LGIC 010 \& PHIL 005
 Problem Set 6
 Spring Term, 2012

We say that a schema S admits a positive natural number n if and only if there is a structure A of size n which satisfies S.

1. (25 points) Write down a schema S involving only the monadic predicate letter " F," the dyadic predicate letter " R," and the identity predicate such that S admits n if and only if n is odd, and S implies

$$
(\forall x) \neg R x x \wedge(\forall x)(\forall y)(\forall z)((R x y \wedge R y z) \supset R x z) \wedge(\forall x)(\forall y)(x \neq y \supset(R x y \vee R y x))
$$

2. (25 points) Write down a schema S involving only the dyadic predicate letter " R " and the identity predicate such that S admits n if and only if n is divisible by three, and S implies

$$
(\forall x)(\exists y)(\forall z)(R x z \equiv y=z) \wedge(\forall x)(\exists y) R y x
$$

3. (25 points) Recall that a positive natural number n is a perfect square if and only if for some $m, n=m^{2}$. Write down a schema S involving only the monadic predicate letter " F," the triadic predicate letter " H," and the identity predicate such that S admits n if and only if n is a perfect square, and S implies

$$
(\forall x)(\forall y)(\forall z)(H x y z \supset(F x \wedge F y)) \wedge(\forall x)(\forall y)((F x \wedge F y) \supset(\exists z)(\forall w)(H x y w \equiv w=z))
$$

4. (25 points) Write down a schema S involving only the dyadic predicate letter " R " and the identity predicate such that S admits n if and only if n is even, and S implies

$$
(\forall x) R x x \wedge(\forall x)(\forall y)(\forall z)(R x y \supset(R y z \supset R x z)) \wedge(\forall x)(\forall y)(R x y \supset R y x) .
$$

