LGIC 010 & PHIL 005 Problem Set 5 Spring Term, 2014

- 1. Let S_1 be the following schema.
 - $(\forall x) \neg Lxx \land (\forall x)(\forall y)(Lxy \supset Lyx) \land (\forall x)(\exists y)(\exists z)(y \neq z \land (\forall w)(Lxw \equiv (w = y \lor w = z)))$
 - (a) (10 points) Specify a structure A_1 of size at least 6 which satisfies S_1 , that is, U^{A_1} has at least 6 members and $A_1 \models S_1$.
 - $U^{A_1} =$

 $L^{A_1} =$

- (b) (10 points) How many structures with universe of discourse $\{1, 2, 3, 4, 5, 6\}$ satisfy S_1 ?
- 2. Let S_2 be the following schema.

 $(\forall x)(\forall y)(\forall z)((Lxy \land Lxz) \supset y = z) \land (\forall x)(\forall y)(\forall z)((Lxz \land Lyz) \supset x = y) \land (\forall x)(\exists y)Lxy$

(a) (10 points) Specify a structure A_2 of size at least 6 which satisfies S_2 .

 $U^{A_2} =$

 $L^{A_2} =$

(b) (10 points) How many structures with universe of discourse $\{1, 2, 3, 4, 5, 6\}$ satisfy S_2 ?

- 3. Let S_3 be the conjunction of the following two schema.
 - $(\forall x)(\forall y)(\forall z)((Lxy \land Lxz) \supset y = z) \land (\forall x)(\exists y)Lxy$
 - $(\forall x)(\forall y)(\forall z)((Lxz \land Lyz) \supset x = y) \land (\exists y)(\forall x) \neg Lxy$
 - (a) (10 points) Specify a structure A_3 of size at least 3 which satisfies S_3 .

$$U^{A_3} =$$

 $L^{A_3} =$

- (b) (10 points) How many structures with universe of discourse $\{1, 2, 3, 4\}$ satisfy S_3 ?
- 4. Let S_4 be the following schema.

$$(\forall x)(\forall y)(Lxy \supset \neg Lyx) \land (\forall x)(\forall y)(Lxy \lor Lyx \lor x = y)$$

(a) (10 points) Specify a structure A_4 of size at least 3 which satisfies S_4 .

 $U^{A_4} =$

 $L^{A_4} =$

(b) (10 points) How many structures with universe of discourse $\{1, 2, 3, 4\}$ satisfy S_4 ?

- 5. Let S_5 be the conjunction of the following four schemata.
 - $(\forall v)(\forall w)(\forall x)(\forall y)(\forall z)((Rvwz \land Rxyz) \supset (v = x \land w = y))$
 - $(\forall x)(\forall y)(\forall z)(Rxyz \supset (Fx \land Fy))$
 - $(\forall x)(\forall y)((Fx \land Fy) \supset (\exists z)(\forall w)(Rxyw \equiv w = z))$
 - $(\forall z)(\exists x)(\exists y)Rxyz$
 - (a) (10 points) Specify a structure A_5 of size at least 3 which satisfies S_5 .

 $U^{A_5} =$ $F^{A_5} =$

 $R^{A_5} =$

(b) (10 points) How many structures with universe of discourse $\{1, 2, 3, 4\}$ satisfy S_5 ?