Dual Query: Practical Private Query Release for High Dimensional Data
Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Zhiwei Steven Wu
ICML 2014

Private Query Release
Queries
Release answers that preserve privacy
Sensitive Database (Medical Records)
Counting Queries: “What fraction of Patients smoke and have lung cancer?”

Differential Privacy [DMNS06]

Neighboring Databases D and D':
Pr[A(D) = r] \lesssim (1 + \varepsilon)Pr[A(D') = r]

Query Release as a Zero-Sum Game
Query Player Maximizes while Data Player Minimizes
- Actions for query player: query class Q
- Actions for data player: possible data records \(\mathcal{X} = \{0, 1\}^d \)
- Payoff on (q, x) is q(D) − q(x)
- Approximate Minimax Equilibrium \Rightarrow Accurate Answers

Find the Equilibrium with No-Regret Learning
No-Regret Algorithm vs. Best Response
\rightarrow converge to Equilibrium
- Previous idea: Data player runs no-regret learning
- Maintain approximate database \(\hat{D} \), privately find queries with high error, update \(\hat{D} \) [HR10][HLM12]
- \(\hat{D} \) is distribution over \(\mathcal{X} \) (HUGE! 2^d)
- Problem: not scalable for high dimensional data.
Existing work: \(\sim 100 \) attributes [HLM12].

Our Novelty: Switching the Roles
Query player runs no-regret learning
- Now: distribution over queries Q, find record minimizing error
Makes High Dimensional Data Possible!
- Space linear in |Q| rather than |\mathcal{X}|
- Best response problem for data player is NP-Hard but non-private and succinctly represented, can use existing solvers like CPLEX

Theoretical Accuracy Guarantee
Max additive error over all queries (error 1 trivial):
\(O \left(\frac{\log |Q|}{|D|^{1/3}\varepsilon^{1/3}} \right) \)

Experimental Accuracy

Netflix: Average Max Error

Figure 1: Accuracy versus \(\varepsilon \) (privacy)

Scaling with Number of Attributes

Figure 2: Accuracy versus number of attributes

Figure 3: Runtime versus number of attributes

Conclusion and Open Problems
- Dual Query: A new private query release mechanism that can handle datasets with dimensionality multiple orders of magnitude larger than what was previously possible.
- Open problems:
 - Parameter setting under differential privacy
 - Incorporate sparsity of the dataset
 - Subclass of queries with “easy” best response problem
 - Allow queries to arrive online