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Preview of Lecture 04.04

We will continue our analysis of definability in the structure B that we began
on 03.30. This argument we presented at the end of class on 03.30 suggests that
for every k ∈ UB , {k} is definable over B. Let’s show this, again by induction.
First, the schema S0(x) : (∀y)¬Lyx defines {0} over B. Next, as induction
hypothesis, suppose that Sn(x) defines {n} over B. Let z be a variable which
does not occur anywhere in Sn(x) and let Sn(z) be the result of replacing x with
z at all its occurrences in Sn(x). then the schema (∃z)(Sn(z) ∧ Lzx) defines
{n + 1} over B. this completes the induction and establishes that for every
k ∈ UB , {k} is definable over B. It follows at once that every finite subset of
UB and every co-finite subset of UB is definable over B.

What other subsets of UB are definable over B? Note that since B is rigid,
there is no possibility of exhibiting an automorphism h of B with h[X] 6= X,
that is, the “automorphism method” is powerless to establish the undefinability
of any subset of UB in B. Could it be that every subset of UB is definable over
B? We show at once that for every infinite structure C there is a subset X ⊆ UC

which is not definable over C. This result is a corollary to the celebrated Cantor
Diagonal Theorem.

Theorem 1 (Cantor) Let U be an infinite set and let V1, V2, . . . be a sequence
of subsets of U . There is subset W of U such that for all i ≥ 1, W 6= Vi.

Proof : Suppose U is an infinite set. Let U∗ = {a1, a2, . . .} be a countably
infinite subset of U and let V1, V2, . . . be a sequence of subsets of U . Let W =
{i | ai 6∈ Vi}. Note that for every i ai ∈W if and only if ai 6∈ Vi. It follows that
for all i, W 6= Vi.

In order to apply Theorem 1 to questions about definable sets we require
the following result.

Theorem 2 For every structure C, there is a sequence V1, V2, . . . of subsets of
UC such that for every set X definable over C, there is an i such that X = Vi.

Proof : Every schema is a finite sequence of symbols drawn from a finite alpha-
bet. Thus, we may arrange all schemata S(x) in a list S1(x), S2(x), . . ., first
ordered by length, and then within length, alphabetically. We obtain a list
V1, V2, . . . of all the sets definable over C by setting Vi = Si[C] for all i.

The following result is an immediate consequence of Theorems 1 and 2.

Corollary 1 For every infinite structure C there is a subset X ⊆ UC which is
not definable over C.

Of course, this gives us no idea which particular sets are not definable over
a given infinite structure. In the case of the graph B introduced above, we
will show that if a set is neither finite nor co-finite, it is not definable over B.
In order to establish this, we will deploy one of the fundamental properties of
polyadic quantification theory: compactness. First, some definitions requisite
to state the Compactness Theorem for polyadic quantification theory.



PHIL 005 Spring, 2016 Scott Weinstein 2

• A schema S is satisfiable if and only if for some structure A, A |= S.

• A set of schemata Γ is satisfiable if and only if there is structure A such
that for every schema S ∈ Γ, A |= S.

• A set of schemata Γ is finitely satisfiable if and only if for every finite set
∆ ⊆ Γ, ∆ is satisfiable.

Theorem 3 (Compactness Theorem) For every set Γ of schemata of polyadic
quantification theory, if Γ is finitely satisfiable, then Γ is satisfiable.

Though the Compactness Theorem makes no mention of the notion of a
derivation, one of its well-known proofs proceeds via the elaboration of a sound
and complete formal system for logical deduction. This development will occupy
our attention for much of the remainder of the Term. But for the moment, let’s
see how we can apply the Compactness Theorem to complete the analysis of
the definable subsets of the structure B specified above.

Theorem 4 If V ⊆ UB is definable over B, then V is finite or V is co-finite.


