LGIC 010 & PHIL 005 Problem Set 8 Spring Term, 2018 DUE IN CLASS MONDAY, APRIL 16

- \mathbb{Z} is the set of integers {...-3, -2, -1, 0, 1, 2, 3, ...}.
- \mathbb{Z}^+ is the set of positive integers $\{1, 2, 3, \ldots\}$.
- A positive integer i is a *prime number* if and only if i > 1 and the only divisors of i are i and 1. The first few prime numbers are $2, 3, 5, 7, 11, \ldots$
- Let A be a structure interpreting a triadic predicate letter P. h is an automorphism of A if and only if h is a bijection of U^A onto U^A and for all $i, j, k \in U^A$, $\langle i, j, k \rangle \in P^A$ if and only $\langle h(i), h(j), h(k) \rangle \in P^A$.
- Let A be a structure. $Aut(A) = \{h \mid h \text{ is an automorphism of } A\}.$
- Let S(x) be a schema with a single free variable x and A a structure.

$$S[A] = \{ a \in U^A \mid A \models S[x|a] \}.$$

- 1. Let A_1 be a structure interpreting a single triadic predicate letter P_1 with $U^A = \mathbb{Z}^+$ and $P_1^A = \{ \langle i, j, k \rangle \mid i \cdot j = k \}$, the product relation on \mathbb{Z}^+ .
 - (a) Let $X_1 = \{i \in \mathbb{Z}^+ \mid i \text{ is a prime number}\}$. Is X_1 definable in A_1 ? If it is, write down a schema $S_1(x)$ such that $S_1[A_1] = X_1$; if not, specify an $h_1 \in Aut(A_1)$ such that $h_1[X_1] \neq X_1$.
 - (b) Let $X_2 = \{i \in \mathbb{Z}^+ \mid i \text{ is a positive power of } 3\} = \{3, 9, 27, 81, \ldots\}$. Is X_2 definable in A_1 ? If it is, write down a schema $S_2(x)$ such that $S_2[A_1] = X_2$; if not, specify an $h_2 \in \operatorname{Aut}(A_1)$ such that $h_2[X_2] \neq X_2$.
 - (c) Let $X_3 = \{i \in \mathbb{Z}^+ \mid i \text{ is a positive even power of a prime number}\} = \{4, 16, \ldots, 9, 81, \ldots\}$. Is X_3 definable in A_1 ? If it is, write down a schema $S_3(x)$ such that $S_3[A_1] = X_3$; if not, specify an $h_3 \in \text{Aut}(A_1)$ such that $h_3[X_3] \neq X_3$.
- 2. Let A_2 be a structure interpreting a single triadic predicate letter P_2 with $U^A = \mathbb{Z}$ and $P_2^A = \{\langle i, j, k \rangle \mid i+j=k\}$, the sum relation on \mathbb{Z} .
 - (a) Let $X_4 = \{i \in \mathbb{Z} \mid i = 0\}$. Is X_3 definable in A_2 ? If it is, write down a schema $S_4(x)$ such that $S_4[A_2] = X_4$; if not, specify an $h_4 \in Aut(A_2)$ such that $h_4[X_4] \neq X_4$.
 - (b) Let $X_5 = \{i \in \mathbb{Z} \mid i < 0\}$. Is X_5 definable in A_2 ? If it is, write down a schema $S_5(x)$ such that $S_5[A_2] = X_5$; if not, specify an $h_5 \in Aut(A_2)$ such that $h_5[X_5] \neq X_5$.
 - (c) Let $X_6 = \{i \in \mathbb{Z} \mid i \text{ is divisible by } 4 \text{ (without remainder)}\}$. Is X_6 definable in A_2 ? If it is, write down a schema $S_6(x)$ such that $S_6[A_2] = X_6$; if not, specify an $h_6 \in \operatorname{Aut}(A_2)$ such that $h_6[X_6] \neq X_6$.