PRINT NAME:	
I IUII I INAIVIII.	

LGIC 010 & PHIL 005 Practice Final Examination Spring Term, 2017

1. Let S be the following schema.

$$(\forall x)(\exists y)(\forall z)(Lxz \equiv z = y) \land (\exists y)(\forall x) \neg Lxy$$

(a) (15 points) Construct a maximal length succinct list l of structures such that each structure listed on l is a member of mod(S, 3).

(b) (15 points) For each structure A on your list l and each $O \in \mathsf{Orbs}(A)$ write down a schema S(x) such that S[A] = O.

- 2. Let A be a structure interpreting a single triadic predicate letter P with $U^A = \mathbb{Z}^+$ and $P^A = \{\langle i, j, k \rangle \mid i \cdot j = k \}$, the product relation on \mathbb{Z}^+ .
 - (a) (15 points) Let $X_1 = \{i \in \mathbb{Z}^+ \mid i \text{ is an even number}\} = \{2, 4, 6, 8, \ldots\}$. Is X_1 definable in A? If it is, write down a schema $S_1(x)$ such that $S_1[A] = X_1$; if not, specify an $h_1 \in \operatorname{Aut}(A)$ such that $h_1[X_1] \neq X_1$.

(b) (15 points) Let $X_2 = \{i \in \mathbb{Z}^+ \mid i \text{ is a positive power of a prime number}\} = \{2, 4, \ldots, 3, 9, \ldots\}$. Is X_2 definable in A? If it is, write down a schema $S_2(x)$ such that $S_2[A] = X_2$; if not, specify an $h_2 \in \operatorname{Aut}(A)$ such that $h_2[X_2] \neq X_2$.

3. (40 points) For each of the following pairs consisting of a set of schemata X and a schema S determine whether X implies S. If so, provide a deduction to establish the implication. If not, specify a structure which makes S false and all the schemata in X true.

(a)
$$X: \{(\exists y)(\forall x)Lxy\}$$

 $S: (\forall x)(\exists y)Lxy$
 $A: U^A =$
 $L^A =$

(b)
$$X: \{(\forall x)(\exists y)Lxy, (\forall x)(\exists y)\neg Lxy\}$$

 $S: (\exists x)(\exists y)x \neq y$
 $B: U^B =$
 $L^B =$

(c)
$$X: \{(\forall x)(\exists y)(\forall z)(Lxz \equiv y = z), (\forall x)(\forall y)(\forall z)((Lxz \land Lyz) \supset x = y)\}$$

 $S: (\forall x)(\exists y)Lyx$
 $C: U^C =$
 $L^C =$

(d) For each $n \geq 2$, let \mathbb{R}^n be the schema

$$(\exists x_1) \dots (\exists x_n) (\bigwedge_{1 \le i < j \le n} (x_i \ne x_j \land Fx_i)) \land (\exists x_1) \dots (\exists x_n) (\bigwedge_{1 \le i < j \le n} (x_i \ne x_j \land \neg Fx_i)).$$

 $X: \{(\forall x)(\forall y)(\forall z)((Lxy \land Lyz) \supset Lxz), (\forall x)(\forall y)(x \neq y \supset (Lxy \lor Lyx)), (\forall x) \neg Lxx, (\forall x)(\exists y)(Lxy \land (\forall z) \neg (Lxz \land Lzy)), (\forall x)(\forall y)((Fx \land \neg Fy) \supset Lxy)\} \cup \{R^n \mid n \geq 2\}$ $S: (\forall x)(\exists y)Lyx$

$$D: U^D =$$

$$L^D =$$

$$F^D =$$

	at I have complied with the University of Pennsylgrity in completing this examination.
Name (printed)	
Signature	-
Date	-