LGIC 010 \& PHIL 005
 Problem Set 6
 Spring Term, 2013

We say that a schema S admits a positive natural number n if and only if there is a structure A of size n which satisfies S.

1. (25 points) Write down a schema S involving only the dyadic predicate letter " R," and the identity predicate such that S admits n if and only if n is even, and S implies

$$
(\forall x) \neg R x x \wedge(\forall x)(\forall y)(R x y \supset R y x) .
$$

2. (25 points) Write down a schema S involving only the dyadic predicate letter " R," and the identity predicate such that S admits n if and only if n is odd, and S implies

$$
(\forall x) \neg R x x \wedge(\forall x)(\forall y)(R x y \supset R y x)
$$

3. (25 points) Write down a schema S involving only the monadic predicate letters " F " and " G," the triadic predicate letter " H," and the identity predicate such that S admits n if and only if n is a positive power of 2 , that is, if and only if $n=2^{i}$, for some $i \geq 1$, and S implies

$$
(\forall x)(\forall y)(\forall z)(H x y z \supset(F y \wedge G z)) \wedge(\forall x)(\forall y)(F y \supset(\exists z)(\forall w)(H x y w \equiv w=z))
$$

4. (25 points) Write down a schema S involving only the dyadic predicate letter " R," and the identity predicate such that S admits n if and only if n is divisible by three, and S implies

$$
(\forall x)(\exists y)(\forall z)(R x z \equiv z=y) .
$$

