LGIC 010 & PHIL 005 Problem Set 5 Spring Term, 2016 DUE IN CLASS MONDAY, MARCH 14

We deploy the following concepts in formulating some of the problems below.

- If X is a finite set, we write |X| for the number of members of X.
- A graph is a structure interpreting one dyadic predicate letter L.
- We use
 - Irr to abbreviate the schema $(\forall x) \neg Lxx$,
 - Sym to abbreviate the schema $(\forall x)(\forall y)(Lxy \supset Lyx)$, and
 - SG to abbreviate the conjunction of Irr and Sym. Structures that satisfy SG are called *simple graphs*.
- The order of a graph A (written $\operatorname{ord}(A)$) is $|U^A|$. The size of a simple graph A (written $\operatorname{size}(A)$) is $|L^A|/2$. This corresponds to the number of "undirected edges" of A.
- If S is a schema, we write mod(S, n) for the set of structures A such that $A \models S$ and $U^A = \{1, \ldots, n\}$.
- Let K be a set of simple graphs. We call A a size maximal member of K if and only if $A \in K$ and for every $B \in K$, $size(A) \ge size(B)$.
- For $n \ge 2$, we let $\Delta_n(x_1, \ldots, x_n)$ abbreviate the schema:

 $x_1 \neq x_2 \land x_1 \neq x_3 \ldots \land x_{n-1} \neq x_n.$

• For $n \geq 3$, we let C_n abbreviate the schema:

$$(\exists x_1) \dots (\exists x_n) (\Delta_n(x_1, \dots, x_n) \land Lx_1x_2 \land Lx_2x_3 \land \dots \land L_{n-1}x_n \land Lx_nx_1).$$

- 1. Let S_1 be $\mathsf{SG} \land \neg C_3 \land \neg C_4 \land \neg C_5 \land \neg C_6$.
 - (a) (10 points) Specify a structure A_1 which is a size maximal member of $mod(S_1, 6)$.

 $U^{A_1} =$

 $L^{A_1} =$

- (b) (10 points) How many structures are size maximal members of $mod(S_1, 6)$?
- 2. Let S_2 be the conjunction of SG and $\neg C_3$.
 - (a) (10 points) Specify a structure A_2 which is a size maximal member of $mod(S_2, 6)$.

$$U^{A_2} =$$

$$L^{A_2} =$$

- (b) (10 points) How many structures are size maximal members of $mod(S_2, 6)$?
- 3. Let S_3 be the following schema.

 $(\forall x)(\forall y)(Lxy \supset \neg Lyx) \land (\forall x)(\forall y)(x \neq y \supset (Lxy \lor Lyx)) \land \neg (\forall x)(\forall y)(\forall z)((Lxy \land Lyz) \supset Lxz)$

(a) (10 points) Specify a structure $A_3 \in \mathsf{mod}(S_3, 4)$.

 $U^{A_3} =$

 $L^{A_3} =$

- (b) (10 points) What is the value of $|mod(S_3, 4)|$?
- 4. Let S_4 be the conjunction of the following four schemata.
 - $(\forall v)(\forall w)(\forall x)(\forall y)(\forall z)((Rvwz \land Rxyz) \supset (v = x \land w = y))$
 - $(\forall x)(\forall y)(\forall z)(Rxyz \supset (Fx \land Fy))$
 - $(\forall x)(\forall y)((Fx \land Fy) \supset (\exists z)(\forall w)(Rxyw \equiv w = z))$
 - $(\forall z)(\exists x)(\exists y)Rxyz$

- (a) (5 points) For which values of n strictly between 1 and 10 is $mod(S_4, n)$ nonempty?
- (b) (5 points) For one such n, specify a structure $A_4 \in \mathsf{mod}(S_4, n)$.
 - $U^{A_4} =$

 $F^{A_4} =$

$$R^{A_4} =$$

- (c) (10 points) For your chosen value of n, what is the value of $|mod(S_4, n)|$?
- 5. Let S₅ be the conjunction of the schemata SG and (∀x)(∀y)(∃z)(Lxz ∧ Lyz).
 (a) (10 points) What is the value of |mod(S₅, 4)|?
 - (b) (10 points) Circle the number to which the ratio $|mod(S_5, 40)|/2^{\binom{40}{2}}$ is nearest. 0 1/5 2/5 3/5 4/5 1