\qquad

LGIC 010 \& PHIL 005
 Practice Examination II Spring Term, 2013

1. (10 points) How long a list of pure monadic schemata involving only the predicate letters " F " and " G " can be constructed so that no two schemata on the list are equivalent, and no schema on the list is implied by $(\exists x)(F x \oplus G x)$?
2. (10 points) How long a list of pure monadic schemata involving only the predicate letters " F " and " G " can be constructed so that no two schemata on the list are equivalent and each schema on the list is satisfied by exactly 28 structures with universe of discourse $\{1,2,3,4\}$?
3. Let S_{1} be the following schema.

$$
(\forall x)(\forall y)(L x y \supset \neg L y x) \wedge(\forall x)(\forall y)(\forall z)((L x y \wedge L y z) \supset L z x) \wedge(\forall x)(\exists y)(\forall z)(L x z \equiv y=z)
$$

(a) (10 points) Specify a structure A_{1} of size at least 6 which satisfies S_{1}, that is, $U^{A_{1}}$ has at least 6 members and $A_{1} \models S_{1}$.

$$
U^{A_{1}}=
$$

$$
L^{A_{1}}=
$$

(b) (10 points) How many structures with universe of discourse $\{1,2,3,4,5,6\}$ satisfy S_{1} ?
4. Let S_{2} be the conjunction of the following schemata.

- $(\forall x)(\forall y)(L x y \supset L y x)$
- $(\forall x)(\forall y)(\forall z)((L x y \wedge L y z) \supset L x z)$
- $(\forall x) L x x$
(a) (10 points) Specify a structure A_{2} of size at least 4 which satisfies S_{2}, that is, $U^{A_{2}}$ has at least 4 members and $A_{2} \models S_{2}$.
$U^{A_{2}}=$

$$
L^{A_{2}}=
$$

(b) (10 points) How many structures with universe of discourse $\{1,2,3,4\}$ satisfy S_{2} ?
5. Let S_{3} be the conjunction of the following schemata.

- $(\forall x)(\forall y)(L x y \supset \neg L y x)$
- $(\forall x)(\forall y)(\forall z)((L x y \wedge L y z) \supset L x z)$
- $(\forall x)(\forall y)(x \neq y \supset(L x y \vee L y x))$
- $(\forall x)(\exists y)(L x y \wedge(\forall w)(L x w \supset(w=y \vee L y w))$
- $(\exists x)((\exists y) L y x \wedge(\forall y)(L y x \supset(\exists z)(L y z \wedge L z x)))$
(a) (10 points) Specify a structure A_{3} of size at least 4 which satisfies S_{3}, that is, $U^{A_{3}}$ has at least 4 members and $A_{3} \models S_{3}$.
$U^{A_{3}}=$
$L^{A_{3}}=$
(b) (10 points) How many structures with universe of discourse $\{1,2,3,4\}$ satisfy S_{3} ?

6. We say that a schema S admits a positive integer n if and only if there is a structure A of size n which satisfies S; the spectrum of S is the set of positive integers n such that S admits n.
(a) (10 points) What is the spectrum of the conjunction of the following schemata?

- $(\forall x)(\forall y)(L x y \supset \neg L y x)$
- $(\forall x)(\forall y)(\forall z)((L x y \wedge L y z) \supset L x z)$
- $(\forall x)(\forall y)(x \neq y \supset(L x y \vee L y x))$
- $(\forall x)((\forall y) \neg L y x \vee(\forall y) \neg L x y) \supset F x)$
- $(\forall x)(\forall y)((L x y \wedge(\forall z) \neg(L x z \wedge L z y)) \supset(F x \equiv \neg F y))$
(b) (10 points) What is the spectrum of the conjunction of the following schemata?
- $(\forall x) \neg L x x$
- $(\forall x)(\forall y)(L x y \supset L y x)$
- $(\forall x)(\exists y)(\forall z)(L x z \equiv y=z)$

