LGIC 010 & PHIL 005 Problem Set 8 Spring Term, 2019 DUE IN CLASS MONDAY, APRIL 29

- \mathbb{Z} is the set of integers {... 3, -2, -1, 0, 1, 2, 3, ...}.
- \mathbb{Z}^+ is the set of positive integers $\{1, 2, 3, \ldots\}$.
- A positive integer i is a *prime number* if and only if i > 1 and the only divisors of i are i and 1. The first few prime numbers are $2, 3, 5, 7, 11, \ldots$
- Let A be a structure interpreting a triadic predicate letter P. h is an automorphism of A if and only if h is a bijection of U^A onto U^A and for all $i, j, k \in U^A$, $\langle i, j, k \rangle \in P^A$ if and only $\langle h(i), h(j), h(k) \rangle \in P^A$.
- Let A be a structure. $Aut(A) = \{h \mid h \text{ is an automorphism of } A\}.$
- Let S(x) be a schema with a single free variable x and A a structure.

$$S[A] = \{a \in U^A \mid A \models S[x|a]\}$$

- 1. Let A_1 be a structure interpreting a single triadic predicate letter P_1 with $U^A = \mathbb{Z}^+$ and $P_1^A = \{\langle i, j, k \rangle \mid i \cdot j = k\}$, the product relation on \mathbb{Z}^+ .
 - (a) (10 points) Let $X_1 = \{i \in \mathbb{Z}^+ \mid i \text{ is a positive power of } 2\} = \{2, 4, 8, 16, \ldots\}$. Is X_1 definable in A_1 ? If it is, write down a schema $S_1(x)$ such that $S_1[A_1] = X_1$; if not, specify an $h_1 \in Aut(A_1)$ such that $h_1[X_1] \neq X_1$.
 - (b) (10 points) Let $X_2 = \{i \in \mathbb{Z}^+ \mid i \text{ is a positive power of a prime number}\} = \{2, 4, \ldots, 3, 9, \ldots\}$. Is X_2 definable in A_1 ? If it is, write down a schema $S_2(x)$ such that $S_2[A_1] = X_2$; if not, specify an $h_2 \in \operatorname{Aut}(A_1)$ such that $h_2[X_2] \neq X_2$.
- 2. Let A_2 be a structure interpreting a single triadic predicate letter P_2 with $U^A = \mathbb{Z}$ and $P_2^A = \{\langle i, j, k \rangle \mid i+j=k\}$, the sum relation on \mathbb{Z} .
 - (a) (10 points) Let $X_3 = \{i \in \mathbb{Z} \mid 0 < i\}$. Is X_3 definable in A_2 ? If it is, write down a schema $S_3(x)$ such that $S_3[A_2] = X_3$; if not, specify an $h_3 \in Aut(A_2)$ such that $h_3[X_3] \neq X_3$.
 - (b) (10 points) Let $X_4 = \{i \in \mathbb{Z} \mid i \text{ is divisible by 5 (without remainder})}\}$. Is X_4 definable in A_2 ? If it is, write down a schema $S_4(x)$ such that $S_4[A_2] = X_4$; if not, specify an $h_4 \in Aut(A_2)$ such that $h_4[X_4] \neq X_4$.

For each of the following pairs consisting of a set of schemata X and a schema S determine whether X implies S. If so, provide a cogent argument to establish the implication. If not, specify a structure which makes S false and all the schemata in X true. Each problem is worth 25 points.

- 3. (20 points) $X : \{ (\forall x) (\forall y) (\exists z) (\forall w) (Rxyw \equiv z = w), \\ (\forall x) (\forall y) (\forall z) (\forall w) (\forall v) ((Rxyv \land Rzwv) \supset (x = z \land y = w)) \} \\ S : (\exists x) (\forall y) x = y$
- 4. (20 points) $X : \{x_i \neq x_j \mid i < j \text{ and } i, j \in \mathbb{Z}^+\} \cup \{(\forall x) \neg Lxx, (\forall x)(\forall y)(Lxy \supset (Lyz \supset Lxz)), (\forall x)(\forall y)(x \neq y \supset (Lxy \lor Lyx), (\forall x)((\exists y)Lyx \supset (\exists y)(Lyx \land (\forall z) \neg (Lyz \land Lzx))), (\forall x)((\exists y)Lxy \supset (\exists y)(Lxy \land (\forall z) \neg (Lzy \land Lxz))), (\exists x)(\forall y) \neg Lyx, (\exists x)(\forall y) \neg Lxy\}$ $S : (\forall x)x \neq x$
- 5. (20 points) $X : \{ (\forall x) \neg Lxx, (\forall x)(\forall y)(Lxy \supset (Lyz \supset Lxz)), (\forall x)(\forall y)(x \neq y \supset (Lxy \lor Lyx), (\forall x)(\exists y)(Lxy \land (\forall z) \neg (Lzy \land Lxz))), (\exists x)(\forall y) \neg Lyx \} \}$ $S : (\forall x)((\exists y)Lyx \supset (\exists y)(Lyx \land (\forall z) \neg (Lyz \land Lzx)))$