LGIC 010 & PHIL 005 Problem Set 5 Spring Term, 2018 DUE IN CLASS MONDAY, MARCH 12

We deploy the following concepts in formulating some of the problems below.

- If X is a finite set, we write |X| for the number of members of X.
- A graph is a structure interpreting one dyadic predicate letter L. A colored graph is a structure interpreting one dyadic predicate letter L and one monadic predicate letter F.
- We use
 - Irr to abbreviate the schema $(\forall x) \neg Lxx$,
 - Sym to abbreviate the schema $(\forall x)(\forall y)(Lxy \supset Lyx)$, and
 - SG to abbreviate the conjunction of Irr and Sym. Structures that satisfy SG are called *(colored) simple graphs.*
- If A and B are colored simple graphs, A is a subgraph of B if and only if $U^A \subseteq U^B$, and $L^A \subseteq L^B$ and $F^A = F^B \cap U^A$.
- The size of a simple graph A (written size(A)) is $|L^A|/2$. This corresponds to the number of "undirected edges" of A.
- If S is a schema, we write mod(S, n) for the set of structures A such that $A \models S$ and $U^A = \{1, \ldots, n\}.$
- Let K be a set of simple graphs. We call A a size maximal member of K if and only if $A \in K$ and for every $B \in K$, $size(A) \ge size(B)$.
- For $n \ge 2$, we let $\Delta_n(x_1, \ldots, x_n)$ abbreviate the schema:

$$x_1 \neq x_2 \land x_1 \neq x_3 \ldots \land x_{n-1} \neq x_n.$$

• For $n \geq 3$, we let C_n abbreviate the schema:

$$(\exists x_1) \dots (\exists x_n) (\Delta_n(x_1, \dots, x_n) \land Lx_1x_2 \land Lx_2x_3 \land \dots L_{n-1}x_n \land Lx_nx_1).$$

- A graph A is *acyclic* if and only if for every $n \ge 3$, $A \models \neg C_n$.
- A simple graph is *1-regular* if and only if it satisfies the following schema.

$$(\forall x)(\exists y)(Lxy \land (\forall z)(Lxz \supset z = y))$$

Instructions and a Practice Problem with Solution

In problems 1-4, you **MUST** specify each structure as indicated, that is, explicitly state the extension of a dyadic predicate as a set of ordered pairs of members of the universe of discourse and specify the extension of a monadic predicate as a subset of the universe of discourse, as is done in the solution to Problem 0. Alternative presentations (arrow diagrams, *etc.*) will **NOT** be accepted.

0. Let S_0 be the conjunction of SG and the schema

$$(\exists x)(\forall y)(Fy \equiv y = x).$$

(a) Specify a structure A_0 which is an acyclic size maximal member of $mod(S_0, 3)$.

 $U^{A_0} = \{1, 2, 3\}$

$$L^{A_0} = \{ \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 2, 3 \rangle \}$$

 $F^{A_0} = \{2\}$

(b) How many structures are acyclic size maximal members of $mod(S_0, 3)$? 9

- 1. Let S_1 be the conjunction of the following schemata.
 - $(\forall x)(\exists y)(\forall z)(Lxz \equiv z = y)$
 - $(\exists y)(\forall z)(\neg Fz \equiv z = y)$
 - $(\forall x)(\forall y)(Lxy \supset Fy)$
 - $(\forall x)(Fx \supset (\exists y)Lyx)$
 - (a) (10 points) Specify a structure A_1 which is a member of $mod(S_1, 4)$.

 $U^{A_1} =$ $L^{A_1} =$ $F^{A_1} =$

(b) (10 points) What is the value of $|\mathsf{mod}(S_1, 4)|$?

2. Let S_2 be the conjunction of SG and the schemata

$$(\forall x)(\forall y)(Lxy \supset (Fx \oplus Fy))$$

and

$$(\forall x)(\exists y)(\exists z)(y \neq z \land (\forall w)(Lxw \equiv (w = y \lor w = z))).$$

- (a) (10 points) Specify a structure A_2 which is a member of $mod(S_2, 10)$.
 - $U^{A_2} =$

$$L^{A_2} =$$

$$F^{A_2} =$$

(b) (10 points) What is the value of $|mod(S_2, 10)|$?

3. Let S_3 be the conjunction of SG and the schemata

$$\neg(\exists x_1)(\exists x_2)(\exists x_3)(\Delta_3(x_1, x_2, x_3) \land Lx_1x_2 \land Lx_1x_3 \land Lx_2x_3)$$

and

$$\neg(\exists x_1)(\exists x_2)(\exists x_3)(\Delta_3(x_1, x_2, x_3) \land \neg Lx_1x_2 \land \neg Lx_1x_3 \land \neg Lx_2x_3).$$

- (a) (10 points) Specify a structure A_3 which is a member of $mod(S_3, 5)$.
 - $U^{A_3} =$

$$L^{A_3} =$$

- (b) (10 points) What is the value of $|mod(S_3, 5)|$?
- (c) (10 points) What is the value of $|mod(S_3, 6)|$?

4. Let S_4 be the conjunction of SG and the schema

$$(\forall x)(\forall y)(Lxy \supset (Fx \oplus Fy)).$$

(a) (10 points) Specify a structure A_4 which is a size maximal member of $mod(S_4, 5)$.

 $U^{A_4} =$ $L^{A_4} =$ $F^{A_4} =$

- (b) (10 points) How many structures are size maximal members of $mod(S_4, 5)$?
- (c) (10 points) Let B be a size maximal member of $mod(S_4, 5)$. How many 1-regular subgraphs C of B satisfy the condition $U^C = U^B$?