LGIC 010 \& PHIL 005
 Problem Set 8
 Spring Term, 2019
 DUE IN CLASS MONDAY, APRIL 29

- \mathbb{Z} is the set of integers $\{\ldots-3,-2,-1,0,1,2,3, \ldots\}$.
- \mathbb{Z}^{+}is the set of positive integers $\{1,2,3, \ldots\}$.
- A positive integer i is a prime number if and only if $i>1$ and the only divisors of i are i and 1 . The first few prime numbers are $2,3,5,7,11, \ldots$.
- Let A be a structure interpreting a triadic predicate letter $P . h$ is an automorphism of A if and only if h is a bijection of U^{A} onto U^{A} and for all $i, j, k \in U^{A},\langle i, j, k\rangle \in P^{A}$ if and only $\langle h(i), h(j), h(k)\rangle \in P^{A}$.
- Let A be a structure. $\operatorname{Aut}(A)=\{h \mid h$ is an automorphism of $A\}$.
- Let $S(x)$ be a schema with a single free variable x and A a structure.

$$
S[A]=\left\{a \in U^{A} \mid A \models S[x \mid a]\right\} .
$$

1. Let A_{1} be a structure interpreting a single triadic predicate letter P_{1} with $U^{A}=\mathbb{Z}^{+}$ and $P_{1}^{A}=\{\langle i, j, k\rangle \mid i \cdot j=k\}$, the product relation on \mathbb{Z}^{+}.
(a) (10 points) Let $X_{1}=\left\{i \in \mathbb{Z}^{+} \mid i\right.$ is a positive power of 2$\}=\{2,4,8,16, \ldots\}$. Is X_{1} definable in A_{1} ? If it is, write down a schema $S_{1}(x)$ such that $S_{1}\left[A_{1}\right]=X_{1}$; if not, specify an $h_{1} \in \operatorname{Aut}\left(A_{1}\right)$ such that $h_{1}\left[X_{1}\right] \neq X_{1}$.
(b) (10 points) Let $X_{2}=\left\{i \in \mathbb{Z}^{+} \mid i\right.$ is a positive power of a prime number $\}=$ $\{2,4, \ldots, 3,9, \ldots\}$. Is X_{2} definable in A_{1} ? If it is, write down a schema $S_{2}(x)$ such that $S_{2}\left[A_{1}\right]=X_{2}$; if not, specify an $h_{2} \in \operatorname{Aut}\left(A_{1}\right)$ such that $h_{2}\left[X_{2}\right] \neq X_{2}$.
2. Let A_{2} be a structure interpreting a single triadic predicate letter P_{2} with $U^{A}=\mathbb{Z}$ and $P_{2}^{A}=\{\langle i, j, k\rangle \mid i+j=k\}$, the sum relation on \mathbb{Z}.
(a) (10 points) Let $X_{3}=\{i \in \mathbb{Z} \mid 0<i\}$. Is X_{3} definable in A_{2} ? If it is, write down a schema $S_{3}(x)$ such that $S_{3}\left[A_{2}\right]=X_{3}$; if not, specify an $h_{3} \in \operatorname{Aut}\left(A_{2}\right)$ such that $h_{3}\left[X_{3}\right] \neq X_{3}$.
(b) (10 points) Let $X_{4}=\{i \in \mathbb{Z} \mid i$ is divisible by 5 (without remainder) $\}$. Is X_{4} definable in A_{2} ? If it is, write down a schema $S_{4}(x)$ such that $S_{4}\left[A_{2}\right]=X_{4}$; if not, specify an $h_{4} \in \operatorname{Aut}\left(A_{2}\right)$ such that $h_{4}\left[X_{4}\right] \neq X_{4}$.

For each of the following pairs consisting of a set of schemata X and a schema S determine whether X implies S. If so, provide a cogent argument to establish the implication. If not, specify a structure which makes S false and all the schemata in X true. Each problem is worth 25 points.
3. (20 points) $X:\{(\forall x)(\forall y)(\exists z)(\forall w)(R x y w \equiv z=w)$, $(\forall x)(\forall y)(\forall z)(\forall w)(\forall v)((R x y v \wedge R z w v) \supset(x=z \wedge y=w))\}$ $S:(\exists x)(\forall y) x=y$
4. (20 points) $X:\left\{x_{i} \neq x_{j} \mid i<j\right.$ and $\left.i, j \in \mathbb{Z}^{+}\right\} \cup\{(\forall x) \neg L x x$, $(\forall x)(\forall y)(L x y \supset(L y z \supset L x z)),(\forall x)(\forall y)(x \neq y \supset(L x y \vee L y x)$, $(\forall x)((\exists y) L y x \supset(\exists y)(L y x \wedge(\forall z) \neg(L y z \wedge L z x)))$,
$(\forall x)((\exists y) L x y \supset(\exists y)(L x y \wedge(\forall z) \neg(L z y \wedge L x z)))$,
$(\exists x)(\forall y) \neg L y x,(\exists x)(\forall y) \neg L x y\}$
$S:(\forall x) x \neq x$
5. (20 points) $X:\{(\forall x) \neg L x x,(\forall x)(\forall y)(L x y \supset(L y z \supset L x z))$, $(\forall x)(\forall y)(x \neq y \supset(L x y \vee L y x),(\forall x)(\exists y)(L x y \wedge(\forall z) \neg(L z y \wedge L x z)))$, $(\exists x)(\forall y) \neg L y x\}\}$
$S:(\forall x)((\exists y) L y x \supset(\exists y)(L y x \wedge(\forall z) \neg(L y z \wedge L z x)))$

