LGIC 010 & PHIL 005 Problem Set 5 Spring Term, 2017 DUE IN CLASS MONDAY, MARCH 13

We deploy the following concepts in formulating some of the problems below.

- If X is a finite set, we write |X| for the number of members of X.
- A graph is a structure interpreting one dyadic predicate letter L. A colored graph is a structure interpreting one dyadic predicate letter L and one monadic predicate letter F.
- We use
 - Irr to abbreviate the schema $(\forall x) \neg Lxx$,
 - Sym to abbreviate the schema $(\forall x)(\forall y)(Lxy \supset Lyx)$, and
 - SG to abbreviate the conjunction of Irr and Sym. Structures that satisfy SG are called (colored) simple graphs.
- If A and B are colored simple graphs, A is a subgraph of B if and only if $U^A \subseteq U^B$, and $L^A \subseteq L^B$ and $F^A = F^B \cap U^A$.
- The size of a simple graph A (written size(A)) is $|L^A|/2$. This corresponds to the number of "undirected edges" of A.
- If S is a schema, we write mod(S, n) for the set of structures A such that $A \models S$ and $U^A = \{1, \ldots, n\}$.
- Let K be a set of simple graphs. We call A a size maximal member of K if and only if $A \in K$ and for every $B \in K$, $size(A) \ge size(B)$.
- For $n \geq 2$, we let $\Delta_n(x_1, \ldots, x_n)$ abbreviate the schema:

$$x_1 \neq x_2 \land x_1 \neq x_3 \ldots \land x_{n-1} \neq x_n.$$

• For $n \geq 3$, we let C_n abbreviate the schema:

$$(\exists x_1)\dots(\exists x_n)(\Delta_n(x_1,\dots,x_n)\wedge Lx_1x_2\wedge Lx_2x_3\wedge\dots L_{n-1}x_n\wedge Lx_nx_1).$$

- A graph A is acyclic if and only if for every $n \geq 3$, $A \models \neg C_n$.
- A simple graph is 1-regular if and only if it satisfies the following schema.

$$(\forall x)(\exists y)(Lxy \land (\forall z)(Lxz \supset z = y))$$

Instructions and a Practice Problem with Solution

In problems 1-4, you **MUST** specify each structure as indicated, that is, explicitly state the extension of a dyadic predicate as a set of ordered pairs of members of the universe of discourse and specify the extension of a monadic predicate as a subset of the universe of discourse, as is done in the solution to Problem 0. Alternative presentations (arrow diagrams, *etc.*) will **NOT** be accepted.

0. Let S_0 be the conjunction of SG and the schema

$$(\exists x)(\forall y)(Fy \equiv y = x).$$

(a) Specify a structure A_0 which is an acyclic size maximal member of $mod(S_0, 3)$.

$$U^{A_0} = \{1, 2, 3\}$$

$$L^{A_0} = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 2, 3 \rangle\}$$

$$F^{A_0} = \{2\}$$

(b) How many structures are acyclic size maximal members of $\mathsf{mod}(S_0,3)$?

- 1. Let S_1 be the conjunction of the following schemata.
 - $(\forall x)(\forall y)(Lxy \supset \neg Lyx) \land (\forall x)(\forall y)(\forall z)(Lxy \supset (Lyz \supset Lxz))$
 - $(\forall x)(\forall y)(\forall z)((Lyx \land Lzx \land y \neq z) \supset (Lyz \lor Lzy)) \land (\exists x)(\forall y)(Lxy \lor x = y)$
 - $(\exists x)(\exists y)(\exists z)(Lxy \land Lyz) \land \neg(\exists x)(\exists y)(\exists z)(\exists w)(Lxy \land Lyz \land Lzw)$
 - (a) (10 points) Specify a structure A_1 which is a member of $mod(S_1, 4)$.

$$U^{A_1} =$$

$$L^{A_1} =$$

- (b) (10 points) What is the value of $|\mathsf{mod}(S_1,4)|$? How many members of $\mathsf{mod}(S_1,4)$ are acyclic?
- 2. Let S_2 be the conjunction of SG and the schema

$$(\forall x)(\forall y)(Lxy\supset (Fx\oplus Fy)).$$

(a) (10 points) Specify a structure A_2 which is a size maximal member of $mod(S_2, 6)$.

$$U^{A_2} =$$

$$L^{A_2} =$$

$$F^{A_2} =$$

- (b) (10 points) How many structures are size maximal members of $mod(S_2, 6)$?
- (c) (10 points) Let B be a size maximal member of $mod(S_2, 6)$. How many 1-regular subgraphs C of B satisfy the condition $U^C = U^B$?

- 3. Let S_3 be the conjunction of the following four schemata.
 - $(\forall x)(\forall y)(Lxy \supset \neg Lyx) \land (\forall x)(\forall y)(x \neq y \supset (Lxy \lor Lyx))$
 - $(\forall x)(\forall y)(\forall z)(Lxy \supset (Lyz \supset Lxz))$
 - $(\forall x)((\forall y)\neg Lyx\supset F(x))\wedge(\forall x)((\forall y)\neg Lxy\supset \neg F(x))$
 - $(\forall x)(Fx \equiv (\forall y)((Lxy \land \neg(\exists z)(Lxz \land Lzy)) \supset \neg Fy))$
 - (a) (10 points) Specify a structure $A_3 \in \mathsf{mod}(S_3, 6)$.

$$U^{A_3} =$$

$$L^{A_3} =$$

$$F^{A_3} =$$

(b) (10 points) What is the value of $|\mathsf{mod}(S_3, 6)|$?

- 4. Let S_4 be the conjunction of the following four schemata.
 - $(\forall v)(\forall w)(\forall x)(\forall y)(\forall z)((Rvwz \land Rxyz) \supset (v = x \land w = y))$
 - $(\forall x)(\forall y)(\forall z)(Rxyz \supset (Fx \land Gy))$
 - $(\forall x)(\forall y)((Fx \land Gy) \supset (\exists z)(\forall w)(Rxyw \equiv w = z))$
 - $(\forall z)(\exists x)(\exists y)Rxyz$
 - $(\exists x)(\exists y)(Fx \land Fy \land x \neq y) \land (\exists x)(\exists y)(Gx \land Gy \land x \neq y)$
 - (a) (10 points) For which values of n strictly between 1 and 7 is $mod(S_4, n)$ nonempty?
 - (b) (10 points) For the largest such value of n, specify a structure $A_4 \in \mathsf{mod}(S_4, n)$.

$$U^{A_4} =$$

$$F^{A_4} =$$

$$G^{A_4} =$$

$$R^{A_4} =$$

(c) (10 points) For the largest such value of n, what is the value of $|\mathsf{mod}(S_4, n)|$?