In general,
goods may have different supplies, if s denotes the minimum supply
of any good. Hence, d is not necessarily dependent on s.) We
assume each bidder has a valuation function on bundles, vi : Ω→
[0, 1], and that this valuation satisfies the gross substitutes condition
(Definition 1).

Like before, we simulate k ascending price auctions in rounds.
Bidders now maintain a bundle of goods that they are currently
allocated to, and bid on one new good each round. For each good
in a bidder’s bundle, the bidder keeps track of the count of bids on
that good when it was added to the bundle. When the current count
ticks past the supply, the bidder knows that he has been outbid for
that good.

The main subtlety is in how bidders decide which goods to bid
on. Namely, each bidder considers goods in his bundle to be fixed
in price (i.e., bidders ignore the price increment of at most α that
might have occurred after winning the item). Goods outside of his
bundle (even if identical to goods in his bundle) are evaluated at the
true price. We call these prices the bidder’s effective prices, so each
bidder bids on an arbitrary good in his most-preferred bundle at the
effective prices. The full algorithm is given in Algorithm 2.

Privacy is very similar to the case for matchings.

Theorem 4. PAlloc(α, ρ, ε) satisfies ε-joint differential privacy.

Theorem 5. Let 0 < α < n/d, and g be the allocation computed
by PAlloc(α/3, α/3, ε), and let OPT be the optimum max wel-
fare. Then, if d ≥ n and

s ≥ 12E′ + 3

α
= O

(
1

α3ε
· polylog

(
n, k,

1

α
,

1

γ

))
,

the allocation g has social welfare at least
n∑
i=1

vi(g(i)) ≥ OPT−αd,

with probability at least 1− γ, where

E′ =
360
√

2

α2ε

(
log

(
90n

α2

))5/2

log

(
4k

γ

)
+ 1.



Algorithm 2 PAlloc(α, ρ, ε) (with Gross Substitute Valuations)
Input: Bidders’ gross substitute valuations on the bundles {vi :
Ω→ [0, 1]}
Initialize: for bidder i and good j,

T =
10

αρ
, ε′ =

ε

2T
,

E =
2
√

2

ε′
(lognT )5/2 log

(
4k

γ

)
+ 1, m = 2E + 1,

counter(0) = Counter(ε′, nT ),

counter(j) = Counter(ε′, nT ), pj = cj = 0,

dg = 0, g(i) = {∅} for every bidder i

Propose T times; Output: prices p and allocation g.

Propose:
for all bidders i do

for all goods g ∈ g(i) do
if ctype(g) − dg ≥ s−m then

Remove g(i) := g(i) \ g
Let p0 be the original cost of g(i).
Let ω∗ ∈ argmax

ω)g(i)
vi(ω)− p(ω \ g(i))− p0 arbitrary.

if vi(ω∗)− p(ω \ g(i))− p0 ≥ vi(g(i))− p0 then
Let j ∈ ω∗ \ g(i) arbitrary.
Save dj := ctype(j)
Add g(i) := g(i) ∪ j and Bid(ej)

else Bid(0)
CountUnsatisfied

Bid: On input bid vector b
for all goods j do

Feed bj to counter(j).
Update count cj := counter(j).
if cj is a multiple of s−m then

Update pj := pj + α.

CountUnsatisfied:
for all bidders i do

if i wants continue bidding then
Feed 1 to counter(0)

else Feed 0 to counter(0)
Halt if counter(0) increases by less than ρd− 2E

Remark 2. In comparison with Theorem 3, Theorem 5 requires a
similar constraint on supply, but promises welfare only OPT−αd
rather than OPT−αn. Since OPT ≤ n, this guarantee is only
non-trivial for α ≤ n/d, and so the supply has a polynomial de-
pendence on the total size of the market, d. In contrast, Theorem 3
guarantees good welfare when the supply has a logarithmic depen-
dence on the total number of goods in the market.

However, we note that if bidders demand bundles of size at most
b, then we can improve the above welfare bound to OPT−αnb.
Note that this is independent of the market size d, and strictly gen-
eralizes the matching case (where b = 1).

Similar to Definition 5, we define an approximate allocation
equilibrium as a prerequisite for showing our welfare guarantee.

Definition 6. A price vector p ∈ [0, 1]k and an assignment g : [n]→
Ω of bidders to goods is an (α, β, ρ)-approximate allocation equi-
librium if

1. for all but ρd bidders, vi(g(i))−p(g(i)) ≥ maxω∈Ω vi(ω)−
p(ω)− α|g(i)|;

2. the number of bidders assigned to any good is at most s; and

3. each overdemanded good clears except for at most β supply.

The following lemmas show that our algorithm finds an approx-
imate allocation equilibrium. (We defer proofs to the full version.)

Lemma 6. Assume all counters have error at most E throughout
the run of PAlloc(α, ρ, ε). Then, the number of bidders assigned
to any good is at most s, and each overdemanded good clears ex-
cept for at most β supply, where

β = 4E + 1 = O

(
1

αρε
· polylog

(
n, k,

1

α
,

1

ρ
,

1

γ

))
.

Lemma 7. We call a bidder who wants to bid more unsatisfied;
otherwise, a bidder is satisfied. At termination of PAlloc(α, ρ, ε),
all satisfied bidders are matched to a bundle g(i) that is an α ·
|g(i)|-most preferred bundle.

Lemma 8. Suppose all counters have error at most E throughout
the run of PAlloc(α, ρ, ε). Then at termination, all but ρd bidders
are satisfied, so long as

n ≤ d and d ≥ 8E

ρ
= Ω

(
1

αρ2ε
· polylog

(
n, k,

1

α
,

1

ρ
,

1

γ

))
.

Lemma 9. With probability at least 1− γ, PAlloc(α, ρ, ε) com-
putes an (α, β, ρ)-approximate allocation equilibrium, where

β = O

(
1

αρε
· polylog

(
n, k,

1

α
,

1

ρ
,

1

γ

))
,

so long as

d ≥ 8E

ρ
= Ω

(
1

αρ2ε
· polylog

(
n, k,

1

α
,

1

ρ
,

1

γ

))
and n ≤ d.

Now, it is straightforward to prove the welfare theorem (Theo-
rem 5). The proof follows Theorem 3 quite closely; we defer the
proof to the full version.

4.2 Multiplicative Approximation to Welfare
In certain situations, a close variant of PMatch (Algorithm 1)

can give a multiplicative welfare guarantee. In this section, we
will work with matchings and we will assume that the value of the
maximum weight matching OPT is known. (It is possible to pri-
vately estimate this quantity to high accuracy.) Our algorithm is
exactly the same as PMatch, except with a different halting con-
dition: rather than count the number of unmatched bidders each
round, count the number of bids per round. Once this count drops
below a certain threshold, halt the algorithm.

More precisely, we use a function CountBids (Algorithm 3)
in place of CountUnsatisfied in Algorithm 1.

Theorem 6. Suppose bidders have valuations {vij} over goods
such that minvij>0 vij ≥ λ. Then Algorithm 1, with T = 24/α2

rounds, using stopping condition CountBids (Algorithm 3) in
place of CountUnsatisfied, and stopped once the total bid counter
increases by less than αOPT /2λ − 2E bids in a round, satisfies



Algorithm 3 Modified Halting Condition CountBids

CountBids:
for all bidders i do

if µ(i) 6=⊥ and cµ(i) − di ≥ s−m then
Let µ(i) := ∅

if i bid this round then
Feed 1 to counter(0).

else Feed 0 to counter(0).
if counter(0) increases by less than αOPT

2λ
− 2E then

Halt; For each i with µ(i) = ∅, let µ(i) =⊥

ε-joint differential privacy and outputs a matching that has welfare
at least O((1− α/λ) OPT), so long as

s = Ω

(
1

α3ε
· polylog

(
n, k,

1

α
,

1

γ

))

and OPT = Ω

(
λ

α3ε
· polylog

(
n, k,

1

α
,

1

γ

))
.

Privacy follows like Theorem 2. Utility follows a similar analysis
as for the matching case, with one main twist: in the unwweighted
case, there can be at most OPT /λ bidders matched to a prefered
good, since each matched bidder contributes weight λ. Thus, we
can halt the algorithm sooner when OPT is small. Details can be
found in the full version.

Remark 3. For a comparison with Theorem 3 and PMatch, con-
sider the “unweighted” case where bidders have valuations in {0, 1}
(i.e., λ = 1). Note that both PMatch and the multiplicative ver-
sion require the same lower bound on supply. Ignoring log factors,
PMatch requires n = Ω̃(1/α3ε) for an additive αn approxima-
tion, while Theorem 6 shows OPT = Ω̃(1/α3ε) is necessary for
a multiplicative α, hence additive αOPT, approximation. Hence,
Theorem 6 gives a stronger guarantee if OPT = õ(n) in the un-
weighted case, ignoring log factors.

5. LOWER BOUNDS
Our lower bounds all reduce to a basic database reconstruction

lower bound for differential privacy.

Theorem 7. Let mechanism M : {0, 1}n → {0, 1}n be (ε, δ)-
differentially private, and suppose that for all database D, with
probability at least 1− β, ‖M(D)−D‖1 ≤ αn. Then,

α ≥ 1− eε + δ

(1 + eε)(1− β)
:= c(ε, δ, β).

In other words, no (ε, δ)-private mechanism can reconstruct more
than a fixed constant fraction of its input database. For ε, δ, β small,
c(ε, δ, β) ∼ 1/2. Informally, this theorem states that a private re-
construction mechanism can’t do much better than guessing a ran-
dom database. Note that this holds even if the adversary doesn’t
know which fraction was correctly reconstructed. This theorem is
folklore; a proof can be found in the full version.

Our lower bounds will all be proved using the following pattern:

• First, we describe how to convert a database D ∈ {0, 1}n
to a market, by specifying the bidders, the goods, and the
valuations vij ∈ [0, 1] on goods.

• Next, we analyze how these valuations change when a single
bit in D is changed. This will control how private the match-
ing algorithm is with respect to the original database, when
applied to this market.

• Finally, we show how to output a database guess D̂ from the
matching produced by the private matching algorithm.

This composition of three steps will be a private function from
{0, 1}n → {0, 1}n, so we can apply Theorem 7 to lower bound
the error. This will in turn imply a lower bound on the error of the
matching algorithm.

5.1 Standard Differential Privacy
Note that Algorithm 1 produces market clearing prices under

standard differential privacy. We will first show that this is not
possible if each good has unit supply. Recall that prices correspond
to an (α, β, ρ)-approximate matching equilibrium if all but ρ bid-
ders can be allocated to a good such that their utility (valuation less
price) is within α of their favorite good (Definition 5). We will
ignore the β parameter, which controls how many goods are left
unsold. (We defer the proof to the full version.)

Theorem 8. Let n bidders have valuations vij ∈ [0, 1] for n
goods. Suppose that mechanismM is (ε, δ)-differentially private,
and calculates prices corresponding to an (α, β, ρ)-approximate
matching equilibrium for α < 1/2 and some β with probability
1 − γ. Then, ρ ≥ 1

2
c(2ε, δ(1 + eε), γ). Note that this is indepen-

dent of α.

5.2 Separation Between Standard and Joint
Differential Privacy

While we can compute an approximate maximum-weight match-
ing under joint privacy when the supply of each good is large
(Lemma 5), this is not possible under standard differential privacy
even with infinite supply. (In fact, it is not possible with finite sup-
ply either.)

Theorem 9. Let n bidders have valuations vij ∈ {0, 1} for 2
goods with infinite supply. Suppose that mechanism M is (ε, δ)-
differentially private, and computes a matching with weight at least
OPT−αn with probability 1− γ. Then, α ≥ c(ε, δ, γ).

PROOF. Let D ∈ {0, 1}n. We assume two goods, 0 and 1. We
have one bidder bi for each bit i ∈ [n], who has valuationDi for 1,
and valuation 1 −Di for 0. Since changing a bit changes a single
bidder’s valuation, applyingM to this market is (ε, δ)-private with
respect to D. To guess the database D̂, we let D̂i be 0 if bi is
matched to 0, 1 if bi is matched to 1, and arbitrary otherwise.

Note that the maximum welfare matching assigns each bi the
good corresponding to Di, and achieves social welfare OPT =
n. IfM computes an matching with welfare OPT−αn, it must
give all but an α fraction of bidders bi the good corresponding to
Di. So, the reconstructed database will miss at most αn bits with
probability 1− γ, and by Theorem 7, α ≥ c(ε, δ, γ).

Note that this gives a separation: under joint differential privacy,
Algorithm 1 can release a matching with welfare OPT−αn for
any α, provided supply s is large enough (by Theorem 3). This is
not possible under standard differential privacy, even with infinite
supply.

5.3 Joint Differential Privacy
Finally, we show that a large supply assumption is necessary in

order to compute an additive α maximum welfare matching under
joint differential privacy.

Theorem 10. Let n bidders have valuations vij ∈ [0, 1] for k types
of goods with supply s each. Suppose mechanismM is (ε, δ)-joint
differentially private for ε, δ < 0.1, and calculates a matching with
welfare at least OPT−αn with probability 1 − γ for γ < 0.01,
and all n, k, s. Then, s = Ω(

√
1/α).



We will only sketch the idea here, deferring the full proof to the
full version. Given a database D ∈ {0, 1}n, we will have one real
bidder, m “spy” bidders, and two goods for each bit. The real bid-
der will have valuation for one of the two goods determined by the
private data D, while the spy bidders will all have the same pref-
erence for one of the two goods, set uniformly at random (inde-
pendent of the private data). By arranging the valuations of the spy
bidders appropriately, we can show that any algorithm that achieves
good welfare must serve many of the spy bidders. When the spy
bidder and the true bidder prefer the same good (which happens
half of the time), the spy bidders can learn about the true bidder’s
preferences when they don’t get their preferred good. By taking the
joint view of spy bidders, we can reconstruct a large enough portion
of the database to contradict Theorem 7: Under joint differential
privacy, the view of the spy bidders should satisfy standard differ-
ential privacy with respect to the data from outside the coalition,
i.e., the private data.

6. CONCLUSION AND OPEN PROBLEMS
In this paper we gave algorithms to accurately solve the private

allocation problem when bidders have gross substitute valuations.
Our results are qualitatively tight: it is not possible to strengthen
our approach to standard differential privacy (from joint differen-
tial privacy), nor is it possible to solve even max-matching prob-
lems to non-trivial accuracy under joint differential privacy with
constant supply. Moreover, our approach cannot be pushed any fur-
ther: our algorithm fundamentally relies on computing Walrasian
equilibrium prices for the underlying market, and such prices are
not guaranteed to exist for valuation functions beyond the gross
substitutes class. This does not mean that the allocation problem
cannot be solved for more general valuation functions, only that
fundamentally new ideas would be needed.

Along with Kearns et al. [12] and other works in the joint pri-
vacy model, our work adds compelling evidence that substantially
more is possible under the relaxation of joint differential privacy,
as compared to the standard notion of differential privacy. For both
the allocation problem studied here and the equilibrium computa-
tion problem studied in Kearns et al. [12], non-trivial results are
impossible under differential privacy, while strong results can be
derived under joint-differential privacy. Characterizing the power
of joint differential privacy, as compared to the standard differential
privacy, continues to be a fascinating direction for future work.

More specifically, in this paper we achieved joint differential pri-
vacy via the billboard lemma: we showed that the allocation given
to each player can be derived as a deterministic function only of 1)
a differentially private message revealed to all players, and 2) their
own private data. However, this isn’t necessarily the only way to
achieve joint differential privacy. How much further does the power
of joint differential privacy extend beyond the billboard model?
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