LGIC 010 \& PHIL 005
 Problem Set 8
 Spring Term, 2011

1. Let A be the structure interpreting a single dyadic predicate letter R with $U^{A}=$ $\{1,2,3\}$ and $R^{A}=\{\langle 1,2\rangle,\langle 2,1\rangle\}$.
(a) (10 points) List all the automorphisms of A.
(b) (10 points) List all sets which are definable in A along with schemata which define them.
2. (10 points) Let A be the structure interpreting a single dyadic predicate letter R with $U^{A}=\{1,2,3\}$ and $R^{A}=\{\langle 1,2\rangle,\langle 2,1\rangle\}$. Write down a schema S so that for every structure B, B satisfies S if and only if B is isomorphic to A.
3. Let S be the conjunction of the following schemata.

$$
\begin{aligned}
& (\forall x)(\exists y)(\forall z)(R x z \equiv y=z) \\
& (\forall x)(\forall y)(\forall z)((R x z \wedge R y z) \supset x=y)
\end{aligned}
$$

(a) (20 points) How long a list of pairwise non-isomorphic structures with universe of discourse $\{1,2,3,4\}$ satisfy the schema S ?
(b) (10 points) How long a list of structures with universe of discourse $\{1,2,3,4\}$ satisfy the schema S ?
(c) (20 points) Give an example of structures A and B such that
i. A and B both satisfy S;
ii. A is not isomorphic to B;
iii. $U^{A}=U^{B}=\{1,2,3,4\}$;
iv. exactly four subsets of $\{1,2,3,4\}$ are definable in A and exactly four subsets of $\{1,2,3,4\}$ are definable in B.
(d) (20 points) Give an example of a structures A and B such that
i. A and B both satisfy S;
ii. $U^{A}=U^{B}=\{1,2,3,4\}$;
iii. exactly six structures with universe of discourse $\{1,2,3,4\}$ are isomorphic to A and exactly six structures with universe of discourse $\{1,2,3,4\}$ are isomorphic to B;
iv. the number of subsets of $\{1,2,3,4\}$ that are definable in A is not equal to the number of subsets of $\{1,2,3,4\}$ that are definable in B.

