LGIC 010 & PHIL 005 Problem Set 5 Spring Term, 2012

1. Let S_1 be the following schema.

$$(\forall x)(\exists y)Lxy$$

(a) (10 points) Specify a structure A_1 of size at least 3 which satisfies S_1 , that is, U^{A_1} has at least 3 members and $A_1 \models S_1$.

$$U^{A_1} =$$

$$L^{A_1} =$$

- (b) (10 points) How many structures with universe of discourse $\{1, 2, 3\}$ satisfy S_1 ?
- 2. Let S_2 be the following schema.

$$(\forall x)(\exists y)Lxy \wedge (\forall y)(\exists x)Lxy$$

(a) (10 points) Specify a structure A_2 of size at least 3 which satisfies S_2 .

$$U^{A_2} =$$

$$L^{A_2} =$$

(b) (10 points) How many structures with universe of discourse $\{1,2,3\}$ satisfy S_2 ?

3. Let S_3 be the following schema.

$$(\forall x)(\forall y)(Lxy\supset (Px\wedge\neg Py))\wedge(\forall x)(Px\supset (\exists y)Lxy)\wedge(\forall x)(\neg Px\supset (\exists y)Lyx)$$

(a) (10 points) Specify a structure A_3 of size at least 3 which satisfies S_3 .

$$U^{A_3} =$$

$$L^{A_3} =$$

$$P^{A_3} =$$

- (b) (10 points) How many structures with universe of discourse $\{1, 2, 3\}$ satisfy S_3 ?
- 4. Let S_4 be the following schema.

$$(\forall x) Lxx \wedge (\forall x)(\forall y)(\forall z)(Lxy \supset (Lyz \supset Lxz)) \wedge (\forall x)(\forall y)(Lxy \supset Lyx)$$

(a) (10 points) Specify a structure A_4 of size at least 3 which satisfies S_4 .

$$U^{A_4} =$$

$$L^{A_4} =$$

(b) (10 points) How many structures with universe of discourse $\{1, 2, 3\}$ satisfy S_4 ?

- 5. Let S_5 be the conjunction of the following five schemata.
 - $\bullet \ (\forall v)(\forall w)(\forall x)(\forall y)(\forall z)((Rvwz \land Rxyz) \supset (v=x \land w=y))$
 - $(\forall x)(\forall y)(\forall z)(Rxyz \supset (Fx \land Gy))$
 - $(\forall x)(\forall y)((Fx \land Gy) \supset (\exists z)(\forall w)(Rxyw \equiv w = z))$
 - $(\forall z)(\exists x)(\exists y)Rxyz$
 - $(\exists x)(\exists y)(Fx \land Fy \land x \neq y) \land (\exists x)(\exists y)(Gx \land Gy \land x \neq y)$
 - (a) (10 points) Specify a structure A_5 of size at least 3 which satisfies S_5 .

$$U^{A_5} =$$

$$F^{A_5} =$$

$$G^{A_5} =$$

$$R^{A_5} =$$

(b) (10 points) How many structures with universe of discourse $\{1, 2, 3\}$ satisfy S_5 ?