LGIC 010 \& PHIL 005
 Problem Set 5
 Spring Term, 2012

1. Let S_{1} be the following schema.

$$
(\forall x)(\exists y) L x y
$$

(a) (10 points) Specify a structure A_{1} of size at least 3 which satisfies S_{1}, that is, $U^{A_{1}}$ has at least 3 members and $A_{1} \models S_{1}$.
$U^{A_{1}}=$
$L^{A_{1}}=$
(b) (10 points) How many structures with universe of discourse $\{1,2,3\}$ satisfy S_{1} ?
2. Let S_{2} be the following schema.

$$
(\forall x)(\exists y) L x y \wedge(\forall y)(\exists x) L x y
$$

(a) (10 points) Specify a structure A_{2} of size at least 3 which satisfies S_{2}.
$U^{A_{2}}=$
$L^{A_{2}}=$
(b) (10 points) How many structures with universe of discourse $\{1,2,3\}$ satisfy S_{2} ?
3. Let S_{3} be the following schema.

$$
(\forall x)(\forall y)(L x y \supset(P x \wedge \neg P y)) \wedge(\forall x)(P x \supset(\exists y) L x y) \wedge(\forall x)(\neg P x \supset(\exists y) L y x)
$$

(a) (10 points) Specify a structure A_{3} of size at least 3 which satisfies S_{3}.

$$
U^{A_{3}}=
$$

$$
L^{A_{3}}=
$$

$$
P^{A_{3}}=
$$

(b) (10 points) How many structures with universe of discourse $\{1,2,3\}$ satisfy S_{3} ?
4. Let S_{4} be the following schema.

$$
(\forall x) L x x \wedge(\forall x)(\forall y)(\forall z)(L x y \supset(L y z \supset L x z)) \wedge(\forall x)(\forall y)(L x y \supset L y x)
$$

(a) (10 points) Specify a structure A_{4} of size at least 3 which satisfies S_{4}.

$$
U^{A_{4}}=
$$

$$
L^{A_{4}}=
$$

(b) (10 points) How many structures with universe of discourse $\{1,2,3\}$ satisfy S_{4} ?
5. Let S_{5} be the conjunction of the following five schemata.

- $(\forall v)(\forall w)(\forall x)(\forall y)(\forall z)((R v w z \wedge R x y z) \supset(v=x \wedge w=y))$
- $(\forall x)(\forall y)(\forall z)(R x y z \supset(F x \wedge G y))$
- $(\forall x)(\forall y)((F x \wedge G y) \supset(\exists z)(\forall w)(R x y w \equiv w=z))$
- $(\forall z)(\exists x)(\exists y) R x y z$
- $(\exists x)(\exists y)(F x \wedge F y \wedge x \neq y) \wedge(\exists x)(\exists y)(G x \wedge G y \wedge x \neq y)$
(a) (10 points) Specify a structure A_{5} of size at least 3 which satisfies S_{5}.

$$
\begin{aligned}
& U^{A_{5}}= \\
& F^{A_{5}}= \\
& G^{A_{5}}= \\
& R^{A_{5}}=
\end{aligned}
$$

(b) (10 points) How many structures with universe of discourse $\{1,2,3\}$ satisfy S_{5} ?

